
Architectures for Context

Terry Winograd

Computer Science Department, Stanford University

This paper is one of a set of responses that will appear in the HI JCournal in 2001 to an
Article by Dey, A. K., Salber, D., Abowd, G. D. (2001). A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applications

 Abstract

The development of context-aware applications will require tools that are based on
clearly defined models of context and of system software architecture. This essay
introduces models for each of these, examines the tradeoffs among the different
alternatives, and describes a blackboard-based context architecture that is being used in
the construction of interactive workspaces

CONTENTS

1. Introduction

2. The Meaning of Context

2.1. Context in Language

2.2 Context in Human-Computer Dialog

2.3 Context vs. Setting

2.4 Physical and Virtual Context

3. Models for Context Awareness

3.1 Three Models for Context Management

Widgets

Networked Services

Blackboards

3.2 Tradeoff Criteria

3.3 Contrasts Between the Models

4. The Interactive Workspace Architecture

5. Examples

5.1. Active Badge Call-Forwarding

5.2 In/Out Board and Context-Aware Mailing List

6. Research Directions

6.1 Ontologies for Context in a Distributed Environment

6.2 Robust, Simple, Distributed Architectures

6.3 User Experience

1. INTRODUCTION

Dey, Salver, and Abowd (2001 [this special issue]) offer several contributions to
understanding context-aware computing. They begin by pointing out three current
shortcomings in the field:

"(1) the notion of context is still ill defined; (2) there is a lack of conceptual models
and methods...; and (3) no tools are available."

As Dey et al. demonstrate, there is no consensus in the field on what "context" should
include, and as a result it is hard to compare research directions and accomplishments
across different researchers and groups. Although it is unlikely that a single definition
will be accepted by all, we can work to understand the differences in approaches and how
those differences shape the problems that are addressed and the solutions that are
proposed.

The lack of conceptual models is addressed directly in this special issue. Dey et al.
propose a "widget" model, Hong and Landay (2001 [this special issue]) propose an
"infrastructure" model, and this essay presents a "blackboard" model. Through these
discussions, HCI researchers will have a variety of models to choose from and a better
understanding of the tradeoffs among them.

Along with each of these models, new tools are being developed. Although they are
all in early states of development, we can expect that either they or their descendants will
become part of the HCI developers "toolbox" over the next few years. This essay
presents a particular set of tools that are being used in our interactive workspace project,
and illustrates their use.

2. THE MEANING OF CONTEXT

2.1. Context in Language

The notion of "context" has been adapted to computing from its original use referring
to language, which is reflected in the structure of the word itself: con (with) text. In using
language use we produce a text, either written or oral, intended to be interpreted by one or
more other people. That text is not an encapsulated representation of an intended
meaning, but rather is a cue that allows the anticipated audience to construct an
appropriate meaning. That construction, in turn, is heavily based on what goes with the
text: the context.

Consider the sentence "Yes, but hit the next one harder." The words carry meanings,
but at every level of linguistic analysis, the speaker's intention can only be determined
through inferences based on context The other what? Why "but"? What is the "Yes" a
response to? Even the meaning of individual lexical items (such as "hit") cannot be
determined out of context. Are we talking here about hammering a nail, or making points
in a talk?

Linguists and philosophers have devoted a great deal of thought to identifying the
elements of context that determine meaning. Attempts to build computer programs that
can understand natural language have foundered on the complexities of knowledge and
inference that are required to handle context in normal human discourse. From this
effort, a few basic points have become clear.

1. Context is not just more text. Many explorations of context have focused on the
text that goes with the text to be interpreted. It is possible that the sentence
preceding our example was "Did that nail go in all the way?", in which case the
"next one" is known to be a nail. On the other hand, the preceding text could just
as well have been "Was that OK?", in which case the object being hit might be
understood from the setting without ever being mentioned.

2. Context is effective only when it is shared. Context in the linguistic sense is a
feature of communication. It doesn't make sense to simply "be in a context", but
rather we apply context in the process of interpretation. This puts it into the
consensual space between speaker and hearer, or what Clark (1996) calls
"common ground".

3. Context emerges in dialog. The shared interpretation of context is built around
commonality of physical setting (or its tele-electronic equivalent), but it extends
beyond what can simply be seen and heard. For example, the fact that one person
is trying to achieve some goal may be part of the shared context, which emerges
as a result of the dialog between the two parties.

