
StoryCoder: Teaching Computational Thinking Concepts
Through Storytelling in a Voice-Guided App for Children

Griffin Dietz
dietz@stanford.edu

Computer Science Department
Stanford University
Stanford, CA, USA

Jimmy K. Le
jimmyle@stanford.edu

Computer Science Department
Stanford University
Stanford, CA, USA

Nadin Tamer
nadint@stanford.edu

Computer Science Department
Stanford University
Stanford, CA, USA

Jenny Han
jlhan@stanford.edu

Computer Science Department
Stanford University
Stanford, CA, USA

Hyowon Gweon
hyo@stanford.edu

Department of Pyschology
Stanford University
Stanford, CA, USA

Elizabeth L. Murnane
emurnane@dartmouth.edu

Thayer School of Engineering
Dartmouth College
Hanover, NH, USA

James A. Landay
landay@stanford.edu

Computer Science Department
Stanford University
Stanford, CA, USA

ABSTRACT
Computational thinking (CT) education reaches only a fraction of
young children, in part because CT learning tools often require
expensive hardware or fluent literacy. Informed by needfinding
interviews, we developed a voice-guided smartphone application
leveraging storytelling as a creative activity by which to teach
CT concepts to 5- to 8-year-old children. The app includes two
storytelling games where users create and listen to stories as well
as four CT games where users then modify those stories to learn
about sequences, loops, events, and variables. We improved upon
the app design through wizard-of-oz testing (𝑁 = 28) and iterative
design testing (𝑁 = 22) before conducting an evaluation study
(𝑁 = 22). Children were successfully able to navigate the app,
effectively learn about the target computing concepts, and, after
using the app, children demonstrated above-chance performance
on a near transfer CT concept recognition task.

CCS CONCEPTS
• Social and professional topics→ Computational thinking;
Children; • Human-centered computing → Natural language
interfaces.

KEYWORDS
children, computational thinking, storytelling, voice user interface

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00
https://doi.org/10.1145/3411764.3445039

ACM Reference Format:
Griffin Dietz, Jimmy K. Le, Nadin Tamer, Jenny Han, Hyowon Gweon,
Elizabeth L. Murnane, and James A. Landay. 2021. StoryCoder: Teaching
Computational Thinking Concepts Through Storytelling in a Voice-Guided
App for Children. In CHI Conference on Human Factors in Computing Systems
(CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3411764.3445039

1 INTRODUCTION
In recent years, there has been a global push for computing edu-
cation for all. This trend is largely driven by the need for people
to understand our increasingly technological world, a shortage
of diverse qualified employees for the technical workforce, and a
growing necessity for computing skills across a broad range of jobs.
Critically, there are benefits to computing education even in early
childhood: early computer science (CS) exposure increases later
interest in the field among female and minority students [34, 35],
contributes to the development of computational thinking (CT) and
computational literacy [9], and builds lifelong skills and readiness
for a child’s educational career [39].

Despite the benefits of such early exposure to computer sci-
ence and evidence suggesting children can cognitively engage with
CT concepts [20], the available infrastructure for teaching com-
puting to early elementary age (K–2) children does not meet all
students’ needs. In particular, children often lack the advanced
literacy, numeracy, and fine motor skills needed to use most tradi-
tional programming environments or CT tools. Existing solutions
for teaching computing to children are often unable to remove this
literacy threshold [67], depend on a knowledgeable teacher for stu-
dents to make meaningful progress [54, 67], or require expensive
or specialized technologies that are unaffordable for many school
districts and not readily available to all students [42, 79].

However, if we can teach CT in a manner synergistic with pro-
moting reading readiness, literacywill no longer be a barrier to early

https://doi.org/10.1145/3411764.3445039
https://doi.org/10.1145/3411764.3445039

CHI '21, May 8�13, 2021, Yokohama, Japan Dietz et al.

CS education. Here, we argue that children can learn CT concepts
in a way thatsimultaneously builds literacy skillsby engaging with
these ideas through storytelling. Storytelling in early childhood
can enhance language and literacy development and contribute
to improved oracy, listening, reading, and writing skills later in
life [55, 62]. Furthermore, much of everyday interaction centers on
sharing experiences through storytelling [56], and only through
play and practice do children develop the tools for e�ective social
communication [59].

