
The Disagreement Deconvolution: Bringing Machine Learning
Performance Metrics In Line With Reality

Mitchell L. Gordon

Stanford University

mgord@cs.stanford.edu

Kaitlyn Zhou

Stanford University

katezhou@stanford.edu

Kayur Patel

Apple Inc.

kayur@apple.com

Tatsunori Hashimoto

Stanford University

thashim@stanford.edu

Michael S. Bernstein

Stanford University

msb@cs.stanford.edu

ABSTRACT
Machine learning classifiers for human-facing tasks such as com-

ment toxicity and misinformation often score highly on metrics

such as ROCAUC but are received poorly in practice. Why this gap?

Today, metrics such as ROC AUC, precision, and recall are used to

measure technical performance; however, human-computer inter-

action observes that evaluation of human-facing systems should

account for people’s reactions to the system. In this paper, we intro-

duce a transformation that more closely aligns machine learning

classification metrics with the values and methods of user-facing

performance measures. The disagreement deconvolution takes in

any multi-annotator (e.g., crowdsourced) dataset, disentangles sta-

ble opinions from noise by estimating intra-annotator consistency,

and compares each test set prediction to the individual stable opin-

ions from each annotator. Applying the disagreement deconvolu-

tion to existing social computing datasets, we find that current met-

rics dramatically overstate the performance of many human-facing

machine learning tasks: for example, performance on a comment

toxicity task is corrected from .95 to .73 ROC AUC.

CCS CONCEPTS
•Human-centered computing→HCI design and evaluation
methods;Collaborative and social computing design and eval-
uationmethods; •Computingmethodologies→Machine learn-
ing.

ACM Reference Format:
Mitchell L. Gordon, Kaitlyn Zhou, Kayur Patel, Tatsunori Hashimoto, andMichael

S. Bernstein. 2021. The Disagreement Deconvolution: Bringing Machine

Learning Performance Metrics In Line With Reality. In CHI Conference on
Human Factors in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama,
Japan. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3411764.

3445423

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CHI ’21, May 8–13, 2021, Yokohama, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8096-6/21/05. . . $15.00

https://doi.org/10.1145/3411764.3445423

1 INTRODUCTION
The machine learning classifiers that underpin modern social com-

puting systems such as Facebook, Wikipedia, and Twitter are a

study in contrasts. On one hand, current performance metrics for

popular tasks such as comment toxicity classification and disin-

formation detection are extremely high, featuring up to .95 ROC

AUC [11, 72], making the problem appear nearly solved. On the

other hand, audits suggest that these algorithms’ performance is

in reality much poorer than advertised [56]. Even well-intentioned

platforms will continue to make highly-publicized mistakes [16]

until they can better align metrics with reality.

This disconnect between classifier performance and user-facing

performance is indicative of a larger disconnect between how ma-

chine learning (ML) and human-computer interaction (HCI) re-

searchers evaluate their work. ML aims to evaluate technical per-

formance, developing metrics that measure generalization error

over unseen examples such as precision, recall, and ROC AUC. HCI

instead aims to report user-facing experience, developing metrics

that measure direct user response or opinion such as agreement

rates, Likert scales, and behavioral outcomes. In many cases, com-

mon metrics used for technical performance are already aligned

with user-facing performance, as strong gesture recognition [70] or

text entry prediction rates [64] also represent strong user feedback.

However, in the common ML metrics used for several critical tasks

in social computing and HCI scenarios such as comment toxicity,

the labels used to evaluate generalization error often do not directly

map to user responses or opinions. As a result, strong technical per-

formance over common metrics appears substantially and falsely

inflated above user-facing performance.

In this paper, we introduce a transformation that more closely

aligns ML classification metrics with the values and methods of

user-facing performance measures. We base our transformation on

the observation that common technical performance metrics flatten

multiple opinions into a single ground truth label for each example,

incorrectly ignoring disagreement between people [49, 63]. For an

HCI researcher or professional who is measuring perceptions of

toxicity, the quantity of interest is rarely a single bit of whether
a given comment is toxic. At the very least, they’d like to know

the proportion of people who view the comment as toxic. The ML

practice of aggregating multiple annotators’ responses for each

example via majority vote or other approaches [61] into a single

ground truth label [2] makes sense when the whole population

tends to agree on the answer to the question, such as “Does this

image contain a cat?” in object classification or “Does the word

https://doi.org/10.1145/3411764.3445423
https://doi.org/10.1145/3411764.3445423
https://doi.org/10.1145/3411764.3445423

CHI ’21, May 8–13, 2021, Yokohama, Japan Mitchell L. Gordon, Kaitlyn Zhou, Kayur Patel, Tatsunori Hashimoto, and Michael S. Bernstein

‘java’ in this sentence refer to coffee or the programming language?”

in word sense disambiguation. However, social computing tasks and

other common tasks in HCI often remain deeply contested, with

much lower levels of agreement amongst the population [12]. Our

goal is to incorporate an estimate of how contested each label will be

into ML metrics in an interpretable way, producing metrics that ask

not “What proportion of ground truth labels does the classifier agree

with?” but “What proportion of the population does the classifier

agree with?” For traditional ML tasks such as object classification,

the resulting metrics would likely be very similar; but in social

computing tasks and many others in HCI, the measurements could

diverge substantially.

Prior work has yet to develop a metric that achieves this goal. ML

researchers have begun training models to output a distribution of

labels and then evaluating that distribution, such as cross-entropy

compared to the distribution of annotators’ labels [44, 52, 53, 68, 71].

While cross-entropy acknowledges the existence of disagreement,

it doesn’t measure performance in a real-world setting because

in practice models for many social computing and HCI classifica-

tion tasks often must make a single discrete decision [12]. This

means that a model that exactly reproduces the distribution can

achieve perfect technical performance but face poor user-facing

performance: YouTube’s demonetization pipeline must ultimately

decide whether to demonetize a video; a commenting platform

must decide whether to remove a comment; a social network must

decide whether to place a disinformation flag on a post. We there-

fore require a metric that asks: given a classifier can only make one

decision, what would each annotator think of it? Unfortunately, de-

veloping a metric that accounts for levels of disagreement directly

remains challenging because of label uncertainty [36]: even well-

intentioned labelers can make accidental errors, misunderstand

questions, or even disagree with themselves later when asked the

same question a second time [14]. These challenges mean that the

observed distribution of labels may not reflect the true underly-

ing distribution of beliefs. Developing a metric that represents the

proportion of the population that would agree with each classifica-

tion decision requires a method that more precisely estimates that

proportion while factoring out possible errors.

Our method, the disagreement deconvolution, transforms any ML

classification metric to reflect the underlying distribution of popu-

lation labels. We set our goal as identifying whether each label rep-

resents the annotator’s primary label—the label they would provide
the most often in an imagined scenario where they were to label the

item repeatedly over time—or intuitively, their dominant response

to the itemwhen setting aside any errors, mistakes, or occasional in-

consistencies. Our technique separates (deconvolves) the observed

set of labels into two sets: (1) labels that do not represent primary

labels, which might arise due to accident and error, and (2) primary

labels, which we use as the basis for evaluation metric. In other

words, the disagreement deconvolution first estimates an idealized

annotation process where each annotator always provides their

primary label. Then, when computing an evaluation metric such

as precision or ROC AUC, instead of comparing each prediction

to a single “ground truth”, we compare each prediction to multiple

different “ground truths”, once for each annotator’s primary label.

We derive this deconvolution by estimating 𝑝
flip

, the probability

that a given annotation will differ from the annotator’s primary la-

bel. We demonstrate that 𝑝
flip

can be directly estimated from many

existing crowdsourcing datasets, where a subset of questions were

asked multiple times as attention checks [34]. For datasets where

𝑝
flip

is not directly measurable, we derive an approximation based

on the singular value decomposition of the item-annotation matrix.

The output of the disagreement deconvolution is a version of the

test set that comprises a distribution of annotators’ primary labels.

Any performance metric (e.g., precision, recall) can then sample

from this distribution to answer the question, “What distribution

of the population agrees with this classification?”

We apply the disagreement deconvolution to evaluate a set of

popular social computing tasks, finding that current metrics dramat-

ically overstate the capabilities of classifiers for social computing

tasks. For instance, in the popular Jigsaw toxicity task where Jigsaw

claims that models achieve .95 ROC AUC, we find that even an

oracle classifier that perfectly predicts each aggregated annotation

could only achieve a disagreement-adjusted ROC AUC of .73. We

verify that applying the disagreement deconvolution to a sample of

classic ML tasks, like object recognition, results in little adjustment,

reinforcing that while today’s standard aggregated evaluation ap-

proach is indeed appropriate for classic ML tasks, it is unsuited to

social computing tasks.

Given our results, it seems likely that design, product, and re-

search teams are at risk of training and launching classifiers that

they believe to be highly accurate but in practice are not. We en-

vision that the disagreement deconvolution could be used to help

teams take a more human-centered view of the classifiers they are

creating. Instead of relying on a single aggregated pseudo-human,

this approach enables them to better understand how a collection

of individuals would respond to the decisions their classifiers make.

Using the disagreement deconvolution, our work also defines a

new oracle evaluation measure that estimates the best achievable

disagreement-adjusted performance by any classifier. We show that

this oracle evaluation can be computed as a diagnostic prior to col-

lecting a full dataset, which allows teams to use this diagnostic to

guide task and ultimately product design. Teams can either iterate

on their task until they determine that the remaining disagreement

cannot be reasonably resolved (which may still produce poor perfor-

mance) and/or design downstream methods to deal with contested

situations.

2 RELATEDWORK
In this section, wemotivate the disagreement deconvolution through

an integration of the social computing, crowdsourcing, human-

computer interaction, and machine learning research literatures.

2.1 Classifiers and disagreement in social
computing problems

Across tasks such as identifying toxic comments [31, 66], bot ac-

counts [67], and misinformation [72], researchers and platforms

[40] increasingly turn to ML to aid their efforts [32]. Specifically,

these models are often trained using a supervised learning pipeline

where we:

(1) Collect a large dataset of individual beliefs, either generated

through crowdsourcing services that ask several labelers to

The Disagreement Deconvolution: Bringing Machine Learning Performance Metrics In Line With Reality CHI ’21, May 8–13, 2021, Yokohama, Japan

annotate each item according to policy and then aggregate

the result into a single ground truth label (e.g., [21]), or

similarly by asking and then aggregating experts (e.g., [65]).

(2) Use those ground truth labels to train a model that produces

either a discrete binary prediction or a continuous proba-

bilistic prediction for any given example.

(3) Evaluate the resulting model by comparing predictions to

the ground truth labels in a held-out test set.