2.2 Context in Human-Computer Dialog

It is not surprising that in designing mechanisms for people to interact with
computers, we have taken advantage of the natural human ability to interpret context.
Although the popular mantra is that computers are "literal minded" and "you have to tell
them everything", this is in fact not at all the case in many common forms of interaction.

Consider the question "What will happen when you hit the key marked "backspace"
on the keyboard?"

One possible answer is "The alphabetic character immediately to the left of the
blinking marker on the screen will disappear and the marker will move to the left over
where it was." But an equally valid answer could be "A large rectangular area of the
displayed photograph will turn bright purple." How can the same key have such
disparate meanings? The reason, of course, is context.

When you sit in front of a workstation with a graphical user interface, a large amount
of contextual information is used in the execution of actions by the machine.. There is a
collection of "running applications", one of which has "window focus". Depending on
the application, that window may have a "current selection", and other properties, such as
the "current background color." If the running application is PhotoShop, and if the focus
window contains a rectangular selected area, and if the image is in a suitable mode, and

an appropriate layer is selected, and if the current background color is purple, then hitting
the backspace key means "replace that rectangular area with purple."

There are direct analogies with linguistic mechanisms such as pronouns, definite
referring phrases, domain-specific interpretation of word senses, etc. The intended
meaning is based on the explicit text, together with the mutual understanding of context.
This context-dependency is not a special property of interfaces or something new in
computing. It iis a consequence of the fact that we have created a situation of
communication. Context takes different forms in command-line interfaces, GUIs, speech
interfaces, and so on, but the underlying phenomenon is the same for all of them:
interpretation of intention depends on mutually available context.

One of the points made above is that context is not just more text. In the case of the
computer, it is not just more representations in the machine. Most of the context
elements described above can be thought of as data structures somewhere in the operating
system (current application, active window) and the application code (selection,
background color, etc.). But consider another possible result of hitting the backspace
key. A dialog box pops up on the screen with the message "Cannot delete xyz: Access is
denied.". Perhaps the current selection was a file on some distant file server. Then the
relevant context includes whether or not I have an account on that server with adequate
permissions to delete the file whose icon I had selected. Context includes the larger
world outside of the user and the system directly being used.

2.3 Context vs. Setting

Dey et al. offer the definition that context is "any information that can be used to
characterize the situation of an entity, where an entity is a person, place, or object that is
considered relevant to the interaction between a user and an application, including the
user and the application themselves." This is intended to be adequately general to cover
the work that has been done on context-based interaction. However, in using open-ended
phrases such "any information" and "characterize" it becomes so broad that it covers
everything from the electric power grid or the list of all files on a distant server to the
compiler used in creating the application.

I prefer to use "context" in a more specific way, to characterize its role in
communication. Context is an operational term: something is context because of the way
it is used in interpretation, not due to its inherent properties. The voltage on the power
lines is context if there is some action by the user and/or computer whose interpretation is
dependent on it, but otherwise is just part of the environment. In today's computer
systems, the identity of the person sitting in front of the keyboard is not part of the
context. The identity typed in at login time is part of the context, and is only loosely
correlated with the presence of a particular person,. Features of the world become context
through their use.

In explaining their definition, Dey et al. elaborate with "Context is typically the
location, identity and state of people, groups, and computational and physical objects."
This is again broad, but conveys an important perspective in its emphasis on people,

places, and things. The user of a computer system is always situated in some setting of
people, places, and things (including computers), regardless of which aspects of that
setting are used as context in communication. People have an informal sense of what
constitutes such a setting, and much of the work on context-aware computing draws on
this informal intuition. Context-aware computing might be better described as the design
of computing mechanisms that can use characterizations of some standard aspects of the
user's setting as a context for interaction. Note that this includes the intuitive aspect of
the user's setting (places, people, and things) and also of the computer's setting (network
connections and protocols, stored information, etc.)

2.4 Physical and Virtual Context

As a motivating scenario, Dey et al. describe a conference assistant. An interesting
thought experiment is to rewrite their scenario with one small change. Instead of a
physical conference site, imagine a web-based conference with speakers on video,
questions via live chat, etc. Ashley never leaves her desk but she can still "go" to a talk,
use "directions" to find the appropriate room, and find out "where" her colleagues are, all
in virtual Web space.