By leveraging storytelling as a domain to teach computational
thinking, children can build critical foundational skills in these two
areas, which are a natural �t with one another. Children's stories,
like code, are told in logical sequences, often leverage repetition (i.e.,
loops), and have components (e.g., characters and locations) that
can be changed, reused, or replaced (i.e., data or variables). Stories
are also built on top of abstractions (e.g., a standard story structure)
and are logically organized using decomposition (e.g., scenes or
chapters). Thus, storytelling presents an opportunity for teaching
key computing concepts in a way that promotes creativity, supports
self-expression, and simultaneously builds children's computing
and literacy skills.

Aligning with the oral traditions of storytelling, it is possible to
introduce these computing concepts using a voice-based interface,
which can also serve to alleviate the literacy requirements present in
most existing solutions. By designing a voice interface for informal,
at-home learning that runs on accessible hardware (smartphones),
we can promote a style of computing education that reaches a far
greater number of children. This approach will facilitate access to
CS education, especially for those who do not have such materials
available in their schools or whose families are unable to purchase
specialized hardware for use at home.

Building on related work and our own formative investigation,
we introduce StoryCoder, a voice-based smartphone application for
early school-aged children (ages 5�8) that introduces coding con-
cepts through storytelling activities. This system supports children
in the creation of their own stories by teaching the conventional
story structure introduced in many early elementary classrooms.
It then allows children to use and modify those stories through
concept-targeted story games to learn about and engage with four
key ideas in computing: sequences, loops, events, and variables.

In this paper we present the following main contributions:

� A formative investigation of educator and student needs
that suggests computational thinking tools should run on
accessible hardware, not require literacy skills, and leverage
interdisciplinary, personal, and creative activities that can
combat student self-doubt and increase engagement.

� StoryCoder, a voice-based smartphone application that intro-
duces children to computing concepts through storytelling
activities.

� A multi-day user study evaluating the computational and
storytelling learning potential of StoryCoder and children's
attitudinal perceptions toward the system and computing
more broadly.

Overall, our evaluation demonstrates that StoryCoder�and the
storytelling-based, voice-guided approach it instantiates�e�ectively
introduces target computing concepts and engages children in an

activity they perceive as helpful for later success in a formal com-
puter class. Furthermore, the system provides measurable bene�ts,
with children demonstrating above-chance performance on a near
transfer post-assessment recognition task and with older children
creating better stories than they do without the system, as evaluated
by a standard rubric for narrative assessment.

2 RELATED WORK
Here we describe related work on curriculum and learning tech-
nologies for early computing and storytelling education, and on
voice interfaces for preliterate children.

2.1 Computational Thinking in K�2
2.1.1 Computational Thinking Concepts and Curriculum.Since
Jeanette Wing's in�uential article was published in 2006 [83], com-
putational thinking (CT)�a term �rst coined by Seymour Papert in
1980 [60]�has received considerable attention. While the precise
de�nition and makeup of this computational problem-solving skill
set are still under debate, the literature generally agrees on the
importance of practices such as decomposition and modularity and,
to some degree, on speci�c computational concepts such as par-
allelism and conditional reasoning [6, 17, 38, 81, 83, 84]. Brennan
and Resnick's computational thinking framework�which is rooted
in observations of Scratch [67] users and is the only CT concep-
tualization formulated to-date with primary-school aged learners
speci�cally in mind�calls out speci�c computing concepts (e.g.,
sequences and loops), practices (e.g., abstracting and modularizing),
and perspectives (e.g., expressing and connecting) that are core to
computational thinking in early education [12].

Recently, national e�orts in the United States have led to cur-
ricular frameworks for computer science education [4, 18], which
delineate speci�c grade-level learning objectives. Cross-referencing
these frameworks with Brennan and Resnick's CT de�nition [12],
we identify an intersection of target concepts for early school age
children: sequences, loops, events, and data/variables ascompu-
tational concepts; abstraction, planning, and modularity ascom-
putational practices; and expressing oneself and connecting with
others ascomputational perspectives. Our research and design work
therefore speci�cally focuses on teaching these CT concepts, while
providing built-in sca�olding to support these practices and per-
spectives.

2.1.2 Computational Thinking Learning Technologies.In recent
decades, a number of tools have been created to teach CS and CT
to children. Many utilize new languages or games developed specif-
ically to teach programming to young audiences [19, 45, 50, 60, 61].
However, literacy is a prerequisite to their usage, creating a barrier
of entry for many of the youngest learners. To make computing
more accessible to this preliterate demographic, researchers have
introduced block-based programming, programmable robots, and
unplugged activities.