For instance, in a Kaggle competition that received over 3,000

submissions, researchers were challenged to discover the best-

performing architecture in a toxicity detection task [38]. Facebook

makes the vast majority of moderation decisions through classi-

fiers [8]. YouTube creates classifiers that decide which videos need

to be demonetized [15].

While modern deep learning techniques that rely on this pipeline

now outperform human judgment on many artificial intelligence

(AI) tasks such as image classification [21], the results for social

computing tasks remain problematic. Despite ostensibly strong re-

ported test scores on these tasks [38, 62], the algorithms are roundly

criticized for making obvious mistakes [1]. Recent efforts seek to

reduce bias [48]; make models more robust to novel situations [29];

help models better interpret culturally situated language and behav-

ior [30]. Yet there remains a stream of highly publicized mistakes

made by these models [1].

One potential explanation for these mistakes may be inherent

disagreement within the datasets they are trained on. While a large

body of work has established that disagreement exists and inves-

tigated its potential sources, less is known about the magnitude

of the limitations that this disagreement places on classifiers for

social computing tasks.

For instance, interviews with YouTube celebrities, journalists, sci-

entists, politicians, and activists identified very different ideas about

what behavior each interviewee felt constituted harassment [46].

It’s not clear that simply providing a definition would improve

agreement: a study of hate speech annotation found that providing

annotators a definition of hate speech did little to improve their

agreement [57], with the authors claiming that a “clearer defini-

tion is necessary in order to be able to train a reliable classifier”

(but did not identify what such a definition might look like). A

separate study of hate speech detection labeled 24k tweets using

CrowdFlower and reported that while the intercoder-agreement

score provided by CF was 92%, only 5% of tweets were coded as

hate speech by the majority of coders and only 1.3% were coded

unanimously, indicating that the vast majority of tweets that might

be hate speech are contested. To create the popular CREDBANK

dataset, annotators were asked whether real-world events occurred

or not and while 76.54% of events had more than 70% agreement,

only 2% of events had 100% agreement among annotators [50].

There are many potential sources of this disagreement: hate

speech definitions vary significantly by country [58], and feminists’

annotations differ from antiracism activists’ annotations which

both differ from amateur annotations [69]. Expert moderators of a

popular Reddit subreddit often disagree with each other, finding

a Fleiss’ kappa for comments annotated by two moderators of

0.46, showing only modest agreement between moderators. Further,

moderators disagreed with each other on 29% of removed posts [45].

Inter-rater agreement is significantly lower for women than for

men in a toxicity task, both under .5 Krippendorph’s alpha [10].

Together, this work tells us that there’s significant disagreement in

these tasks and that its often skewed towards the positive, minority

class. However, it remains unclear what level of performance we

can expect from models when creating classifiers for these tasks.

In this paper, we establish that this disagreement places fun-

damental limits on applying today’s widely adopted supervised

learning pipeline to these problems. We find that social computing

tasks cannot possibly achieve performance remotely comparable to

that of classic tasks like image detection. We demonstrate this by

computing disagreement-adjusted scores using an oracle classifier,

which achieves perfect scores on a standard aggregated test set. For

classic tasks, the disagreement-adjusted scores remain near per-

fect, but for social computing tasks, these scores drop dramatically.

We show how these fundamental limits are inherently hidden by

following the very pipeline that causes them.

Unlike prior work, which focuses its critique on the ML archi-

tecture [62], we derive our claim by measuring properties of the

datasets. We gather a series of datasets for diverse social computing

classification tasks such as toxicity detection and misinformation

classification, then disaggregate the data into individual labelers’

labels for each datapoint.

2.2 Approaches for collecting datasets with
disagreement

At the dataset collection stage, crowdsourcing researchers have

proposed a number of methods that aim to resolve annotator dis-

agreement either by making task designs clearer or relying on anno-

tators to resolve disagreement among themselves [13, 17, 23, 47, 60].

Other work aims to accurately capture the distribution of annotator

opinions [20, 23–25, 41]. Improvements in task design may also

come from a new specialization within ML that aims to develop

methodologies for data annotation for sociocultural data, drawing

from the work of archive scholars [30].

We first note that, in the social computing tasks that we investi-

gate, much of the disagreement is likely irreducible, stemming from

the socially contested nature of questions such as “What does, and

doesn’t, cross the line into harassment?” amongst the population

and experts. The above methods may help resolve some disagree-

ment in these datasets, but until such unlikely time as there is ever

to be a global consensus on questions such as what constitutes

harassment, we demonstrate that even an oracle classifier will be

disagreed with.

We therefore envision the disagreement deconvolution as a

complementary tool to methods aiming to improve the quality

of datasets. First, when used as a diagnostic, it can demonstrate

the need for such work in a dataset by showing the maximum

classification performance currently possible when the model is

deployed, given the level of disagreement in the dataset. Second, it

can be used to help track progress as researchers iterate on their

datasets. However, we note that methods aiming to resolve dis-

agreement at annotation time could potentially be harmful to the

disagreement deconvolution’s accuracy were they to be overly ag-

gressive, in which case even the dataset’s raw labels may have

CHI ’21, May 8–13, 2021, Yokohama, Japan Mitchell L. Gordon, Kaitlyn Zhou, Kayur Patel, Tatsunori Hashimoto, and Michael S. Bernstein

collapsed or hidden disagreement, rendering it more challenging

for the disagreement deconvolution to recover primary labels.

Our work relates to psychometric and survey design research

which has long been interested in test-retest, or reinterview, as a

foundation to understand the reliability of both qualitative items,

such as achievement tests, attitude questionnaires, and public opin-

ion surveys, and quantitative items, such as most questions found

on a census [7, 28, 39, 54]. Seminal work in 1946 established that

while a single annotation is sufficient to establish upper and lower

bounds for a group’s level of agreement on quantitative data, test-

retest must be used to establish an upper bound for qualitative

data [34]. At a high level, our approach builds off of this idea and

uses test-retest annotations to understand a group’s distributions

of primary labels.

2.3 Evaluating models in the presence of
disagreement

2.3.1 Soft labels. When faced with uncertainty, researchers and

engineers often rely on models that predict probabilistic labels, rep-

resenting the model’s predicted likelihood that an example belongs

to each class. Typically, these models are trained on a single label

for each example and output probabilistic labels that might (but

do not necessarily) represent disagreement between annotators.

Increasingly, researchers argue that these predictions should fur-

ther embrace disagreement – rather than training on a single label

per example, they argue that models should explicitly train on soft

labels that represent the distribution of annotations found during

the annotation process, and that their predictions should match

these soft labels [44, 52, 53, 68, 71]. We agree that it is reasonable

to argue that a model that perfectly predicts such distributions has

reached its maximum technical performance at training time.

In practice, however, models for many social computing and HCI

classification tasks often must make a single discrete decision. If

the model is not itself acting as a discrete classifier, then a human

viewing that model’s output would act as a discrete classifier. For

example, YouTube’s demonetization pipeline must ultimately de-

cide whether to demonetize a video; a commenting platform must

decide whether to remove a comment; a social network must decide

whether to place a disinformation flag on a post. So even a model

that can perfectly predict the distribution of annotations – and

would therefore score perfectly on existing evaluation approaches –

could make predictions that many users would disagree with when

deployed.

The disagreement deconvolution is therefore important for eval-

uating a model’s deployed performance regardless of how it was

trained and regardless of the type of labels it produces – it asks for

the single prediction that the model would ultimately make when

deployed, and tells you how well that prediction would perform.

Our goal is to precisely characterize the costs of using a single

discrete decision rather than modeling the entire distribution.

2.3.2 De-noising and de-weighting. If existing work has shown that
we can train models to accurately predict soft labels that represent

annotators’ distribution of opinions [53], why not simply use those

predicted soft labels as indicators of how well each different label

would perform, and compute metrics against them? The aim when

predicting soft labels is essentially raw disaggregation – to repro-

duce the raw underlying annotator distribution. However, this raw

distribution is contaminated by label noise and uncertainty. We

argue that the distribution of primary labels, rather than raw labels,

are the objects of interest.

We find these primary labels through a novel de-noising proce-

dure. Existing de-noising procedures aim to remove noisy annota-

tions by modeling their various sources [5, 19, 55]. Our de-noising

procedure is unique in that it specifically aims to identify primary

labels, or the label an annotator would provide most often were

they to repeatedly annotate the same example over a period of time.

Finally, one common approach to the issue of annotator disagree-

ment is to simply de-weight or remove disagreed upon examples

from datasets, leaving only the items that feature strong agreement.

Though this can improve test accuracy in hate speech and sentiment

analysis [42, 69], we view this filtering technique as problematic

because it removes the most challenging items and hides beliefs

that the model’s end-users still hold, while ignoring the fact that

such examples will still exist when the model is deployed. The dis-

agreement deconvolution demonstrates how models will perform

over these otherwise hidden examples.

2.4 HCI and ML
Our work draws on a recent thread of research integrating human-

centered methods into ML systems. Interactive machine learning

seeks methods to integrate human insight into the creation of ML

models (e.g., [3, 27]). One general thrust of such research is to aid

the user in providing accurate and useful labels, so that the resulting

model is performant [17]. Research has also sought to characterize

best practices for designers and organizations developing such

classifiers [2, 4].

End users struggle to understand and reason about the resulting

classifiers. Many are unaware of their existence [26], and many

others hold informal folk theories as to how they operate [22].

In response, HCI researchers have engaged in algorithmic audits

to help hold algorithmic designers accountable and make their

decisions legible to end users [59].

Our work extends this literature, focusing on ameliorating issues

that developers and product teams face in reasoning about their

models and performance [51]. To do so, we propose an alternative

mental model for developers and product teams to reason about

performance metrics: rather than evaluating against labels from

aggregated pseudo-humans as is common today, our approach

enables developers and product teams to think of performance

metrics in terms of the proportion of the overall population that

would agree with the classifier.

3 DISAGREEMENT DECONVOLUTION
Within each dataset of annotator labels, some disagreement is the

result of labelers holding different opinions, meanwhile other dis-

agreements are results of misunderstandings, errors, or even a

momentary change of heart. Faced with both inter-annotator and

intra-annotator disagreement, how should we determine whether

a classifier made the right prediction? We take the position that

classifiers should be judged against each annotator’s primary label:
the label they would provide the most often in an imagined scenario

The Disagreement Deconvolution: Bringing Machine Learning Performance Metrics In Line With Reality CHI ’21, May 8–13, 2021, Yokohama, Japan

where they label the same item attentively and repeatedly without

memory of each prior label. In other words, even if an annotator

might sometimes label an article as misinformation and sometimes

not, we aim to identify the label they would apply most often if

they completed the task in multiple simultaneous parallel worlds.