What is of note here is that all of the features described by Dey et al. make perfect
sense in this new version, but it could be fully described with out any appeal to "context"
or "context awareness". It does not seem novel that when you go to a web page with a
video window showing a person giving a speech, the page also displays information
about the session and speaker, displays a thumbnail of the current slide, etc. It seems
perfectly straightforward (and in fact there are commercial products) to let you take notes
associated with the pages you view, and to associated them with time-stamps in the video
presentation. Providing this functionality on a handheld device rather than a full-sized
screen offers a number of design challenges, but they are challenges of information
presentation, not new problems of context.

The conference assistant provides valuable functionality, but it is a mixture of very
different things. The part that calls for new thinking about context and setting is the fact
that actions are triggered not by clicks on a web browser, but by Ashley's physical
motions from room to room. This is the domain where context-awareness deals with new
problems and issues. The distinction between setting-aware programs and general
integration of an assistant has consequences for the kinds of tools that will be useful for
building such applications. If a virtual web version of the conference assistant is being
built, the key problems are in designing information storage schemes that can link
different media, including time-based media and annotations. It will be necessary to
provide a format and provide storage for personal profiles so that they can be used by
various parts of the application. It will be necessary to deal with changing profiles over
time. All of these are important, but do not require "context widgets."

On the other hand, the design of appropriate ontologies and operational
conceptualizations for context elements is a major area for new research. Current
systems operate as well as they do because they have evolved over time to operate in a
very particular kind of setting: an individual using a single machine. The complex but

now-familiar context environment of applications, windows, selections, and so forth has
been hardwired into generations of operating systems and applications. People are so
familiar with it that they are thrown off by even minor variations, such as the difference
in handling keyboard input focus between X-Windows and Windows.

But as Dey et al. point out, we are moving away from the person-in-front-of-a-screen-
and-keyboard model. People have multiple devices ranging from wearables to multi-
purpose mobile phones. We are building environments in which multiple users interact
with each other through augmentation of a variety of displays and input devices. In this
new environment the old rules of context break down.

Consider a simple common case. The user makes a selection, hits CTRL-C, makes
another selection (possibly in a different window or application) and hits CTRL-V,
resulting in a copy of the first selection being inserted in place of the second one. The
clipboard is a well-known context mechanism (in fact one of the great selling points of
the original Macintosh interface, since it allowed cross-application information
movement). Clipboard use is much like the using pronouns, such as "that" and "it" in
language. The commands are effectively "Copy that" and "Paste it", without needing to
specify the object further.

But what happens in a multi-person multi-screen environment? Person A does a copy
of something selected on screen 1 and does a paste on screen 2. Between the two events,
person B copies an object on screen 1 as well. What does "Paste it" refer to? The most
recent object copied anywhere? The most recent one on the same device? The most
recent one by the same person? There is no "right" answer to this question, and it is
indicative of the world of complex questions that emerge when we abandon the one-user-
one-machine assumptions.

It will take a new conceptual framework to address questions of this type in a
coherent and unified way. Dey et al. give examples that nicely illustrate some of the
questions, and it will be the challenge to future researchers to provide more general
answers to them, and then to build architectures and tools based on a new theoretical
framework for context.

3. MODELS FOR CONTEXT-AWARENESS

The central technical proposal of Det et al. is the use of "context widgets" as a
programming methodology. The concept is well motivated, for reasons that have a long
and illustrious history in software engineering. Proponents of modular program structure
and object-oriented programs have long argued the advantages of separating the
functionality of a component from its implementation. Writers of higher-level software
can call on a component using a high-level interface that abstracts away the inner details
and provides a uniform way of thinking about its function.

In looking at the problem posed by the scenarios and examples in Dey et al., we see
these common programming needs directly reflected. Clearly, a programmer who is
writing an application whose behavior will depend on a user's location should not have to

be concerned with details of how location is determined: whether there is a camera-based
vision system, an active badge, a magnetic tracker, or some new kind of device not yet
envisioned when the program was written. The appropriate level for the module's
interface is one that deals in people, spatial locations, and the mappings between them.