Block-based languages disguise the underlying programming
syntax using blocks that �t together only when syntactically cor-
rect. However, Scratch [67] and Blockly [30]�arguably the most
prominent block-based languages�still incorporate written text,
and therefore can only e�ectively reach older users. To reach a
younger audience, other languages following this paradigm have

StoryCoder: Teaching Computational Thinking Concepts Through Storytelling in a Voice-Guided App for Children CHI '21, May 8�13, 2021, Yokohama, Japan

replaced text with symbols, thereby removing the need to know
how to read and write [27,44]. This change allows children to create
programs by piecing visual�and sometimes tangible [42]�blocks
together to represent di�erent coding structures. However, these
languages often require a more experienced teacher to encourage
best practices or to guide the student toward building more complex
programs [54].

Programmable robots present another common paradigm for in-
troducing computational thinking in early education. These robots
support children in learning about computing through physical play
by mapping programmatic commands to actions in the physical
world. While many such robots still leverage block-based program-
ming as a means to give instructions to the robot (e.g., KIBO [76]
and Dash Robot [85]), some target the teaching of CT concepts or
practices without speci�c programming languages. The Bee-Bot, for
example, teaches sequencing to children in kindergarten through
second grade using small robots with built-in directional command
buttons [79]. While these programmable robots are engaging and ef-
fective, this technology is often expensive, and purchasing a full set
for a classroom (or even one for home use) is �nancially infeasible
for many schools or parents.

Given the scarcity of access to such digital tools and resources,
many educators have developed or leveraged CS Unplugged [8]
activities that allow children to engage with computational con-
cepts without any technology. For instance, Robot Turtles [72] is a
board game for children as young as three that introduces basic pro-
gramming concepts, and Hello Ruby [51] is a children's book series
that teaches about computers, technology, and programming. How-
ever, while these �unplugged� activities are relatively accessible
and approachable ways to introduce children to CS ideas, research
suggests that students may not connect this style of learning back
to computing [78].

In summary, there are three dominant paradigms in early com-
puting education: block-based programming, programmable robots,
and unplugged activities. While each of these approaches have their
merits, computing education still fails to reach a large proportion
of the young population due to literacy requirements, a shortage
of educators, expensive hardware, and/or a disconnect between
materials and objectives. These drawbacks are our key motivation
behind investigating additional paradigms that we can leverage for
early childhood computing education.

2.2 Storytelling in K�2
2.2.1 Storytelling Curriculum.While the push for CT education
is relatively new, there has been a longstanding interest and ef-
fort to teach storytelling to children. Storytelling is a vital lifelong
communication skill that fosters the growth of relationships [55],
and research has shown that language and listening comprehen-
sion, built through exposure to storytelling, are critical to academic
success [55, 62]. In our e�ort to teach storytelling to support the
acquisition of CS and CT concepts, we also look to storytelling
curriculum and technologies as a source of inspiration.

Reading aloud is one common educational activity and presents
a valuable way to promote literacy growth in emergent readers
[1, 25]. Such practice teaches children about the di�erence between
spoken and written language, builds an understanding that the

written word is a representation of speech, and may contribute to
letter or word recognition [25]. Reading aloud also exposes children
to story structure (e.g., stories have a beginning, middle, and end),
which is critical to understanding, and later constructing, written
texts [25].

In fact, research has shown that explicitly teaching story struc-
ture to children increases their language comprehension skills,
improving both their story memory and comprehension [7, 32].
Children recall more concepts from new stories and answered more
questions about the structural elements of such stories after receiv-
ing explicit instruction on story structure, as compared to children
without such instruction [75]. Therefore, it is unsurprising that
much of early literacy education focuses on reading, listening to,
and understanding stories.

2.2.2 Technologies for Supporting Storytelling.Researchers have
developed a number of technologies intended to directly support
young children's storytelling (e.g., [11, 28, 40, 52]), which range
from audio-supported physical experiences to fully digital experi-
ences. Many existing systems mix physical and digital formats by
allowing children to record and playback stories surrounding a lim-
ited set of tangible props [13, 15, 33, 74]. Children use these props
as tangible manipulatives that represent speci�c story elements,
leading to creative and collaborative physical play. However, some
criticize these systems because compatible props may constrain the
expanse of creativity. TellTable resolves this constraint by allow-
ing students to create stories on a large multi-touch surface with
support for incorporating any physical object into the story [14].
It elicits the creation of stories, allows children to take inspiration
from other stories, and fosters the development of a community
of story creators. On the other end of the physical-digital spec-
trum, there are a collection of phone- and tablet-based systems
(e.g., Fiabot [68] and StoryBank [31]) that support multimedia story
creation by allowing users to photograph drawings or surround-
ings to incorporate into their tales. By using more readily available
devices, these tools can reach a broader range of children from
diverse socioeconomic backgrounds.