In this section, we describe the disagreement deconvolution, an al-

gorithm designed to transform a dataset of annotations into one that

allows sampling from the primary labels for each item, with random

noise and non-primary labels removed. From such a dataset, we are

able to compute disagreement-adjusted versions of any standard

classification metric and the metric now treats each annotator’s

primary label as individual ground truth values. Under such a met-

ric, there can be many ground truths per example; for example,

“given each annotator’s primary label, 75% of annotators would

most likely believe this comment constitutes misinformation, and

the other 25% would most likely believe that it does not constitute

misinformation.”

The disagreement decovolution is compatible with any standard

classification metric, and for tasks with any number of classes. The

input to the deconvolution is a dataset with multiple annotators

labeling each item, commonly acquired from crowdsourcing ser-

vices, which we refer to as the raw disaggregated dataset because it

contains individual annotators’ labels rather than a single aggre-

gated (e.g., via majority vote) ground truth label. The output of the

disagreement deconvolution is an estimated distribution of primary

labels for each item in the dataset.

At a high level, our procedure:

(1) Estimates how often an annotator returns non-primary labels

for a particular item, which we call 𝑝
flip

(2) Uses 𝑝
flip

to generate an adjusted label distribution 𝑝∗ of

annotators’ primary labels for that item

(3) Generates a new test set as a random draw from 𝑝∗

(4) Runs any performance metric over the new test set

For pedagogical clarity, we will begin by describing the high level

ideas using the case where 𝑝
flip

is given as an input to our algorithm,

and defer the complexities of estimating 𝑝
flip

to Section 4.

3.1 Estimate the population’s distribution of
primary labels from 𝑝flip

We will begin by deriving how to transform an estimate of the

probability that an annotator will return a label differing from

the primary response for an item, 𝑝
flip

, and the observed label

distribution 𝑝 , into a distribution if every annotator returned their

primary label 𝑝∗. 𝑝 is simply the distribution of responses for the

item in the raw disaggregated dataset (e.g., four “harassment” labels

and six “non-harassment” labels). We will defer the estimation of

𝑝
flip

for now, and return to it once the overall procedure is clear.

The estimator that we propose subtracts 𝑝
flip

from the observed

label distribution (since a 𝑝
flip

-fraction of the labels are expected to

differ from the primary label), thresholds at zero, and re-normalizes

the distribution such that the probability over all labels sums to one.

Intuitively, we account for the fact that each label in the distribution

has a 𝑝
flip

chance of not being a primary label. We can view this

procedure as interpolating between two regimes. On one hand, we

have disagreggation when 𝑝
flip

= 0 and our estimator returns the

raw disaggregated distribution unmodified. On the other hand we

have aggregation whenever 𝑝
flip

is greater than the frequency of

all non-primary labels. In this case our procedure removes all the

probability mass from all labels but the primary one, and returns

one consensus label for each example, equivalent to a majority

vote aggregation. If 𝑝
flip

is between these values, we can intuitively

think of the procedure as “sharpening” the distribution by reducing

the weight on the minority class, since a 𝑝
flip

proportion of the

minority responses were mistakes or other non-primary labels.

We can derive this estimator more formally under a particular

generative model for label noise. Consider the general 𝐾-class clas-

sification problem with labels 𝑦 and examples 𝑥 . In this generative

process, we first draw the primary label 𝑦∗ from 𝑝∗ (𝑦 | 𝑥) and then
draw an indicator 𝑧

flip
that is positive with probability 𝑝

flip
(𝑥) to

determine whether we observe the primary label or some other

random label 𝑦
other

from the other 𝐾 − 1 choices.

Let Categorical(𝑆, 𝑝) be the categorical distribution over ele-

ments of a set 𝑆 with probability distribution 𝑝 , then we can state

the generative model as

𝑦∗ | 𝑥 ∼ Categorical([𝐾], 𝑝∗ (𝑦 | 𝑥))
𝑦
other

| 𝑦∗ ∼ Categorical([𝐾] \ {𝑦∗}, 1/(𝐾 − 1))
𝑧
flip

| 𝑥 ∼ Bernoulli(𝑝
flip

(𝑥))
𝑦 | 𝑦∗, 𝑦

other
, 𝑧

flip
= 𝑦∗ (1 − 𝑧

flip
) + 𝑦

other
𝑧
flip

Given the true 𝑝
flip

< 1/𝐾 and 𝑝 (𝑦 | 𝑥), we can identify 𝑝∗ (𝑦 | 𝑥)
as

𝑝∗ (𝑦 | 𝑥) =
𝑝 (𝑦 |𝑥) − 𝑝

flip
(𝑥)/(𝐾 − 1)

1 − 𝐾𝑝
flip

(𝑥)/(𝐾 − 1) (1)

This follows directly from expanding the marginal distribution over

𝑦 and solving for 𝑝∗,

𝑝 (𝑦 |𝑥) = (1 − 𝑝
flip

(𝑥))𝑝∗ (𝑦 | 𝑥) + (1 − 𝑝∗ (𝑦 | 𝑥))𝑝
flip

(𝑥)/(𝐾 − 1)

We can now directly plug in any estimate of 𝑝
flip

to estimate 𝑝∗ (𝑦 |
𝑥). However, this estimator can be problematic, as estimation er-

rors may result in 𝑝
flip

(𝑥)/(𝐾 − 1) > 𝑝 (𝑦 | 𝑥) implying negative

probabilities for 𝑝∗ (𝑦 | 𝑥) which is clearly impossible. We take

the straightforward approach of constraining our noise estimate to

𝑝
flip

(𝑥)/(𝐾−1) < 𝑝 (𝑦 | 𝑥), which results in the following estimator,

Equation 2:

𝑝 (𝑦 | 𝑥) :=
max(𝑝 (𝑦 | 𝑥) − 𝑝

flip
(𝑥)/(𝐾 − 1), 0)

1 − 𝐾𝑝
flip

(𝑥)/(𝐾 − 1) . (2)

3.2 Sample a test set of primary labels
Once we have found our distribution of primary labels, we can

sample our new test set. We can think of 𝑝∗ (𝑦 | 𝑥) as representing
an estimated distribution of the primary labels for each example,

with the randomnoise and non-primary annotations removed. From

this distribution, we can randomly sample many annotations per

example, and add each to our test set. We recommend drawing at

least ten annotations per item, to obtain a reasonable approximation

of the distribution of primary labels.

CHI ’21, May 8–13, 2021, Yokohama, Japan Mitchell L. Gordon, Kaitlyn Zhou, Kayur Patel, Tatsunori Hashimoto, and Michael S. Bernstein

3.3 Run any metric to evaluate an oracle or
existing model against the new test set

The newly sampled test set can now be used in any downstream

evaluation as a noise-free test set consisting solely of primary labels.

This means that we can compute disagreement-adjusted versions

of any classifier evaluation metric (e.g. accuracy or ROC AUC) by

computing the metric over the disaggregated labels in the sampled

test set. Disaggregation treats each annotator’s primary label as a

potential ground truth label and ensures that models cannot achieve

perfect performance simply by predicting the majority label for

each example.

Examining the disaggregated dataset makes it clear that there are

fundamental limits to the performance of any classifier. The best

that a model can do on an example is predicting the majority label,

but this will still incur errors over annotators whose primary labels

differ from the majority. We show that it is possible to estimate an

upper bound to any classifier’s performance via an oracle classifier.

The oracle classifier is one that is able to know the distribution

of annotators’ labels and always predicts the majority annotation

for each example. We can construct this oracle classifier explicitly

using any given dataset - we simply set the prediction of the oracle

on each example to be the majority label.

The oracle is particularly useful, as it can be constructed with

very few samples and used as a diagnostic when designing and

evaluating data collection procedures. For instance, 1000 examples

might be far too few examples to train a high-performance clas-

sifier but oracle classifier performance can be estimated reliably,

since constructing an oracle classifier only requires that we be

able to identify the majority label in each example. This enables

researchers to collect small pilot datasets and easily identify in-

herent disagreement and the upper bound on potential classifier

performance.

4 FINDING 𝑝flip
Above, we assumed that we already knew 𝑝

flip
and used it as input to

the disagreement deconvolution. In this section, we discuss how to

compute 𝑝
flip

. We first discuss an ideal case in which we can directly

compute 𝑝
flip

for each individual annotator+example combination.

As the data for such an ideal case would rarely be feasible to collect,

we then discuss two methods that estimate 𝑝
flip

using data many

datasets would already contain.

4.1 Ideal computation
How can we estimate 𝑝

flip
, the probability that a given annotation

will flip away from the most common response the annotator would

provide to the question? 𝑝
flip

is a function of both the annotator

and the example.

Our insight is that 𝑝
flip

for a given annotator and example can

be derived from an observed test-retest disagreement rate, the rate
at which an annotator provides the same label when asked the

same question twice. Intuitively, if an annotator disagrees with

themselves in a binary task when shown the same example twice,

then at least one of these annotations is not their primary label

and can be considered either random noise or a non-primary label.

On the other hand, if an annotator agrees with themselves, either

both annotations represent their primary belief (occurring with

probability (1 − 𝑝
flip

)2, or both annotations are flipped from their

primary belief (with probability 𝑝2
flip

). We call this test-retest self-

disagreement rate 𝑟
self-disagree

. So, if we observe a sufficiently large

number of test-retests, we expect 𝑟
self-disagree

to follow

𝑟
self-disagree

= 1 − ((1 − 𝑝
flip

)2 + 𝑝2
flip

)

To solve for 𝑝
flip

, we simplify this into a quadratic equation

𝑟
self-disagree

= 1 −
(
(1 − 𝑝

flip
)2 + 𝑝2

flip

)
= 2𝑝

flip
− 2𝑝2

flip

which we can then solve as Equation 3:

𝑝
flip

=
1 −

√
1 − 2𝑟

self-disagree

2

. (3)

The above approach is idealized and relies on every annotator

providing several test-retests for each example. This is rarely feasi-

ble to collect, so we now introduce two methods to estimate 𝑝
flip

using data that many machine learning datasets already contain. In

the first estimate, we stratify test-retest annotations into buckets

of similar examples. In the second estimate, we require no test-

retest annotations at all, relying on singular value decomposition to

determine whether an annotation is an annotator’s primary label.

4.2 Stratified estimation
How can we estimate 𝑝

flip
, without requiring many test-retest an-

notations for each example+annotator combination? We draw on

the intuition that, across all annotators, some items are much easier

to label than others. Some items, for example, may be clear harass-

ment, and annotators are unlikely to flip on these; other items exist

in a gray area, and annotators are much more likely to flip if they

encounter the item again later. So, we base our estimate on the

insight that if two examples are likely to have similar 𝑝
flip

values,

then we can combine their test-retest annotations to determine

that 𝑝
flip

value. We call this stratified estimation, or 𝑝
flip_strata. In

stratified estimation, we compute test-retest disagreement rates by

aggregating test-retest annotations across examples that we expect

to have, on average, similar test-retest disagreement rates.

