BookBuddy: Turning Digital Materials Into Interactive Foreign Language Lessons Through a Voice Chatbot

Sherry Ruan¹, Angelica Willis¹, Qianyao Xu², Glenn M. Davis¹, Liwei Jiang¹, Emma Brunskill¹, James A. Landay¹
¹Stanford University, ²Tsinghua University
{ssruan, arwillis, qianyao, gmdavis, ljjianglw, ebrun, landay}@stanford.edu

ABSTRACT
Digitization of education has brought a tremendous amount of online materials that are potentially useful for language learners to practice their reading skills. However, these digital materials rarely help with conversational practice, a key component of foreign language learning. Leveraging recent advances in chatbot technologies, we developed BookBuddy, a scalable virtual reading companion that can turn any reading material into an interactive conversation-based English lesson. We piloted our virtual tutor with five 6-year-old native Chinese-speaking children currently learning English. Preliminary results suggest that children enjoyed speaking English with our virtual tutoring chatbot and were highly engaged during the interaction.

INTRODUCTION
Being immersed in a conversational environment is important when learning to speak a new language. In particular, interactive conversation can help children practice their communication skills and promote linguistic and cognitive development [11]. However, for children who are learning a foreign language, opportunities to engage in conversations in foreign languages are usually limited.

Robot peers have been proposed as a solution to engage children [3], help with vocabulary learning [13], and improve storytelling skills [5]. However, pedagogical materials for these physical robots require a non-trivial amount of effort to design and program. Since the Internet has abundant resources for language learning, we instead propose turning existing reading material into interactive lessons through a voice-enabled chatbot. In this work, we present BookBuddy, a virtual reading companion system that can automatically recommend appropriate learning materials from a book database, lead interactive tutoring conversations with children, and assess children’s reading comprehension to provide adaptive feedback.

We piloted the BookBuddy system with five 6-year-old native Chinese-speaking children who are currently studying English as a foreign language. We video recorded the entire interaction period and coded the children’s emotions. Results show that children were highly engaged while interacting with BookBuddy and enjoyed speaking English with the chatbot in the system. This opens many possible future directions for designing and creating language learning chatbots for children at scale. To our knowledge, BookBuddy is the first scalable...
human-centered AI system that facilitates interaction with an intelligent agent to develop children’s foreign language skills through reading and speaking.

RELATED WORK
Effective language learning tutoring systems have been developed for improving both first language and foreign language skills.

Project LISTEN’s virtual reading tutor [6] supports primary school students in improving reading skills in their first language, English, by using speech recognition to monitor children as they read a text out loud.

Systems such as Robo-Sensei [7] have implemented NLP algorithms to provide morphosyntactic feedback to adult learners and improve foreign language grammar skills. Physical robots have also been shown to be effective for children’s foreign vocabulary learning [13], and story understanding and creation [5].

However, to the best of our knowledge, there have been no reported scalable virtual tutors that are built on online learning materials and aim to provide conversational practice for children.

SYSTEM
In this section, we first overview the interface design and the interaction flow of the BookBuddy system, and then we describe the architecture underlying the chatbot in BookBuddy and the educational content curated for the system.

BookBuddy Interface
BookBuddy is a web application that can be accessed with a computer. The interface has two windows side by side as shown in Figure 1. The left window is a reading window that delivers stage-dependent content including the chatbot’s avatar, the cover of the recommended book, and the book page that the child is currently studying. The right window is a chat window that allows the child to have both spoken and typed conversation with the chatbot. The child can browse the conversation history by scrolling the chat window. A synthesized voice (the child’s voice from Acapela Group [4]) accompanies all text messages sent by the chatbot to the child.

Interaction Flow
The BookBuddy interaction flow has four stages as demonstrated in Figure 2: introduction, recommendation, learning, and assessment. The reading window and chat window collaborate throughout these stages to deliver a consistent and engaging learning experience.

The introduction stage familiarizes the child with the interface and introduces the child’s learning companion, a chipmunk avatar named Tangerine1. In the recommendation stage, the system asks for basic information such as the child’s name, gender, and interests. Then the underlying recommendation algorithm (details presented later) finds the most suitable book in our book database. In the learning stage, the chatbot helps the child to practice reading sentences from the book, and explains advanced vocabulary words found in the book. The child can ask the chatbot questions about the book, which are answered through the question-answering model described later in this paper. In the assessment stage, the chatbot asks the child 2-4 reading comprehension questions to help the child review the content learned and deepen understanding. A phrase comparison algorithm similar to [12] is used to provide adaptive assessment feedback.