Given a dynamically changing number of components of varying functions, it is also
clear that they cannot be thought of as modules to be compiled into some grand
application. Any efficiency advantages gained by the resulting close coupling are far
outweighed by the complexity and fragility of the combined system. The message from
distributed computing is clear. Function should be allocated to processors in whatever
way best fits the setting, and the programming metaphor should be based on multiple
independent communicating components.

3.1 Three Models for Context Management

A number of different organizing models have been proposed for coordinating
multiple processes and components. Dey et al. propose a widget model, adapted from
the architecture of graphical user interfaces. Hong and Landay (2001) argue for an
infrastructure-centered distributed services model, based on client-server dialog. This
essay describes a third alternative, the blackboard model, which has been used widely in
various artificial intelligence applications (Engelmore, 1988). Each of these has
advantages and disadvantages, and it is useful to examine the space of tradeoffs.

Widgets

Widgets can be thought of as an extension of device drivers to the software interface.
Device drivers were invented in the early days of computing to deal with the complexities
of controlling hardware peripherals. Each device had its own conventions, requiring the
computer program to manage a flow of data over some kind of physical connection port.
Each program that used a device needed to be able to send the appropriate signals,
including handling interrupts, errors, etc. It was obvious that as new technologies were
added, this would lead to a morass. Instead, for each type of device (at some level of
specificity), a standard higher-level abstraction was created (e.g., files and file
positioning for storage devices) and for each different physical device (e.g., a particular
kind of tape drive) the operating system incorporated a driver mapping the abstraction
onto the detailed control code.

A widget, such as a scroll-bar on a graphical user interface, is a device driver at a
different level. The program using it can treat it as an abstract device that provides 1-
dimensional position information and has some additional signals (jump a screen, jump to
top, etc.). The driver (widget code) can implement the functionality for any kind of
pointing or wheel device, any "look and feel", etc. The interaction is implemented in
terms of messages (to the widget) and callbacks (triggering the code when a particular
condition happens in the widget).

Networked Services

In traditional widget architecture, the set of active widgets belongs to some controller
program (such as a window manager). Widgets are components within the manager
process, rather than being implemented as independent processes. A related but more
flexible model is the client-server architecture that is widely used for connecting higher-
level components (e.g., a user application and its database). This metaphor has served
well for much of the development of Internet-based software, where the client and server
reside at different net locations and communicate using Internet protocols.

In a service-based architecture, a client needs to find the location of a service
(through pre-configuration or some kind of resource discovery process), and then set up a
connection with it. This connection can be short-lived (e.g., the basic HTTP protocol
with a single exchange) or long-lived. Connectivity is based on finding the network
location (host and port) of the service and providing software that uses the service's
protocol for encoding content (e.g., SQL for database queries).

A key feature of a service-based architecture is the independence of the components.
There is no "widget manager" to keep global track of services and their connections.
Each component contains appropriate code to create connections, marshal outgoing and
incoming messages, manage failures and error messages, etc. This adds complexity to
each component, and in turn makes them more independent. The costs of finding and
communicating with independent services is inherently higher than when the components
are tightly coupled in a managed process. But by using appropriately tuned specialized
protocols, the code can be efficient to the degree that the underlying network latency and
bandwidth allow.

As with widgets, the basic service metaphor is procedural. Each service is handled by
a process on some processor. The discovery of services in a distributed environment has
been a major topic of investigation (e.g., Gribble et al., 1998, Arnold, 2000). An
application that needs to use a particular kind of service can either have a direct address
(as is typical in configuring today's applications) or can run a discovery process with a
description of the desired service. Since the search region of the discovery process can
be setting-dependent (e.g., using short-range wireless), it can introduce a certain kind of
setting dependency. For example, a discovery process running on a laptop looking for a
printer service may be designed to find only (or preferentially) servers within the same
room or building. This does not require a separate context widget, but depends on the
characteristics of the network connectivity and discovery services.

Blackboards

The blackboard architecture adopts a data-centric rather than process-centric point of
view. Rather than sending requests to distributed components and getting callbacks from
them, a process posts messages to a common shared message board, and can subscribe to
receive messages matching a specified pattern that have been posted. The nature of the
pattern matching varies among different blackboard systems. Artificial intelligence
systems (Engelmore, 1988; Martin et al., 1999) often apply sophisticated inference
procedures to logical representations. Tuple-based blackboards, such as the early Linda

language (Gelernter, 1985) and IBM's T-Spaces (Wyckoff et al., 1998) use simple field-
by-field comparison of tuples.