Strata could potentially be defined by many variables that seem

likely to predict 𝑟
self-disagree

; how should we define them? We

choose to define strata based on the overall level of disagreement

for the item, which can be defined as the percentage of labels in the

non-majority class. For example, if 60% of annotators label an item

as harassment and 40% as non-harassment, the level of disagree-

ment is .4. We choose this definition of strata under the assumption

that the items that are the most disagreed upon will behave dif-

ferently than those where (nearly) everyone agrees, which could

potentially explain much of the variance in test-retest disagreement

rates between examples.

The upside of this approach is that, unlike in the ideal computa-

tion, we can perform the disagreement deconvolution on examples

or annotators for which we have few or no test-retest annotations,

so long as there are other examples in the stratum that do have

test-retest annotations.

This method introduces a new bias-variance tradeoff: defining

strata bounds to be larger will result in a lower variance but higher

bias, because the more examples it can include, the more stable

The Disagreement Deconvolution: Bringing Machine Learning Performance Metrics In Line With Reality CHI ’21, May 8–13, 2021, Yokohama, Japan

𝑟
self-disagree

can be, but the less accurate it might be for a particular

example. Small strata will have the reverse.

Once we have observed 𝑟
self-disagree

, we can derive 𝑝
flip_strata

using Equation 3. Then, for any example, we simply determine

which strata in falls into, and the 𝑝
flip_strata we computed for that

strata is the 𝑝
flip

we use for this example. In practice, we find that

this strata-based method of estimation is applicable to most datasets.

4.3 SVD estimation
While collecting test-retest data is a common practice in some

fields for understanding dataset reliability, some datasets used for

machine learning do not contain it (e.g., [6, 33]). How might we

measure 𝑝
flip

without test-retest data?

Consider the following thought experiment: what if we had

access to an oracle that could predict each person’s primary labels

perfectly? In this case, the error rate of this per-annotator predictor
would exactly be 𝑝flip. Thus, we can view the problem of estimating

𝑝
flip

as being equivalent to estimating the optimal per-annotator

classifier.

Algorithms used for recommender systems, such as the singular

value decomposition (SVD) of the item-annotation matrix can be

thought of as per-annotator classifiers. We can therefore estimate

𝑝
flip

using SVD, which we call 𝑝
flip_svd. SVD relies on finding pat-

terns across annotator behavior to predict an annotator’s rating for

each item. In this sense, it borrows signal from other similar anno-

tators to fill in estimates of a annotator of interest. This approach

seems particularly well-suited to many social computing problems

because these tasks are often in domains where people often ex-

hibit strong group effects such as political opinions [37], meaning

many annotations will be somewhat stable and predictable between

groups of people. On the other hand, SVD is poorly suited to pre-

dicting outliers: disagreement that is stable within an individual

but cannot be attributed to groups.

Of course, beyond struggling with outliers, SVD’s performance

can vary depending on a variety of factors, and it will often be

far from an oracle predictor of per-annotator primary labels. But

the closer we can get to an oracle classifier, the more accurate

our estimate of 𝑝
flip_svd will be. Therefore, we propose the follow-

ing approach to using SVD to estimate the optimal per-annotator

classification error.

Consider that the goal of the SVD predictor is to approximate

the optimal per-annotator label prediction. In practice, that SVD

models are far from optimal when evaluated on a held-out test set.

One reason for this is that the existing datasets often do not contain

enough annotations, with many annotators in the dataset rating

very few examples (making it difficult to confidently assign annota-

tors to latent groups) and many examples having few annotations.

This results in substantially lower accuracy and higher 𝑝
flip_svd

compared to test-retest estimates. So, as an alternative, we estimate

𝑝
flip_svd using the error rate of the SVD model on the training data.

Using training (rather than test) error reverses the bias of the finite-

sample effects, resulting in more optimistic 𝑝
flip_svd estimates that

we found in our experiments closely match the test-retest based

estimates. For instance, the mean 𝑝
flip_svd value across the entire

Jigsaw toxicity dataset (discussed in the Measurements section) is

.163 when computed using the training set, and .222 using a held-

out test set. The more optimistic value is closer to the value we find

using a stratified test-retest estimate, of .122. Estimating error via

the training set is usually discouraged, as training set error is not

an upper bound on generalization error and can lead to overfitting.

However, these drawbacks are not inherently problematic in our

setting as we do not care about upper bounding the generalization

error of the SVD model, and only require that its performance pro-

vide accurate 𝑝
flip_svd estimates. For this approach to work well, it

is critical to tune hyperparameters (such as the number of factors

or epochs) on a held-out validation set because our approach re-

lies on SVD generalizing to the task as best it possibly can. This

tuning must be performed on a validation set because overfitting

to the training set would result in accuracies that are far too high,

meaning 𝑝
flip_svd estimates would be far too low.

Following this process, we recommend following the stratifica-

tion estimation procedure to estimate more precise 𝑝
flip_svd values

for specific items, where 𝑝
flip_svd is 1 - SVD accuracy for each stra-

tum.

In summary, our proposed procedure is:

(1) Split the dataset into training and validation sets (no test set

is needed).

(2) Create an SVD model on the training set, where users are

annotators and examples are items.

(3) Tune hyperparameters using the validation set.

(4) Compute SVD’s accuracy over the training set.
(5) Stratify examples and compute 𝑝

flip_svd as 1 - SVD accuracy

for each stratum.

5 MEASUREMENTS
In this section, we apply the disagreement deconvolution to three

social computing and two classic machine learning tasks.We sought

out datasets for tasks that are broadly representative of popular

social computing or classic ML tasks and common in discourse in

social computing or ML literature, while remaining distinct from

one another.

We use the disagreement deconvolution to compute disagreement-

adjusted metrics for oracle models: models that always predict the

majority aggregated annotation. Similar in concept to a Bayes opti-

mal classifier [18], an oracle model’s disagreement-adjusted scores

are the highest possible scores that any classifier could ever hope

to achieve on the task.

With a standard aggregated test set, an oracle model will always

receive perfect scores on metrics such as accuracy, ROC AUC, preci-

sion and recall; whereas following the disagreement deconvolution,

the oracle model will only get credit in proportion to the distribu-

tion of labelers who select the aggregated class as their primary

class, which can be far from perfect. The oracle model’s metrics can

thus be understood as the percentage of the population that would

assign credit (based on the metric) for making the most popular

class prediction for each example. If even an oracle classifier cannot

achieve high performance, then we urge caution when training and

deploying a machine learning model for the task.

We evaluate these oracle models against test sets created with

both the disagreement deconvolution and, as a baseline, raw disag-

gregation. For an oracle model, raw disaggregation establishes a

CHI ’21, May 8–13, 2021, Yokohama, Japan Mitchell L. Gordon, Kaitlyn Zhou, Kayur Patel, Tatsunori Hashimoto, and Michael S. Bernstein

lower bound for disagreement-adjusted scores because it assumes

that all annotations represent an annotator’s primary label and

does not remove errors. The fact that raw disaggregation is a lower

bound follows from the observation that the disagreement decon-

volution always sharpens the distribution toward the more popular

class for each example.

We aim to answer the following questions in this analysis:

(1) What are the disagreement-adjusted scores of social com-

puting tasks for theoretical oracle models?

(2) How do the estimates from the disagreement deconvolution

compare to a raw disaggregated dataset (𝑝
flip

= 0)?

(3) Are there categorical differences in the amount of adjustment

(disagreement) between social computing tasks and classic

ML tasks?

(4) How closely does the SVD-based 𝑝
flip_svd approximate the

more data intensive 𝑝
flip_strata?

We’ll first briefly describe our five datasets. To help illustrate

the process of applying the disagreement deconvolution, we’ll then

walk through a worked example with the Jigsaw dataset. Finally,

we’ll report and discuss results from all five tasks.

5.1 Dataset Descriptions
5.1.1 Jigsaw toxicity. The Jigsaw Unintended Bias in Toxicity Clas-

sification dataset was developed by Google Jigsaw with the aim

of supporting the development of machine learning classifiers to

remove toxic comments from the web. The dataset consists of 1.8

million comments, each rated by 4–10 annotators whether or not the

comment is toxic. Following common crowdsourcing practice [43],

the dataset was collected by adaptively sampling more annotators

for the examples with the highest uncertainty. This dataset contains

100,696 test-retest annotations, so we are able to estimate 𝑝
flip

from

stratified estimation.

Precision and recall are the most appropriate metrics for this

task, given we are primarily interested in the positive class but the

dataset is heavily imbalanced towards the negative class. We also

include ROC AUC because it is the metric used in Jigsaw’s popular

Kaggle competition. The best published model on this task has a

traditional ROC AUC of .95.

5.1.2 Credibility-Factors2020. This dataset aims to support the

development of better tools for misinformation [9]. This dataset

is a subset of a broader dataset of 2000 articles:
1
these 50 articles

have been extensively annotated by crowd workers and climate

experts for credibility on a 5-point Likert scale. Each example was

annotated by 49 students, 26 Upwork workers, 3 science, and 3

journalism experts. We focus on the annotations created by the 26

Upwork workers. The dataset has a Fleiss Kappa score of 0.24.

This dataset does not include any test-retest annotations, so we

used SVD to approximate 𝑝
flip

. Though the dataset is very small in

its number of examples, the fact that every example was labeled by

all 26 Upworkers provides hope that SVD would be able to model

most of the signal present in the data. Given the small size of this

dataset, modeling all 5 discrete classes would be challenging, so

1
https://data.world/credibilitycoalition/2019-study

we collapsed the 5-point Likert scale into a 3-point scale represent-

ing not credible, not sure, and credible. We use accuracy as our

classification metric.

5.1.3 Get Another Label: PG13+. This dataset [61] is a classic dataset
in crowdsourcing optimization, used to support machine learning

models that detect adult content on webpages. The possible anno-

tations are split into P, G, R, B, and X. The dataset
2
contains over

100k examples with between 1 and 30 annotations per example. We

drop all examples with fewer than 3 labels. Like with the Jigsaw

dataset, the number of annotators for each example grows with the

uncertainty of the example: unanimous responses contain fewer

labels. This dataset contains 5,840 test-retest annotations, so we are

able to estimate 𝑝
flip

from stratified estimation.

5.1.4 Word Sense Disambiguation. As a classic machine learning

task in NLP, word sense disambiguation presents a sentence with a

highlighted word and then requires an algorithm to choose which

of several different meanings (senses) of the word are intended.

This dataset
3
annotates a portion of the SemEval Word Sense Dis-

ambiguation Lexical Sample task.

The dataset had over 177 examples with 10 annotations per

example. It did not contain test-retest annotations, so we used SVD

to approximate 𝑝
flip

.