Conversational Chatbot
The diagram in Figure 3 demonstrates the architecture of the chatbot system. There are three underlying sub-chatbots corresponding to stages described above: Recommendation Bot for the recommendation stage, Book Bot for the learning stage, and Assessment Bot for the assessment stage. The appropriate sub-chatbot is selected by the system to interact with the child according to stage.

Recommendation Bot
Recommendation Bot was designed to greet the child, gather user information, and recommend a level-appropriate book based on this information. To find a book that aligns with the child’s interests, we first convert the child’s interests (such as

1Tangerines are a popular symbol of good luck in Chinese culture.
Assessment Bot was designed to quiz the child on book content and to provide personalized assessment feedback. The chatbot asks a random short-answer question from the question bank, and the child is prompted to speak or enter a short phrase. We adopted the algorithm described in [12] to compare the similarity between the child’s response and the correct answer. Depending on the evaluation result determined by the algorithm, the chatbot can provide different feedback: either a congratulatory message such as “Good job! You’re correct!” or a cheering-up message such as “You’re close. Try again!”.

Educational Content
There are 20 books currently implemented in the BookBuddy system, all Raz-Kids [10] level A books. These books have about 10 lines per book and 2 to 6 words per line (mean = 3.5). The assessment questions and answers associated with each book were also provided by Raz-Kids. Note that we did not perform any fine tuning of the model after it was trained. This indicates that our chatbot can be easily scaled up to function with a much larger quantity of language learning books.

CASE STUDY
We conducted a pilot study to assess users’ reactions and affective states while using BookBuddy, following work into how emotions affect users of educational technology [1, 2].

Procedure
We recorded five 6-year-old Chinese children, who all spent fewer than seven months abroad, using BookBuddy to read one book in our database. We used screen-capturing technology and positioned webcams to record the students’ faces while using BookBuddy. Following the protocol in the study of the educational software AutoTutor [1], we coded users’ emotions in each 20-second segment in the videos. The coding was done by two independent coders, both native speakers of Chinese born and raised in China, in order to avoid cultural differences in displays of emotions. Each 20-second segment was coded as one of seven possible emotions: engagement, boredom, confusion, curiosity, happiness, frustration, or neutral. These labels were taken from D’Mello’s [2] meta-analysis of emotions frequently detected in users of educational technology.

Results and Discussion
Our two coders achieved an interrater reliability (Cohen’s kappa) of $\kappa = .54$. Table 1 shows the proportion of time spent by users in each affective state, averaged across both coders. We can see that engagement was the most frequent emotion, followed by happiness and confusion. Users were engaged more than half of the time while using BookBuddy. In future work we plan to explore in more depth which parts of BookBuddy lead to each affective state.

Users were also interviewed after interacting with BookBuddy, and asked to rate each stage (recommendation, learning, assessment) on a 5-point scale for how enjoyable and how useful it was, with 5 representing the highest levels. Figure 4 (left) shows that users found all three stages enjoyable and useful (all with ratings higher than 4). Users were also asked to rank their preferences for speaking English with parents, teachers, classmates, the BookBuddy chatbot, or themselves. Figure 4 (right) suggests that users most preferred speaking English with our chatbot. They commented that this was because the chatbot was patient, friendly, and non-judgmental.

FUTURE WORK
There are many interesting future directions to explore based on our preliminary results. First, it is important to measure both engagement level and learning benefits for a tutoring system. Although we found children were strongly engaged, we did not evaluate their language skill change through using the system. Second, the sample size was small in our study.
We plan to run a larger scale study with more users in the future. Last, children only interacted with the system for 14.4 minutes (SD = .10) on average. This can be attributed to the short attention span of 6-year-olds. However, as language learning is a long-term process, we intend to run longitudinal studies of children’s usage patterns and language skill changes over a longer period of time.

CONCLUSION

In this work, we present BookBuddy, a scalable foreign language tutoring system that can automatically construct interactive lessons for children based on reading materials. Pilot study results indicate that children were highly engaged while interacting with the system and preferred speaking English with our chatbot over human partners. Our work is a first step toward creating conversation-based intelligent tutoring systems at scale for improving children’s foreign language speaking skills.

REFERENCES