Additional motivations for children's storytelling include im-
proving children's health, building competencies in other academic
subjects, or supporting personal relationships. Indeed, there have
been several devices that support children in therapy [64], teach
math [2] or foreign languages [89], or allow for asynchronous or re-
mote storytelling as a means to connect distanced family members
(e.g., grandparents) [40, 66, 80].

Many of the aforementioned storytelling systems were designed
to foster children's creativity, communication, and fantasy play.
However, while they demonstrate the capacity for technology to
support storytelling in young users, they do not explicitly teach
formal story structure to children. Toontastic is a notable exception
[69]. Originally designed for a large display with multi-pen input, it
has since been adapted and commercially released for smartphones,
and sca�olds the storytelling process by breaking it into parts [69].
In doing so, it explicitly encourages a child to consider a beginning-
middle-end structure for their stories. However, there has been no
formal investigation into the learning outcomes of this system [69],
or systems that introduce story structure more broadly.

CHI '21, May 8�13, 2021, Yokohama, Japan Dietz et al.

2.3 Technologies That Simultaneously Support
Computing and Storytelling

The creative potential, engagement opportunities, and underlying
structure of stories all motivate storytelling as a promising do-
main for introducing computing concepts to children. People are
driven to see their ideas realized in the real world [71], and prior
work demonstrates that interdisciplinary approaches that teach
STEM disciplines through creative activities, like storytelling, en-
gage students by allowing them to make projects that are personally
meaningful [49].

Indeed, several CS learning tools geared at older children have
built-in support for visual storytelling, particularly via animation
[19, 26, 46, 67], while other systems support programmable charac-
ters [70], storytellers [24], and listeners [10]. CyberPLAYce expands
this storytelling further into the physical world, by allowing upper-
elementary age children (8�12 years old) to physically recreate a
story's setting using electronic modules, thereby supporting both
storytelling and CT practices [73]. Solely audio-based programming
tools that leverage storytelling have been used to support accessi-
bility in computing education for visually impaired users, but they
are not directly geared at preliterate children [48]. There are no
prior systems that speci�cally target the teaching of computing
concepts through storytelling activities to pre- and early-readers as
a means to simultaneously build both early computing and literacy
skills.

2.4 Voice Interfaces for Preliterate Children
Voice interfaces can remove the literacy barriers of many program-
ming environments, while satisfying the need for children to listen
to stories [1] and hear their own voice in their creations [15]. As
conversational agents grow increasingly advanced, children have
begun to see them as intelligent and friendly [23], and with ap-
propriate sca�olding, children can demonstrably learn from their
interactions with these systems [86]. With voice interfaces' rapid
gains in popularity and performance [57, 87], such technology
presents a promising modality for educating young children.

To date, many commercial voice-based apps exist that tell stories
to children (e.g., Amazon Storytime), add pre-established sound
e�ects to a �xed list of children's books (e.g., Disney Read Along),
present choose-your-own-adventure stories (e.g., The Magic Door),
play mad-lib style games (e.g., Story Blanks), and more. However,
none simultaneously supports storytelling practice and the learning
of computational concepts.

3 FORMATIVE INVESTIGATION
As detailed above, there are already an array of systems, tools, and
approaches aimed at supporting early childhood computing edu-
cation. Yet such learning opportunities are still reaching only a
fraction of children [36]. We engaged in a formative investigation
to 1) understand the disconnect between existing solutions and ed-
ucator and student needs and 2) inform design decisions that target
the correct challenges. The Stanford IRB approved all procedures.