5.1.5 CIFAR-10h. CIFAR-10 is a classic task in computer vision,

focusing on image classification across 10 basic classes such as

automobile, bird, or cat. The CIFAR-10h dataset [53] contains 10,000

CIFAR-10 images each labeled by 50 annotators. Given the large

number of classes and balanced dataset, accuracy is a good metric

for this task. This dataset does not contain test-retest annotations,

so we computed 𝑝
flip_svd.

5.2 Applying The Disagreement Deconvolution
to Jigsaw

For illustrative purposes, we will walk through the application of

the disagreement deconvolution to the Jigsaw dataset.

5.2.1 Estimate 𝑝flip. The Jigsaw dataset contains 100,696 test-retest

annotations, meaning we can potentially estimate 𝑝
flip

using ei-

ther the ideal computation or 𝑝
flip_strata. Very few examples in this

dataset have more than two test-retest annotations, indicating that

𝑝
flip_strata is more appropriate.

We now determine the width of our strata. Given the larger

number of test-retest annotations, we choose buckets that increase

monotonically by .05 from 0 to 1, creating 20 strata to capture many

fine gradations between “high agreement” and “high disagreement”

We proceed as follows: for each strata, we compute the test-retest

disagreement rate. For example, in the (.55, .6] strata, the test-retest
disagreement rate 𝑟

self-disagree
= 0.291. Applying this rate into

Equation 3, which transforms 𝑟
self-disagree

into 𝑝
flip_strata, we find

𝑝
flip

= 0.176. We repeat this process for each strata, resulting in 20

𝑝
flip_strata values.

5.2.2 Compute primary label distributions. Armedwith our 𝑝
flip_strata

values, we can now estimate the population’s primary label distri-

bution for each example. For instance, take an example with 10 total

2
https://github.com/ipeirotis/Get-Another-Label/tree/master/data

3
https://sites.google.com/site/nlpannotations/

The Disagreement Deconvolution: Bringing Machine Learning Performance Metrics In Line With Reality CHI ’21, May 8–13, 2021, Yokohama, Japan

annotations, 6 annotators voting toxic and 4 voting non-toxic. In ad-

dition to 𝑝
flip_strata for the (.55, .6] strata, our formula also requires

𝑝 (𝑦 = 1 | 𝑥), which for this example is .6 because 60% of annotators

provided this label. Plugging these values into Equation 2, we find

.54. Similarly, if we repeat this process for the negative class, we

find .28. We therefore estimate that for this example, 54% of anno-

tations are for the toxic class, 28% for the non-toxic class, and 18%

are non-primary labels. We repeat this process for every example

to find the percent of primary labels that fall into each class.

5.2.3 Sample a new test set. Armed with our primary label distri-

bution, we can now sample a new test set. We first need to choose

a number of annotations to sample. As this number goes to in-

finity, we would exactly represent the distribution. To ensure the

simulated test set remains a reasonable size, we select 10. For each

example, we then use a weighted choice function to randomly select

an annotation in {0, 1, non-primary label} with weights 𝑝 (𝑥 |𝑦 = 0),
𝑝 (𝑥 |𝑦 = 1), and 1 − (𝑝 (𝑥 |𝑦 = 1) + 𝑝 (𝑥 |𝑦 = 0), and add annotations

in classes 0 or 1 to the test set as a label for that example.

5.2.4 Apply existing metrics to the test set. Finally, armed with

our new test set, we compute disagreement-adjusted performance

results using any existing metric. While a typical test set only has

one true value and one prediction per example, ours has ten: each

of the true values was drawn from the stochastic objects for that

example, while the predicted value remains the constant.We discuss

our results later in this section.

5.2.5 Estimating 𝑝flip_svd. The Jigsaw dataset contained test-retest

data, meaning we could derive 𝑝
flip

from observed test-retest dis-

agreement. For illustrative purposes, we also report the SVD estima-

tion method, 𝑝
flip_svd. We use the Python library, Surprise, to train

an SVD model, treating the example IDs as items, the annotator

IDs as users, and the annotations as ratings. We split our dataset

into a random 80/20 train/validation set because, as we note in

the methods section, our approach is a rare instance in which the

training set will itself function as our ultimate test set. We fine-tune

two hyperparameters: number of epochs and number of factors

using a basic grid search on the validation set. We then compute

predictions over our training set, split each training example into

strata (in this case, we use the same strata we defined above when

we we estimated 𝑝
flip_strata). Within each strata, we take all the

predictions and compute their accuracy, resulting in one accuracy

value per strata. Each strata’s 𝑝
flip_svd is then 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦.

5.3 Results
Table 1 summarizes the results of computing traditional standard ag-

gregated performance, raw disaggregated performance, and disagreement-

adjusted performance for an oracle model for all five tasks. The

standard aggregated performance is always a perfect score, so it

serves to highlight the potentially drastic difference between a

“perfect” model when we ignore disagreement and when we do not.

We first focus on the three social computing datasets: Jigsaw

toxicity detection, credibility classification, and adult content rat-

ing. For the Jigsaw task, the disagreement-adjusted performance is

dramatically lower than the perfect 1.0 for the standard evaluation

regime, at .774 precision and .494 recall when we compute 𝑝
flip

using stratified test-retest estimation. As a sanity check to estab-

lish the possible range we might expect from these scores, we can

compute standard binomial confidence intervals over 𝑟
self-disagree

for each stratum and propagate the resulting 5th and 95th per-

centile 𝑟
self-disagree

through our algorithm, resulting in bounds of

0.773–0.781 precision and 0.477–0.496 recall.

The disagreement-adjusted performance is also dramatically

lower than the perfect 1.0 for the standard evaluation regime for

the credibility classification task, at 62.6% accuracy. Adult content

rating comes in at a less severe but still low 79.5% accuracy. These

are the highest possible scores that any classifier for these tasks

could ever receive, when we take into account the primary labels

of each annotator.

For comparison, we computed the same performance metrics

using raw disaggregation. For the Jigsaw and credibility tasks, the

disagreement deconvolution produced notably higher scores (.774

vs .710 precision for Jigsaw, and 62.6% vs 49.1% accuracy for credibil-

ity), indicating that some of the penalties from raw disaggregation

represent error or non-primary labels. These results highlight the

importance of using the disagreement deconvolution to obtain esti-

mates that remove such annotations. In the adult content task, we

saw that the difference was far smaller, at 79.1% vs 79.5%, indicat-

ing that nearly all of the disagreement between annotators is true

disagreement in primary labels.

Our classic ML tasks, WSD and CIFAR-10h, were penalized far

less by the disagreement deconvolution, indicating far less dis-

agreement in the population about these tasks. Both of these tasks

had high raw disaggregated performance to begin with, indicat-

ing that the large majority of annotators already agree with each

example’s aggregated label. WSD’s disagreement-adjusted accu-

racy is 99.7%, compared to a 98.7% raw disaggregated accuracy,

indicating very little disagreement in the dataset. In CIFAR-10h,

disagreement-adjusted accuracy is 91.1% vs. 90.1% for raw disag-

gregation, suggesting more disagreement than WSD but very little

error or inconsistency.

Comparing the SVD estimates of 𝑝
flip

to the stratified estimates

of 𝑝
flip

, we confirm that SVD is a more optimistic estimate by ob-

serving that it leads to higher disagreement-adjusted scores. For

example, our Jigsaw’s disagreement-adjusted precision was .734

when we estimated 𝑝
flip

using stratified estimate, and .806 using

the SVD estimate.

Finally, to move beyond oracle models and understand how to-

day’s real models fare, we evaluated a Jigsaw model trained using

the most upvoted architecture on the Jigsaw Kaggle competition’s

discussion page, an LSTM architecture created with Keras and gen-

sim embeddings [38]. We find that this model achieves a ROC AUC

of .973, precision of .527, and recall of .827 (precision and recall are

computed with a soft label threshold of 0.5) over a standard aggre-

gated test set. We note this ROC AUC is slightly higher than any

competition submission scored, likely because the competition’s

scores were adjusted to balance overall performance with various

aspects of unintended bias. When we evaluate this model against a

test set created using the disagreement deconvolution, it achieves

a ROC AUC of .726, precision of .514, and recall of .499, far lower

performance than the metrics computed against an aggregated test

set suggest.

CHI ’21, May 8–13, 2021, Yokohama, Japan Mitchell L. Gordon, Kaitlyn Zhou, Kayur Patel, Tatsunori Hashimoto, and Michael S. Bernstein

Task Test Set Created Using... 𝑝
flip

Estimator Mean 𝑝
flip

ROC AUC Precision Recall Accuracy

All tasks Standard aggregation n/a 0 1.0 1.0 1.0 1.0

Jigsaw Disagreement deconvolution Test-retest strata 0.122 0.734 0.774 0.494 n/a

Jigsaw Disagreement deconvolution SVD 0.163 0.806 0.806 0.623 n/a

Jigsaw Raw disaggregation n/a 0 0.697 0.710 0.413 n/a

Credibility Disagreement deconvolution SVD 0.302 n/a n/a n/a 62.6%

Credibility Raw disaggregation n/a 0 n/a n/a n/a 49.1%

PG13+ Disagreement deconvolution Test-retest strata 0.054 n/a n/a n/a 79.5%

PG13+ Disagreement deconvolution SVD 0.226 n/a n/a n/a 83.5%

PG13+ Raw disaggregation n/a 0 n/a n/a n/a 79.1%

WSD Disagreement deconvolution SVD 0.100 n/a n/a n/a 99.7%

WSD Raw disaggregation n/a 0 n/a n/a n/a 98.7%

CIFAR-10h Disagreement deconvolution SVD 0.114 n/a n/a n/a 91.1%

CIFAR-10h Raw disaggregation n/a 0 n/a n/a n/a 90.1%

Table 1: Oraclemodels, for 3 social computing and 2 classicML tasks, evaluated against test sets created fromboth disagreement
deconvolution and raw disaggregation. While these models would all achieve perfect 1.0 scores against a standard aggregated
test set, we find that our 3 social computing tasks perform far worse when we treat each individual annotator’s primary label
as ground truths. In two cases, they also perform notably better than naively computing metrics again raw disaggregation
would suggest, indicating that annotators provided a substantial number of annotations that do not represent their primary
labels. By comparison, we find that classicML tasks suffer far less from the issue of disagreement, and that standard aggregated
metrics are good estimates of their performance.

5.4 Validation
Finally, we aim to validate the disageement deconvolution’s estima-

tions. Validation requires that metrics computed over the disagree-

ment deconvolution’s transformation of a standard test set should

be close to metrics computed over an idealized test set where we

know, for each item, every annotator’s primary label: the label each

annotator would provide most often.