 In a blackboard architecture, all communications go through a centralized server.
Routing to different components is effectively accomplished by the matching of message
content to a subscriber's pattern. Anything that can be done with direct communication
paths can be simulated in a straightforward way by including an identifier for the path (or
its endpoints) as a field in a message and using matching to get messages to the desired
components.

3.2 Tradeoff Criteria

In choosing an architecture, a system designer needs to consider tradeoffs along a
number of different dimensions. For systems of the kind discussed in the paper, these
include:

Efficiency. All computer technology is subject to efficiency metrics in space and
time. For interactive applications, the key limitations are time-efficiency, both bandwidth
and latency. Some architectures make it easy to create fast paths that have been tuned for
throughput efficiency, while others impose layers of communication structure that limit
the tuning that can be done. Given today's networking and processor speeds, efficiency is
not the bottleneck in many cases. For example, an application that uses information
about who is in what physical space needs only a few bytes of data, and can tolerate lags
measured in seconds. Dey et al.'s proposed architecture has been developed for examples
of this type, rather than examples requiring highly efficient transfer of multimedia data,
such as those explored by McCanne et al. (1997).

Configurability. A more difficult criterion to measure, and one that is not buoyed
along by Moore's law, is the difficulty of configuring systems that include multiple
processes and devices. This is often the Achilles heel of complex system designs. Once
configured, the components work effectively, but the job of adding or modifying
components is complex and prone to breakdown. In many cases, changes to the
configuration require a complete rebooting of the system, and cannot be done "on the
fly." As computing has moved in the past few years towards a network-centric
environment with dynamic addition and removal of processes, configurabiliity has
become and increasing concern (see comments in Satyanarayanan, 1999, on "no-futz
computing")

Robustness. A correlate of the difficulty of configuring systems is the difficulty of
coping with breakdowns of their components. Traditional programming methods provide
error handling mechanisms, but in general these cope only with "expected errors" and are
not graceful in the face of overall component failure and disconnection. Simple error
mechanisms suffice for systems in which a single process manages the set of controllers
(as with standard workstation operating systems) but do not scale to systems of
independent distributed components on a network. A robust system must continue to
function in the face of components that malfunction, jam, send inappropriate output,

disappear, and are restarted. There is no magic bullet, but the choice of architecture can
aid or hinder this goal.

Simplicity. Finally, the key bottleneck is the human mind. A system that requires
complex understanding by system builders in order to make use of its facilities will be
used only by those who have the dedication and motivation to master it. The World
Wide Web is an obvious object lesson. The HTML and HTTP protocols are much less
powerful than many of the formatting, hypertext, and communication protocols that
preceded them. But their simplicity made possible a different kind of programmer and a
different arena of use. Simplicity was the key to the success of the web.

3.3 Contrasts Between the Models

We can contrast the three models of Section 3.1 in terms of these tradeoff criteria.
Rather than trying to fill out the whole matrix, we will just make a few observations
about the tradeoffs most relevant to the architecture of a context-aware system.

The widget model grew from a tradition of tight coupling and single-manager control.
An interface with widgets is compiled together, and is an interface to one operating
system. Mechanisms such as callbacks take advantage of this tight coupling for
efficiency, but require complex configuration and are not robust to component failures
(imagine an interface in which "the scroll bar has gone down").

The services model evolved in the Internet environment, with relatively large,
independent process components each having complex functionalities. It therefore puts
much less emphasis on efficiency and tight control, and correspondingly more on
configurability (service discovery) and robustness.

The blackboard metaphor developed in the context of artificial intelligence systems,
where each component (or "agent") had partial information, and new sources could be
easily added. It is the most loosely coupled and therefore pays a price in communication
efficiency. Every communication requires two hops and uses a general message structure
that is not optimized for any particular kind of data or interaction protocol. The benefits
are in ease of configurability and robustness, and in the simplicity provided by a uniform
communications path.