3.1 Method
We interviewed seven elementary school computing educators (1
female, 6 male) and four child programmers (ages 6�12; 3 female, 1

male). To be inclusive of diverse experiences, we recruited educators
who work in a variety of settings, including formal classrooms, cur-
riculum development o�ces, and after-school programs, as well as
children who have a mix of formal, informal, and at-home comput-
ing instruction. The interviews followed a semi-structured format
and included questions relating to experiences teaching or learning
computer science, typical learning activities, the challenges and
motivations for such teaching and learning, and speci�c questions
about what these participants felt was missing from their current
practice. The interviews lasted 34 to 63 minutes (" = 48”14) for ed-
ucators and 10 to 29 minutes (" = 19”25) for students. Throughout
the interview, the interviewer took notes on participant responses
and asked targeted follow-up questions, and audio recordings of
the sessions were transcribed afterwards for later analysis.

In addition, we conducted two classroom observations in infor-
mal education settings. One observation was in a 45-minute Scratch-
based class for 4�9 year old students in a program that provides
free CS classes to underrepresented and low-income students. The
other was in a 2-hour paid after-school program teaching Python to
9�12 year old students. During these observations, the researcher
sat in the back of the classroom and took notes on classroom behav-
iors, class activities, and notable student and instructor interactions.
During both observational sessions, students approached the re-
searchers for help on their programs. In these situations, as agreed
upon with the instructor in advance, the researcher assisted the
student and then recorded targeted observational notes about this
direct interaction.

3.2 Key Findings & Design Implications
From this process, we identi�ed three high-level �ndings with
corresponding design implications re�ecting both the challenges
that educators and learners face as well as the approaches they
implement to circumvent those challenges.

3.2.1 Accessibility.For many students, we identi�ed that comput-
ing education is not accessible because they do not have relevant
curriculum in their schools and may not have computers or spe-
cialized hardware at home. In addition, we found that even when
children have access to such technologies or instruction, they still
lack the �ne motor skills needed to succeed with traditional input
mechanisms (e.g., mouse and keyboard). Finally, it is important to
remember that our youngest students are still building foundations
in literacy and may not reliably be able to read and write; indeed,
we saw that even if children can access CS learning technologies,
they may not have the literacy skills to use them, which can also
exacerbate computational literacy challenges if navigation relies on
textual labels. Altogether, to address challenges of access we aim
to build a system that 1) targets at-home use so children without
formal computing curriculum still have an opportunity to engage
with the material, 2) uses widely accessible, rather than specialized,
hardware, and 3) is completely navigable without any literacy skills.

3.2.2 Approachability.Next, our observations revealed that even
if students can access computing education tools, educators and
parents may have self-doubt in their ability to support students,
and students may not see themselves as someone who can suc-
cessfully learn about CS. This self-doubt can lead to reticence or

StoryCoder: Teaching Computational Thinking Concepts Through Storytelling in a Voice-Guided App for Children CHI '21, May 8�13, 2021, Yokohama, Japan

avoidance, but, critically, students often do not develop this doubt
until they get older [37]. Early exposure to CS means that children
can engage with these ideas while they are still developing their
identity, thereby building technology pro�ciency into their sense
of self. Expanding on prior work and on approaches to combat self-
doubt that we heard about in our interviews, we aim to 1) leverage
interdisciplinary topics to convey CS concepts [49] and 2) make
learning personally meaningful by connecting it to learner interests
[41].

3.2.3 Engagement.Finally, as repeatedly mentioned by educators
and observed in classrooms, young children have particularlyshort
attention spans; yet for them to learn, we need to drive morefre-
quent, long-termusage. We saw that the most immediate goal of ed-
ucators (outside direct content teaching) is to engage their students,
and students themselves want to use engaging tools. Educators
and students alike described a need to dive right into the material
by providing just-in-time support rather than extensive up-front
instructions. In addition, they discussed how incorporating cre-
ative activities, like drawing, dance, or music can help to increase
interest, along with the ability to jointly engage with friends or
family, which research shows can increase learning outcomes [77].
Based on these comments, we aim to promote engagement by 1)
providing sca�olding in the moment, 2) letting children be creative
while learning, and 3) supporting collaboration and co-play.

4 SYSTEM DESIGN AND DEVELOPMENT
Based on the above design insights we built StoryCoder, a smartphone-
based voice interface to introduce computational concepts to chil-
dren (aged 5�8) through storytelling activities.

4.1 Design Objectives
In line with our previously stated accessibility design goals, smart-
phones are the most widely accessible hardware, with 94% of chil-
dren in the U.S. having internet access at home, but 6% of those
(primarily low-income minorities) only via smartphones [29]. Voice
interfaces alleviate literacy requirements, and a conversational sys-
tem can guide children in-the-moment using appropriate conver-
sational fallbacks. We therefore designed our app to run on smart-
phones and be a voice-�rst interaction, although we do additionally
allow for multi-touch input to reduce memory load in more complex
selection tasks.