Obtaining such an idealized test set is typically infeasible; how-

ever, a subset of the Jigsaw dataset affords us an opportunity much

closer to ideal than is typical. We subset Jigsaw to cases where

annotators provided >= 3 annotations on the same example over a

period of time, allowing us to treat the annotator’s modal annota-

tion for each item as their primary label to construct an idealized

test set, 𝑡𝑒𝑠𝑡𝑖 . A standard test set, 𝑡𝑒𝑠𝑡𝑠 , randomly samples only one

annotation per annotator for those same items. If the disagreement

deconvolution (DD) works, then applying the DD to 𝑡𝑒𝑠𝑡𝑠 while

holding out data from the idealized test set during DD’s estimation

process would find that Accuracy and ROCAUC results computed

over a DD-transformed 𝑡𝑒𝑠𝑡𝑠 are closer to those metrics computed

over 𝑡𝑒𝑠𝑡𝑖 than to 𝑡𝑒𝑠𝑡𝑠 without DD.

We indeed find that this is the case. The Jigsaw dataset contains

2662 instances (across 𝑁 = 577 items) where at least one annotator

provided >= 3 annotations, representing 2662 annotators’ primary

labels on those items. DD brings 𝑡𝑒𝑠𝑡𝑠 accuracy 27.4% closer to

accuracy computed over 𝑡𝑒𝑠𝑡𝑖 (computed against our paper’s oracle

model’s predictions), and ROCAUC 35.5% closer.

We can follow a similar protocol to examine the specific steps

within the disagreement deconvolution: our sharpening procedure

and 𝑝 𝑓 𝑙𝑖𝑝 estimation. For sharpening, we test whether the mean

K-L divergence of 𝑡𝑒𝑠𝑡𝑖 ’s label distribution vs the disagreement

deconvolution’s sharpened 𝑡𝑒𝑠𝑡𝑠 distribution, is smaller than than

the K-L divergence of 𝑡𝑒𝑠𝑡𝑖 vs the unsharpened 𝑡𝑒𝑠𝑡𝑠 . We find this

is true, with a K-L divergence of 0.38 compared to 0.66. For 𝑝 𝑓 𝑙𝑖𝑝 ,

we want the estimated 𝑝 𝑓 𝑙𝑖𝑝 to be reasonably close to the mean

𝑝 𝑓 𝑙𝑖𝑝 we observe from 𝑡𝑒𝑠𝑡𝑖 , which is .101 (10% chance of flipping).

We indeed find that 𝑝
flip_strata is 0.112, and 𝑝flip_svd is .136, echoing

our paper’s claim that stratification is best when feasible.

6 DISCUSSION
In this section, we reflect on the limitations of our approach, as

well as how designers and product teams might be impacted by it.

6.1 Limitations and Future Work
We believe that the disagreement deconvolution, by comparison to

the standard evaluation approach procedure used today, presents a

step forward in establishing useful performance estimates for social

computing classifiers. As with any evaluation approach, there are

several limitations and future directions worth discussing:

6.1.1 Weighting mistakes. The disagreement deconvolution main-

tains the interpretability characteristics of existing metrics, and

enables us to adjust them for disagreements across annotators. In

doing so, we effectively take the position that wewould like to avoid

The Disagreement Deconvolution: Bringing Machine Learning Performance Metrics In Line With Reality CHI ’21, May 8–13, 2021, Yokohama, Japan

penalizing a model when an annotator cannot make up their mind

about an example, which is why we give full credit if the model pre-

dicts an annotators’ primary label. However, there are drawbacks to

taking this position, which may render disagreement deconvolution

a less realistic portrait of performance when deployed: even if an an-

notator would have accepted their non-primary label as correct, the

model does not receive credit for predicting that non-primary label.

For instance, when a fact checker disagrees with themselves when

they see the same article again, the disagreement is probably not

because they made a mistake or are randomly selecting labels, but

because there is some probability mass they will answer with each

label, depending on what parts of the article they’re focusing on at

the moment. In these cases, it is possible that an annotator might to

some extent agree with either decision a classifier makes, though

perhaps more strongly agreeing with one answer than another.

A future version of the disagreement deconvolution could ad-

dress the challenge of evaluating models when annotators might

accept multiple answers by addressing a related challenge: when a

classifier is deployed, not all errors have the same cost. For instance,

if a model predicts an annotator’s non-primary label, it is possible

that the annotator may still accept the non-primary label and the

cost of that error might be quite low. Other errors, however, may

have a very high cost. Future work could evaluate classifications

using annotator-specific utility values for each decision a classifier

makes [35], and weight errors accordingly.

6.1.2 Mathematical assumptions. Assumptions are a universal chal-

lenge inherent to every effort to create an evaluation procedure for

ML tasks. Our aim with the disagreement deconvolution was to

create an evaluation procedure that is more thoughtful about these

assumptions for social computing tasks than are today’s established

evaluation approaches, yet remains feasible to compute with stan-

dard datasets. While not perfect, we believe that our evaluation

procedure represents a significant step forward compared to the

established procedures in use today.

We sought assumptions consistent with existing data collection

efforts (e.g., a few test-retests on a subset of annotators) because

we want this to be a widely usable measure. We can trade weaker

assumptions for more extensive data collection. For instance, we

assuming that labels other than the primary label would be chosen

with the probability of 1/(𝐾 − 1), and could remove this uniform

𝐾 − 1 assumption by asking for 𝐾 times more test-retest data from

each annotator. Similarly, we could avoid stratification by asking

every annotator to perform many test-retests.

If test-retest rates are heterogeneous, sharpening may not re-

duce noise. However, oversharpening would require an unusual

number of non-primary labels to independently arise on one item;

this probability diminishes exponentially with the number of an-

notators. So, it is unlikely—and our validation above clarifies that

sharpening improves the distribution’s K-L divergence relative to

an unsharpened baseline.

Finally, we note that an annotator’s primary label may change

over time, though most crowdsourcing tasks do not assume this

happens within the limited timeframe of annotators’ work.

6.1.3 Annotators representing end-users. A related limitation lies

in a core assumption that often stymies ML systems when deployed:

the annotators who create a dataset that is used to train and evaluate

a model may not be representative of the stakeholders in that model

when deployed. Though all evaluation approaches will suffer when

this is not true, this issue can potentially be more pronounced when

computing disagreement-adjusted metrics than when computing

aggregated metrics, because aggregation can potentially mask some

differences in the distributions.

6.1.4 Errors. Finally, while we provide guidelines as to which fea-

tures of a dataset indicate disagreement deconvolution might pro-

duce accurate results for your dataset, and sanity-checks to help

ensure reasonable results, we leave mathematical robustness claims

that establish formal bounds of the errors disagreement deconvo-

lution might make to future work. This includes potential errors

introduced by our estimation approaches for 𝑝
flip

.

6.2 Implications For Design
Our disagreement-adjusted scores demonstrate that even an oracle

model would perform poorly on popular, state of the art toxicity

and misinformation datasets, and that today’s standard metrics

dramatically overstate their performance.

Fundamentally, these classifiers are limited by the tasks they

attempt to solve. Why have researchers been pursuing tasks that

are doomed to such a fate? The fact that so many researchers and

engineers are attempting to train these models using a standard

supervised learning pipeline may be because the problem of an-

notator disagreement has been given inadequate attention given

its impact. This may be due to a natural but misleading analogy

that researchers and engineers make between these social com-

puting tasks and classic ML tasks – tasks that supervised learning

has been highly effective at, and for which we find the problem

of disagreement is far less severe. The possible unconscious use

of this analogy masks the impact of disagreement. Downstream,

this masked disagreement results is overestimating the current

capabilities of models and misattributing their limitations.

This is a natural analogy because, on the surface, these tasks seem

similar: for both tasks, we require a large number of diverse exam-

ples, getting an individual decision from a human for each example

is often fast, and they operate over text and images. But the anal-

ogy breaks down for social computing tasks because, even though

getting a single individual annotator’s decision is fast and easy,

social computing classifiers are attempting to learn a model that

makes decisions consistent with a community’s values or norms,

and many of these decisions would require an entire court case

for each example — and even then, many would disagree with the

court’s ruling. This is why inter-rater agreement can be much lower

for these social computing tasks.

We believe that using disagreement deconvolution is important

because, if researchers and engineers are to overcome this mislead-

ing analogy and chart a path forward, we need clear metrics that

can report the scale of the analogy’s breakdown. Metrics that can

compare the process of attempting to train traditional supervised

learning models for these social computing tasks, with the process

of training classic ML tasks. In this paper, we have enabled such

metrics and demonstrated the results they can find.

CHI ’21, May 8–13, 2021, Yokohama, Japan Mitchell L. Gordon, Kaitlyn Zhou, Kayur Patel, Tatsunori Hashimoto, and Michael S. Bernstein

6.3 Recommendations for usage and reporting
6.3.1 Recommended hyperparameters. The disagreement deconvo-

lution requires choosing values for several hyperparameters. First is

the choice of whether to compute 𝑝
flip

using 𝑝
flip_svd or 𝑝flip_strata.

Then, within both of these options, there are additional hyperpa-

rameters to choose from. In this section, we briefly describe recom-

mended hyperparameters. These suggestions should only be used a

starting point, and may vary significantly depending on the charac-

teristic of the dataset. If the hyperparameters are not well-chosen,

then it is possible to significantly inflate disagreement-adjusted

scores. If the disagreement deconvolution is used in a scenario in

which there may be temptation to artificially inflate scores, such as

a competition, then hyperparameters for a particular dataset should

be chosen ahead of time and held constant.

First, on the choice of 𝑝
flip_svd versus 𝑝

flip_strata: as discussed

in earlier sections, 𝑝
flip_strata is advised when the dataset contains

sufficient data for stratification. Sufficient data means that we can

compute reliable 𝑟
self-disagree

values for a large enough number of

strata to find a reasonable approximation of 𝑟
self-disagree

for most

examples. As a starting point: for typical datasets, we recommend

at least ten strata and that each strata has at least 100 examples

with at least 2 test-retests per example. Select the finest possible

strata gradations for which at least that number of examples will

be present in each strata. To investigate the impact of different

levels of stratification, we recommend computing standard bino-

mial confidence intervals over 𝑟
self-disagree

for each stratum and

propagating both the resulting 5th and 95th percentile 𝑟
self-disagree

through our algorithm, which will establish bounds of how your

disagreement-adjusted scores might change were you to re-collect

the data in each strata. You can also inspect the difference between

the 5th and 95th percentile 𝑟
self-disagree

of each strata; if the differ-

ence seems unreasonable for your task, then you should use strata

with more data. Finally, we recommend repeating this process for

multiple different numbers of strata to get a sense for the possible

error bounds of using different strata values.