4 The Interactive Workspace Architecture

In our research on Interactive Workspaces (Fox et al., 2000) we are exploring the
integration of multiple devices for multiple users in a shared physical space, called the
iRoom. We have implemented a communication and application programming
architecture that supports context-aware (or "setting-aware") computing.

 The overall architectural metaphor is a blackboard, with two levels of data. The
Event Heap (Fox et al., 2000), which uses T-Spaces (Wyckoff et al., 1998), provides fast
distribution of simple event tuples. Any process (e.g., one handling input from a switch,
keyboard, motion sensor, etc.) can post tuples, which include fields for their source and

timestamp, along with explicit data associated with the event type. Any process can
subscribe to a pattern of field values and receive callbacks when an appropriate tuple is
posted. The receiving process can remove the tuple, or can leave it for others to receive as
well. We have implemented interfaces for posting and receiving events in Java, C++,
HTTP (through a proxy), and a scripting interface Each tuple has a time-to-live, so after a
specified period it will automatically be deleted. The Event Heap is generally used for
short-lived items, with time-to-live extending at most through an interaction session.

The second level blackboard is the Context Memory, an XML-structured database that
allows any process to store and retrieve XML-encoded data. This is used for data that
will be relevant across applications and sessions, such as physical objects and their
locations in the space, identities and properties of people, collections of files, etc.
Queries are sent to the Context Memory as XML ASCII strings, through an HTTP
interface, or by posting an event to the Event Heap with the query string as one of the
fields. In addition to responses that return data in XML (using the same paths), the
Memory has a template mechanism that allows application writers to create arbitrary
HTML displays for users, and to let them post new data through forms.

In choosing to use a blackboard architecture, top priority was given to the metrics of
robustness and configurability. Although efficient communication is important, it is not
the bottleneck in designing systems that deal with context in a general way. Given the
ever-increasing speed of processors and networks, an architecture that avoids the
complexity of configuring point-to-point communication paths can serve for all but a few
specialized uses that require tight action-perception coupling (Winograd, 2001).

The blackboard also offers simplicity of implementation. Because there is only one
standard communication link for each component, which is always the same (to the
blackboard), there is no complex protocol for finding ports or resources, establishing
connections, and the like. Software can achieve the logical effects of connection-based
communication when needed, by using messages in a systematic way.

Robustness is effected in a more complex way. At a first level, we depend on a
component that can be a single point of failure for the whole environment. This requires
that it be built with the same degree of reliability as other central failure points such as
the operating system and network infrastructure. Given that it is a stable component (not
modified for each new device or application), this degree of reliability has turned out to
be a reasonable task in our own research, and is in keeping with the general need for
stable infrastructure in any system.

The benefit in return is that the loose coupling makes it easier for components to deal
with the failure of other individual components (which are not usually as stable and
reliable as the infrastructure). When a component fails, no communications links break
other than its own link to the blackboard. Components that depend on information from
the failed component can detect its absence through timeouts, if desired, and can call for
a restart of a new component. We make heavy use of an announce-listen style, in which
components that provide services (such as sensor data) periodically post events. A
component that uses the data can listen to these events, and if one does not appear within

the expected time can initiate restart operations. Our experience has been that when a
clean restart process is provided for a component, this strategy can deal well with
unexpected failures of all kinds.

In addition, the centralized nature of the blackboard provides significant opportunities
for system integration. A key example is the maintenance of history. If a component is
providing information about the setting (e.g., the presence of people in places), it is often
useful to retrieve that information for past times. If a number of components are
providing such data (e.g., one widget in each building), their data needs to be jointly
queried to answer a question such as "where was Joe at 10am?" Adding state to each
individual widget is not a practical solution in many cases, since it would require that the
seeker of the information open connections to all the widgets (or a special aggregator for
this purpose), use protocols that they support to report history, expect them all to be
operative, etc.

The blackboard architecture is built around a database that coordinates information
across the components. If a message is posted each time a person moves to a new
location, a query over the set of posted messages can provide a history without the
complexity and overhead of making connections and without needing to know how the
data was provided. Both the Event Heap and the Context Memory offer a way to query
any data that has not yet passed its time-to-live, which can be set arbitrarily by the
posting process.