To support our approachability and engagement goals, we lever-
age storytelling as an interdisciplinary activity that simultaneously
builds linguistic and communicative skills while teaching compu-
tational thinking concepts. This storytelling approach provides a
creative outlet for children to share their own thoughts and ideas
while engaging with this educational content, alone or with a col-
laborator.

From a CT education perspective, we aimed to directly intro-
duce the concepts of sequences, loops, events, and variables, while
sca�olding the practices of abstraction, planning, and modularity
and the perspective of expressing oneself. To support storytelling,
we provide clear guidance on story structures and re�ective listen-
ing comprehension activities, while still allowing children to tell
open-ended stories.

We also continuously designed for active, engaged, meaning-
ful, and socially interactive learning to strengthen the educational
validity of our system [41]. That is, we ensured children were think-
ing critically about the questions presented and participating in
minds-on learning by including purposeful interactions (e.g., re-
�ection questions) surrounding abstract concepts. We supported
engagement through contingent interactions, relevant feedback,
and process praise, rather than distracting content. We built mean-
ing into children's learning by allowing them to draw connections
between new material and topics of personal interest via the sto-
ries they create. Finally, we embedded this experience in a socially
interactive and contingently responsive system that supports both
co-play and virtual interactions.

4.2 User Flows
Our app consists of six voice-navigable user �ows: two targeting
storytelling that guide children in creating and listening to their
stories and four �silly story games� that each target a speci�c com-
putational concept (see Figure 1).

4.2.1 Create a Story.The Create a Story �ow, central to the entire
app, aims to directly introduce both planning and story structure
to children while indirectly presenting this story structure as an ab-
straction generalizable across stories. Speci�cally, StoryCoder aids
children's story planning by asking a series of probing questions
about the main character, setting, and problem to help children cre-
ate a story plan. The app then builds sca�olds around formal story
structure by guiding the user in telling the story in three distinct
parts�a beginning, a middle, and an end�while suggesting what
content should go in each part (e.g.,�In the beginning we introduce
the star and the location of the story�). Children are prompted to
think about their story until they are ready to tell it, and once they
begin, the microphone remains open until the child signals they
are done telling that part. Upon �nishing, the child has the option
to listen to their story told back to them and to save it to their story
database for future listening.

4.2.2 Listen to Stories.The Listen �ow allows children to visit their
story database to listen to the stories they have previously told or to
built-in stories that come with the app. This �ow targets listening
comprehension skills by reading stories aloud to children and asking
them a follow-up re�ection question about a core structural element
(e.g.,�What was the problem in that story?�).

4.2.3 Sequences.The sequences game, called Scrambled Sequences,
is the �rst of four �silly story games.� In this game, we introduce
the idea that sequences are �the order that di�erent steps should
happen in� by scrambling parts of the story and asking children
to put them back into the correct sequence. Whether correct or
not, children can listen to the order they've chosen as a way to
understand the e�ects of reordering and the idea of a correct order.

4.2.4 Loops.The loops game, Loopy Music, teaches that a loop is
�something that happens over and over again.� In this game, children
select short music clips that repeatedly loop as background music
during each part of their story. Children can listen to each story
part before making a music selection (with the musical mood/tone

	Abstract
	1 Introduction
	2 Related Work
	2.1 Computational Thinking in K–2
	2.2 Storytelling in K–2
	2.3 Technologies That Simultaneously Support Computing and Storytelling
	2.4 Voice Interfaces for Preliterate Children

	3 Formative Investigation
	3.1 Method
	3.2 Key Findings & Design Implications

	4 System Design and Development
	4.1 Design Objectives
	4.2 User Flows
	4.3 Design Process

	5 Short-term Evaluation
	5.1 Participants
	5.2 Metrics and Collected Data
	5.3 Procedure

	6 Results
	6.1 Computational Metrics
	6.2 Storytelling Metrics
	6.3 Attitudinal Metrics

	7 Discussion
	7.1 Supporting Multimodal Creative Engagement for Young Learners
	7.2 Translating Short-Term Boosts into Longitudinal Benefits
	7.3 Designing with Sensitivity to the Needs and Strengths of Young Users

	8 Conclusion
	Acknowledgments
	References