If there is not sufficient data available for 𝑝
flip_strata, we instead

suggest considering 𝑝
flip_svd. Not all datasets, however, are appro-

priate for computing the SVD: there must be a reasonable number

of instances where a few different annotators provided an anno-

tation for the same example. A sanity check for whether the SVD

is appropriate for your dataset is whether, on a held-out test set,

a trained recommender system model using the SVD can achieve

accuracy within the realm of what seems reasonable for your task.

If the accuracy is far lower than you’d expect, this is a sign that

the SVD is a poor fit for your dataset. When using the SVD, we rec-

ommend employing one of the popular libraries, which will often

provide reasonable default hyperparameters.

6.3.2 Reporting. When a researcher’s goal is to understand the

extent to which users will agree with a model while deployed, then

disagreement-adjusted scores exhibit the desired behavior, since

users will disagree more with the results of one task (e.g., Jigsaw

harassment) than another (Jigsaw hate speech). We recommend

reporting these scores with “disagreement-adjusted” prepended to

the metric’s standard name; e.g. disagreement-adjusted precision.

However, if, as in today’s ML metrics, a researcher’s goal is to re-

port a model’s technical performance, then disagreement-adjusted

metrics introduce a new challenge: it is difficult to compare them

across multiple different tasks/datasets, because the best possible

performance of each task is inherently limited by the disagree-

ment present in the dataset. If a researcher would like to make

disagreement-adjusted scores comparable between tasks, we rec-

ommend normalizing disagreement-adjusted scores against oracle

level performance (their theoretical maximum). The difference be-

tween these normalized technical performance metrics and tradi-

tional technical performance metrics is that the normalized scores

will 1) use our de-noising procedure to focus on primary annota-

tions, and 2) place more weight on the test set examples that have

more agreement, whereas traditional metrics give each example

equal weight (which, as we discuss earlier in this paper, is not a

valid approach to evaluating the user experience). In cases where

both user experience and technical performance is of interest, we

recommend reporting both of the above numbers.

6.4 Additional ethical considerations
Our approach introduces its own ethical tradeoffs. As described

currently, the deconvolution assigns each annotator equal weight

in the metric, a one-person-one-vote strategy that will disadvan-

tage minority populations [63]. A participatory or value-centered

approach would instead invite stakeholders to the table to help ar-

ticulate how the community should weigh each annotator’s beliefs.

We will work to mitigate these issues by introducing techniques to

explicitly up-weigh viewpoints from under-represented groups.

In addition, introducing any metric raises the question, “What

second-order consequences will arise from an organization blindly

hillclimbing on this metric?” One upside we hope to achieve is that

organizations and developers will recognize when a classifier is

doomed to failure, because even an oracle classifier has unaccept-

able performance. However, the most clear risk is again the tyranny

of the majority. The most efficient way to increase a disagreement-

adjusted metric is for the classifier to predict correctly for members

of the majority group, because they are most numerous in the

dataset. This happens today already, since the majority group domi-

nates the aggregated labels. While our approach does not solve this

issue, it does have one significant upside compared to aggregated

labels: modelers are forced to confront the extent to which the

minority beliefs fundamentally limit their model’s performance, a

fact that standard aggregated metrics hide.

7 CONCLUSION
Social computing tasks, and likely many others in human-computer

interaction as well, are not clean perceptual-level tasks where nearly

every annotator will agree on every label. Instead, social comput-

ing tasks often attempt to categorize the messy realities of our

lives [12]. With that messiness comes contestation, disagreement,

and deliberation. The disagreement deconvolution is an attempt to

bridge the realities of machine learning, which requires a meaning-

ful and interpretable evaluation metric, with the realities of social

computing tasks, which require acknowledgment of the inherent

disagreement in the task. We observe that this approach drastically

reduces reported performance on several tasks. If successful, we

hope that this approach will help developers make more informed

decisions about training and deploying classifiers in these contexts.

The Disagreement Deconvolution: Bringing Machine Learning Performance Metrics In Line With Reality CHI ’21, May 8–13, 2021, Yokohama, Japan

ACKNOWLEDGEMENTS
We thank Jane L. E, Harmanpreet Kaur, Ranjay Krishna, Leon A.

Gatys, Amy X. Zhang, Xinlan Emily Hu, and James Landay for

insightful discussions and support. We thank the reviewers for

their helpful comments and suggestions. Mitchell L. Gordon was

supported by the Apple Scholars in AI/ML PhD fellowship and a Jun-

glee Corporation Stanford Graduate Fellowship. Kaitlyn Zhou was

supported by a Junglee Corporation Stanford Graduate Fellowship.

This research is supported by the Hasso Plattner Institute Design

Thinking Research Program. Toyota Research Institute (“TRI”) pro-

vided funds to assist the authors with their research but this article

solely reflects the opinions and conclusions of its authors and not

TRI or any other Toyota entity.

REFERENCES
[1] Ali Alkhatib and Michael Bernstein. 2019. Street-level algorithms: A theory at

the gaps between policy and decisions. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. 1–13.

[2] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece

Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019.

Software engineering for machine learning: A case study. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP). IEEE, 291–300.

[3] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. 2014.

Power to the people: The role of humans in interactive machine learning. Ai
Magazine 35, 4 (2014), 105–120.

[4] Saleema Amershi, DanWeld, Mihaela Vorvoreanu, Adam Fourney, Besmira Nushi,

Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen, et al. 2019.

Guidelines for human-AI interaction. In Proceedings of the 2019 chi conference on
human factors in computing systems. 1–13.

[5] Alexandry Augustin, Matteo Venanzi, J Hare, A Rogers, and NR Jennings. 2017.

Bayesian aggregation of categorical distributions with applications in crowd-

sourcing. AAAI Press/International Joint Conferences on Artificial Intelligence.

[6] Jutta Backhaus, Klaus Junghanns, Andreas Broocks, Dieter Riemann, and Fritz

Hohagen. 2002. Test–retest reliability and validity of the Pittsburgh Sleep Quality

Index in primary insomnia. Journal of psychosomatic research 53, 3 (2002), 737–

740.

[7] Barbara A Bailar. 1968. Recent research in reinterview procedures. J. Amer.
Statist. Assoc. 63, 321 (1968), 41–63.

[8] Paul M Barrett. 2020. WhoModerates the Social Media Giants? Center for Business
(2020).

[9] Md Momen Bhuiyan, Amy X. Zhang, Connie Moon Sehat, and Tanushree Mitra.

2020. Investigating Differences in Crowdsourced News Credibility Assessment:

Raters, Tasks, and Expert Criteria. Proc. ACM Hum.-Comput. Interact. 4, CSCW2,

Article 93 (Oct. 2020), 26 pages.

[10] Reuben Binns, Michael Veale, Max Van Kleek, and Nigel Shadbolt. 2017. Like

trainer, like bot? Inheritance of bias in algorithmic content moderation. In Inter-
national conference on social informatics. Springer, 405–415.

[11] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasser-

man. 2019. Nuanced metrics for measuring unintended bias with real data for text

classification. In Companion Proceedings of The 2019 World Wide Web Conference.
491–500.

[12] Geoffery C. Bowker and Susan Leigh Star. 2000. Sorting Things out: Classification
and Its Consequences. MIT Press, Cambridge, MA, USA.

[13] Jonathan Bragg, Mausam, and Daniel S. Weld. 2018. Sprout: Crowd-Powered Task

Design for Crowdsourcing. In Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology (Berlin, Germany) (UIST ’18). Association
for Computing Machinery, New York, NY, USA, 165–176.

[14] Chris Callison-Burch. 2009. Fast, cheap, and creative: Evaluating translation

quality using Amazon’s Mechanical Turk. In Proceedings of the 2009 conference
on empirical methods in natural language processing. 286–295.

[15] Robyn Caplan and Tarleton Gillespie. 2020. Tiered governance and demoneti-

zation: The shifting terms of labor and compensation in the platform economy.

Social Media+ Society 6, 2 (2020), 2056305120936636.

[16] Stevie Chancellor, Jessica Annette Pater, Trustin Clear, Eric Gilbert, and Munmun

De Choudhury. 2016. # thyghgapp: Instagram content moderation and lexical

variation in pro-eating disorder communities. In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work & Social Computing. 1201–
1213.

[17] Joseph Chee Chang, Saleema Amershi, and Ece Kamar. 2017. Revolt: Collaborative

crowdsourcing for labeling machine learning datasets. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. 2334–2346.

[18] Weiwei Cheng, Eyke Hüllermeier, and Krzysztof J Dembczynski. 2010. Bayes

optimal multilabel classification via probabilistic classifier chains. In Proceedings
of the 27th international conference on machine learning (ICML-10). 279–286.

[19] Zhendong Chu, Jing Ma, and Hongning Wang. 2020. Learning from Crowds by

Modeling Common Confusions. arXiv:cs.LG/2012.13052

[20] John Joon Young Chung, Jean Y Song, Sindhu Kutty, Sungsoo Hong, Juho Kim,

and Walter S Lasecki. 2019. Efficient elicitation approaches to estimate collective

crowd answers. Proceedings of the ACM on Human-Computer Interaction 3, CSCW
(2019), 1–25.

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09.
[22] Michael A DeVito, Jeremy Birnholtz, Jeffery T Hancock, Megan French, and

Sunny Liu. 2018. How people form folk theories of social media feeds and what

it means for how we study self-presentation. In Proceedings of the 2018 CHI
conference on human factors in computing systems. 1–12.

[23] Anca Dumitrache. 2015. Crowdsourcing disagreement for collecting semantic

annotation. In European Semantic Web Conference. Springer, 701–710.
[24] Anca Dumitrache, Lora Aroyo, and Chris Welty. 2017. Crowdsourcing ground

truth for medical relation extraction. arXiv preprint arXiv:1701.02185 (2017).
[25] Anca Dumitrache, Lora Aroyo, and Chris Welty. 2018. Capturing ambiguity in

crowdsourcing frame disambiguation. arXiv preprint arXiv:1805.00270 (2018).
[26] Motahhare Eslami, Aimee Rickman, Kristen Vaccaro, Amirhossein Aleyasen,

Andy Vuong, Karrie Karahalios, Kevin Hamilton, and Christian Sandvig. 2015. “I

always assumed that I wasn’t really that close to [her]” Reasoning about Invisible

Algorithms in News Feeds. In Proceedings of the 33rd annual ACM conference on
human factors in computing systems. 153–162.

[27] Jerry Alan Fails and Dan R Olsen Jr. 2003. Interactive machine learning. In

Proceedings of the 8th international conference on Intelligent user interfaces. 39–45.
[28] Gösta Forsman and Irwin Schreiner. 2004. The design and analysis of reinterview:

an overview. Measurement errors in surveys (2004), 279–301.
[29] Matt Gardner, Yoav Artzi, Victoria Basmova, Jonathan Berant, Ben Bogin, Sihao

Chen, Pradeep Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al.