Similarly, it is easy to construct "observers" that subscribe to messages that are also
being received by other intended components, and that can record, analyze, and monitor
activity. This observer activity can be used for basic functionality (e.g., noting that a
component has failed to post a message by an expected time and restarting it), or for
higher-level debugging, statistics gathering, logging, and problem detection. These
would be extremely difficult to configure and manage if they had to tap into individual
components and the multiple communication paths among them.

5. EXAMPLES

The technical examples provided by Dey at al. can be revisited from the point of view
of the architectural distinctions above. I will contrast their proposed implementations
proposed with those that would be possible with the Interactive Workspace architecture,

5.1. Active Badge Call-Forwarding

Using the interactive workspace architecture, the setup for the active badge
application shown in Figure 2 in Dey et al. would be as replaced by the structure shown
in Figure 1.

Figure 1. Interactive Workspace architecture for the active badge call-forwarding
application. Dotted areas show messages that are passed to and from the blackboard.

 In this architecture, a variety of components introduced by Dey et al. (Interpreter,
Discoverer, Aggregator, etc.) have been replaced by the shared Event Heap and Context
Memory. Events are generated when a badge enters or leaves a space. These are posted
to the Event Heap by a process associated with each sensor, and are subscribed to by the
active badge application. This application maintains information about who is where,
based on the events plus heuristics about how to handle conflicting or missing data (since
the sensors cannot be assumed to be always up and working properly). The active badge
application does not need to deal with a collection of widgets or aggregators. Information
about the assignment of badges to people and of phone numbers to rooms is maintained
in the Context Memory database and can be updated through standard database actions or
HTML templates. The resulting system is greatly simplified, with no need to set up
multiple connections, start the various widget processes (beyond the one for reading each
sensor), etc.

5.2 In/Out Board and Context-Aware Mailing List

The example shown in Dey et al.'s Figure 7 involves two new functionalities. In
adding these to our design of Figure 1, it is useful to split out the functionality of keeping
track of who is where from the details of phone routing, as shown in Figure 2.

Blackboard

Event
Heap

Context
Memory

Active Badge
Sensor

Location
Observer

Active Badge
Sensor

Location
Observer

source=sensor82
time=001226145302
type=enter
badge=AXQ287
room=R36

source=sensor17
time=0012261453
04 type=leave
badge=CMX551
room=R36

<badge idref="AXQ287" person="abowd"/>
<badge idref="CMX551" person="dey"/>
...
<phone room="R36" extension="3-2780" billing=... />
...

Active Badge
Application

Figure 2. Interactive Workspace architecture for multiple location-aware
applications. The active badge application stores a history of locations in the
Context Memory, which can be queried by the other applications.

The active badge component is responsible for receiving events posted by the sensors
and posting the results as a database of who is where, when, using the shared Context
Memory. Any other application can use this information by querying that data. An
announce-listen process can restart the active badge application if it disappears, since the
relevant state is being recorded in the Context Memory. The Context Memory provides a
mechanism for HTML templates that can be used with database queries, so that the
production of the HTML in/out board displays as shown in Dey et al.'s Figure 6 would
not even require application code, but would be a template.

Blackboard

Event Heap

Context
Memory

Active Badge
Sensor

Location
Observer

Location
Observer

Active Badge
Sensor

<location person="abowd" room="R36"
 entry="2000-12-26T14:30:03"/>
<location person="dey" room="unknown"
 entry="2000-12-26T14:32:12"/>
...

Active Badge
Application

In/Out Board

Context-Aware
Mailing List

source=sensor17
time=0012261453
04 type=leave
badge=CMX551
room=R36

The point demonstrated in this example can be applied to Dey et al.'s other examples
For example, Figure 17 enumerates 26 software components that need to configured and
connected for the conference assistant. Most of these relate to a particular kind of object
in the environment (names, rooms, presenters, slides, etc.). It would be more direct and
simpler to think of these items not as software components but as data objects, created
and manipulated by a small number of software components that share data through a
common database. Many of the complexities in the examples come from the underlying
architectural metaphor that approaches each item of interest in the setting as a widget.

6. RESEARCH DIRECTIONS

Dey et al. have done a service to the HCI community by drawing our attention to the
question of integrating setting and context into system design at a fundamental level.
Their efforts and examples have pointed out key areas of research that need to be actively
pursued.

6.1 Ontologies for Context in a Distributed Environment

A truly context-aware interaction will depend on providing the application writer with
a representation of the aspects of context that matter to program execution. Some of these
are fairly straightforward (as with people location), while others are more subtle (e.g.,
what is the "active selection" in a multi-device multi-person space). The research goal is
to find the right level of description, which abstracts away from implementation details,
but is still specific enough to serve the purpose of inferring appropriate intent from
context-assuming interactions.

The hard part of this design will be the conceptual structure, not the encoding. Once
we understand what needs to be encoded, it is relatively straightforward to put it into data
structures, data bases, etc.. The hard part will be coming up with conceptual structures
that are broad enough to handle all of the different kinds of context, sophisticated enough
to make the needed distinctions, and simple enough to provide a practical base for
programming.

6.2 Robust, Simple, Distributed Architectures

The toolkit proposed by Dey et al. allows application developers to make use of
distributed sources of dynamic (time-changing) data, including those that provide
information about a user's physical setting. Theirs is one of many competing approaches
to this problem, and a good deal of research and experimentation will be required before
broadly usable designs and standards appear.

In addition to research directed to incremental improvement, we need to search for
ways of cutting the Gordian Knot, as the web protocols did with respect to their
predecessors. There is no panacea: each solution will be suited to some environments
and uses but not to others. The blackboard architecture we are developing in our own
research will provide robustness and simplicity for many systems, but needs to be
extended for latency-critical communication, generalized to scale up to network-level

environments, and augmented to provide multiple linked blackboards and protocols for
managing flow among them.

6.3 User Experience

The goal of human-computer interaction design is creating an appropriate user
experience. This essay, along with Dey et al., addresses the user experience only by
giving some simple scenarios. Many of the other commentaries in the this special issue
deal with issues that will be critical to designing and using setting-aware applications.
They range from privacy and personal control to the design of "invisible interactions" in
which users' intentions about what they want computers to do are inferred from ordinary
activities such as speech, gesture, and changing physical location. In an important sense,
the discussion in this essay is just preparation. It deals with design of an infrastructure
that will allow us to construct and test new ways of interacting. The research that begins
at that point will allow us to better understand how to make setting-aware applications
not just computationally feasible, but useful and appropriate.

REFERENCES

Anrold, K. (Ed.) (2000) The Jini[tm] specifications, Second Edition, Reading MA:
Addison-Wesley.

Clark, H. H. (1996). Using language. Cambridge: Cambridge University Press.

Dey, A. K., Salber, D., Abowd, G. D. (2001). A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Human-Computer
Interaction, 16, xxx-xxx.

Engelmore, R., & Morgan, T. (Eds.) (1988), Blackboard Systems, Reading MA:
Addison-Wesley.

Fox, A., Johanson, B., Hanrahan, P. & Winograd, T., (2000), Integrating information
appliances into an interactive workspace, IEEE Computer Graphics &
Applications, 20:3, May/June, 54-65.

Gelernter, D. (1985), Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7:1, 80-112.

Gribble, S.D. et al. (1999), The MultiSpace:An evolutionary platform for infrastructural
services, Proc. 1999 Usenix Ann. Tech.Conf.,. 157-170, Berkeley,Calif: Usenix
Assoc.

Hong, J., & Landay, J. A. (2001). An infrastructure approach to context-aware
computing. Human-Computer Interaction, 16, xxx-xxx. [this special issue]

McCanne, S. et al., (1997) Toward a common infrastructure for multimedia-networking
middleware, Proc. 7th Intl. Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV '97).

Martin, D. L, Cheyer, A. J. & Moran, D. B. (1999) The open agent architecture: A
framework for building distributed software systems, Applied Artificial
Intelligence, 13:1, 91-128.

Satyanarayanan, M. (Ed.) (1999), Digest of Proceedings, Seventh IEEE Workshop on
Hot Topics in Operating Systems Rio Rico, AZ: IEEE,
http://www.cs.rice.edu/Conferences/HotOS/digest/node16.html

Wyckoff, P. et al. (1998), TSpaces, IBM Systems J.,.37:3, 454-474.

Winograd, T. (2001), Interaction spaces for 21st century computing, in Carroll, J. (Ed.),
Human-Computer Interaction in the New Millennium, Reading MA: Addison-
Wesley.

.