2020. Evaluating nlp models via contrast sets. arXiv preprint arXiv:2004.02709
(2020).

[30] Timnit Gebru. 2020. Lessons from Archives: Strategies for Collecting Socio-

cultural Data in Machine Learning. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining (Virtual Event,

CA, USA) (KDD ’20). Association for Computing Machinery, New York, NY, USA,

3609.

[31] Spiros V Georgakopoulos, Sotiris K Tasoulis, Aristidis G Vrahatis, and Vassilis P

Plagianakos. 2018. Convolutional neural networks for toxic comment classi-

fication. In Proceedings of the 10th Hellenic Conference on Artificial Intelligence.
1–6.

[32] Tarleton Gillespie. 2018. Custodians of the Internet: Platforms, content moderation,
and the hidden decisions that shape social media. Yale University Press.

[33] Louis Guttman. 1945. A basis for analyzing test-retest reliability. Psychometrika
10, 4 (1945), 255–282.

[34] Louis Guttman. 1946. The test-retest reliability of qualitative data. Psychometrika
11, 2 (1946), 81–95.

[35] Eric Horvitz. 1999. Principles of mixed-initiative user interfaces. In Proceedings
of the SIGCHI conference on Human Factors in Computing Systems. 159–166.

[36] Pei-Yun Hsueh, Prem Melville, and Vikas Sindhwani. 2009. Data quality from

crowdsourcing: a study of annotation selection criteria. In Proceedings of the
NAACL HLT 2009 workshop on active learning for natural language processing.
27–35.

[37] Maurice Jakesch, Moran Koren, Anna Evtushenko, and Mor Naaman. 2019. The

Role of Source and Expressive Responding in Political News Evaluation. (2019).

[38] Jogsaw. [n.d.]. Jigsaw Unintended Bias in Toxicity Classification. https://www.

kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview

[39] Charles D Jones. [n.d.]. Accuracy of 1970 Census Population and Housing Charac-
teristics as Measured by Reinterviews.

[40] Jeremy Kahn. 2020. Can Facebook’s new A.I. banish Pepe the Frog? https:

//fortune.com/2020/05/12/facebook-a-i-hate-speech-covid-19-misinformation/

[41] Sanjay Kairam and Jeffrey Heer. 2016. Parting crowds: Characterizing divergent

interpretations in crowdsourced annotation tasks. In Proceedings of the 19th
ACM Conference on Computer-Supported Cooperative Work & Social Computing.
1637–1648.

[42] Kian Kenyon-Dean, Eisha Ahmed, Scott Fujimoto, Jeremy Georges-Filteau,

Christopher Glasz, Barleen Kaur, Auguste Lalande, Shruti Bhanderi, Robert Belfer,

Nirmal Kanagasabai, et al. 2018. Sentiment analysis: It’s complicated!. In Pro-
ceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). 1886–1895.

[43] John Le, Andy Edmonds, Vaughn Hester, and Lukas Biewald. 2010. Ensuring

quality in crowdsourced search relevance evaluation: The effects of training ques-

tion distribution. In SIGIR 2010 workshop on crowdsourcing for search evaluation,
Vol. 2126. 22–32.

https://arxiv.org/abs/cs.LG/2012.13052
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview
https://www.kaggle.com/c/jigsaw-unintended-bias-in-toxicity-classification/overview
https://fortune.com/2020/05/12/facebook-a-i-hate-speech-covid-19-misinformation/
https://fortune.com/2020/05/12/facebook-a-i-hate-speech-covid-19-misinformation/

CHI ’21, May 8–13, 2021, Yokohama, Japan Mitchell L. Gordon, Kaitlyn Zhou, Kayur Patel, Tatsunori Hashimoto, and Michael S. Bernstein

[44] Tong Liu, Akash Venkatachalam, Pratik Sanjay Bongale, and Christopher Homan.

2019. Learning to predict population-level label distributions. In Companion
Proceedings of The 2019 World Wide Web Conference. 1111–1120.

[45] Elizabeth Lucas, Cecilia O Alm, and Reynold Bailey. 2019. Understanding Human

and Predictive Moderation of Online Science Discourse. In 2019 IEEE Western
New York Image and Signal Processing Workshop (WNYISPW). IEEE, 1–5.

[46] Kaitlin Mahar, Amy X. Zhang, and David Karger. 2018. Squadbox: A Tool to

Combat Email Harassment Using Friendsourced Moderation. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,

Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,

1–13.

[47] VK ChaithanyaManam and Alexander J Quinn. 2018. Wingit: Efficient refinement

of unclear task instructions. In Sixth AAAI Conference on Human Computation
and Crowdsourcing.

[48] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram

Galstyan. 2019. A survey on bias and fairness in machine learning. arXiv preprint
arXiv:1908.09635 (2019).

[49] Josh Andres Zahra Ashktorab Narendra Nath Joshi Michael Desmond Aab-

has Sharma Kristina Brimijoin Qian Pan Evelyn Duesterwald Casey Dugan

Michael Muller, Christine Wolf. 2021. Designing Ground Truth and the Social

Life of Labels. Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (2021).

[50] Tanushree Mitra and Eric Gilbert. 2015. Credbank: A large-scale social media

corpus with associated credibility annotations.

[51] Kayur Patel, James Fogarty, James A Landay, and Beverly L Harrison. 2008. Exam-

ining Difficulties Software Developers Encounter in the Adoption of Statistical

Machine Learning.. In AAAI. 1563–1566.
[52] Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent disagreements in human

textual inferences. Transactions of the Association for Computational Linguistics 7
(2019), 677–694.

[53] Joshua C Peterson, Ruairidh M Battleday, Thomas L Griffiths, and Olga Rus-

sakovsky. 2019. Human uncertainty makes classification more robust. In Proceed-
ings of the IEEE International Conference on Computer Vision. 9617–9626.

[54] Danny Pfeffermann and Calyampudi Radhakrishna Rao. 2009. Sample surveys:
design, methods and applications. Elsevier.

[55] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and

Christopher Ré. 2017. Snorkel: Rapid training data creationwithweak supervision.

In Proceedings of the VLDB Endowment. International Conference on Very Large
Data Bases, Vol. 11. NIH Public Access, 269.

[56] Sarah T. Roberts. 2020. Fewer Humans Are Moderating Facebook Content. That’s

Worrying. https://slate.com/technology/2020/04/coronavirus-facebook-content-

moderation-automated.html

[57] Björn Ross, Michael Rist, Guillermo Carbonell, Benjamin Cabrera, Nils Kurowsky,

and Michael Wojatzki. 2017. Measuring the reliability of hate speech annotations:

The case of the european refugee crisis. arXiv preprint arXiv:1701.08118 (2017).
[58] Joni Salminen, Fabio Veronesi, Hind Almerekhi, Soon-Gvo Jung, and Bernard J

Jansen. 2018. Online Hate Interpretation Varies by Country, But More by Individ-

ual: A Statistical Analysis Using Crowdsourced Ratings. In 2018 Fifth International
Conference on Social Networks Analysis, Management and Security (SNAMS). IEEE,
88–94.

[59] Christian Sandvig, Kevin Hamilton, Karrie Karahalios, and Cedric Langbort. 2014.

Auditing algorithms: Research methods for detecting discrimination on internet

platforms. Data and discrimination: converting critical concerns into productive
inquiry 22 (2014).

[60] Mike Schaekermann, Joslin Goh, Kate Larson, and Edith Law. 2018. Resolvable

vs. irresolvable disagreement: A study on worker deliberation in crowd work.

Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 1–19.

[61] Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. 2008. Get another

label? improving data quality and data mining using multiple, noisy labelers.

In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. 614–622.

[62] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news

detection on social media: A data mining perspective. ACM SIGKDD explorations
newsletter 19, 1 (2017), 22–36.

[63] Harini Suresh and John V Guttag. 2019. A framework for understanding un-

intended consequences of machine learning. arXiv preprint arXiv:1901.10002
(2019).

[64] Keith Trnka, John McCaw, Debra Yarrington, Kathleen F McCoy, and Christopher

Pennington. 2009. User interaction with word prediction: The effects of prediction

quality. ACM Transactions on Accessible Computing (TACCESS) 1, 3 (2009), 1–34.
[65] Joseph D Tucker, Suzanne Day, Weiming Tang, and Barry Bayus. 2019. Crowd-

sourcing in medical research: concepts and applications. PeerJ 7 (2019), e6762.
[66] Betty van Aken, Julian Risch, Ralf Krestel, and Alexander Löser. 2018. Challenges

for toxic comment classification: An in-depth error analysis. arXiv preprint
arXiv:1809.07572 (2018).

[67] Alex Hai Wang. 2010. Detecting spam bots in online social networking sites: a

machine learning approach. In IFIP Annual Conference on Data and Applications
Security and Privacy. Springer, 335–342.

[68] Jing Wang and Xin Geng. [n.d.]. Classification with Label Distribution Learning.

[69] ZeerakWaseem. 2016. Are you a racist or am i seeing things? annotator influence

on hate speech detection on twitter. In Proceedings of the first workshop on NLP
and computational social science. 138–142.

[70] Jacob O Wobbrock, Andrew D Wilson, and Yang Li. 2007. Gestures without

libraries, toolkits or training: a $1 recognizer for user interface prototypes. In

Proceedings of the 20th annual ACM symposium on User interface software and
technology. 159–168.

[71] Biqiao Zhang, Georg Essl, and Emily Mower Provost. 2017. Predicting the distri-

bution of emotion perception: capturing inter-rater variability. In Proceedings of
the 19th ACM International Conference on Multimodal Interaction. 51–59.

[72] Xinyi Zhou and Reza Zafarani. 2018. Fake news: A survey of research, detection

methods, and opportunities. arXiv preprint arXiv:1812.00315 (2018).

https://slate.com/technology/2020/04/coronavirus-facebook-content-moderation-automated.html
https://slate.com/technology/2020/04/coronavirus-facebook-content-moderation-automated.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Classifiers and disagreement in social computing problems
	2.2 Approaches for collecting datasets with disagreement
	2.3 Evaluating models in the presence of disagreement
	2.4 HCI and ML

	3 Disagreement Deconvolution
	3.1 Estimate the population's distribution of primary labels from pflip
	3.2 Sample a test set of primary labels
	3.3 Run any metric to evaluate an oracle or existing model against the new test set

	4 Finding pflip
	4.1 Ideal computation
	4.2 Stratified estimation
	4.3 SVD estimation

	5 Measurements
	5.1 Dataset Descriptions
	5.2 Applying The Disagreement Deconvolution to Jigsaw
	5.3 Results
	5.4 Validation

	6 Discussion
	6.1 Limitations and Future Work
	6.2 Implications For Design
	6.3 Recommendations for usage and reporting
	6.4 Additional ethical considerations

	7 Conclusion
	References

