
Flash Organizations: Crowdsourcing Complex Work
By Structuring Crowds As Organizations

Melissa A. Valentine, Daniela Retelny,
Alexandra To, Negar Rahmati, Tulsee Doshi, Michael S. Bernstein

Stanford University
flashorgs@cs.stanford.edu

ABSTRACT
This paper introduces flash organizations: crowds structured
like organizations to achieve complex and open-ended goals.
Microtask workflows, the dominant crowdsourcing structures
today, only enable goals that are so simple and modular that
their path can be entirely pre-defined. We present a system that
organizes crowd workers into computationally-represented
structures inspired by those used in organizations — roles,
teams, and hierarchies — which support emergent and adap-
tive coordination toward open-ended goals. Our system intro-
duces two technical contributions: 1) encoding the crowd’s
division of labor into de-individualized roles, much as movie
crews or disaster response teams use roles to support coor-
dination between on-demand workers who have not worked
together before; and 2) reconfiguring these structures through
a model inspired by version control, enabling continuous adap-
tation of the work and the division of labor. We report a
deployment in which flash organizations successfully carried
out open-ended and complex goals previously out of reach
for crowdsourcing, including product design, software devel-
opment, and game production. This research demonstrates
digitally networked organizations that flexibly assemble and
reassemble themselves from a globally distributed online work-
force to accomplish complex work.

ACM Classification Keywords
H.5.3. Information Interfaces and Presentation (e.g. HCI):
Group and Organization Interfaces

Author Keywords
Crowdsourcing; expert crowd work; flash organizations

INTRODUCTION
Crowdsourcing mobilizes a massive online workforce into
collectives of unprecedented scale. The dominant approach
for crowdsourcing is the microtask workflow, which enables
contributions at scale by modularizing and pre-specifying all
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CHI 2017, May 06 - 11, 2017, Denver, CO, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4655-9/17/05...$15.00
DOI: http://dx.doi.org/10.1145/3025453.3025811

Website development
Video transcription
User testing: video
User testing: photo
User testing
High fidelity mockups
Graphic design: packaging
Graphic design: logo
Graphic design: card front
Graphic design: card back
Content creation
Android development

= 1 hour

H
ie

ra
rc

hy
C

ro
w

d
Ti

m
el

in
e

Figure 1: Flash organizations are crowds computationally structured
like organizations. They enable auomated hiring of expert crowd work-
ers into role structures, and continuous reconfiguration of those struc-
tures to direct the crowd’s activities toward complex goals.

actions [7, 55]. By drawing together experts [71] or ama-
teurs [6], microtask workflows have produced remarkable
success in robotic control [48], data clustering [12], galaxy la-
beling [54], and other goals that can be similarly pre-specified.
However, goals that are open-ended and complex, for example
invention, production, and engineering [42], remain largely
out of reach. Open-ended and complex goals are not eas-
ily adapted to microtask workflows because it is difficult to
articulate, modularize, and pre-specify all possible actions
needed to achieve them [72, 81]. If crowdsourcing remains
confined to only the goals so predictable that they can be en-
tirely pre-defined using workflows, crowdsourcing’s long-term
applicability, scope and value will be severely limited.

In this paper, we explore an alternative crowdsourcing ap-
proach that can achieve far more open-ended and complex
goals: crowds structured like organizations. We take inspi-
ration from modern organizations because they regularly or-
chestrate large groups in pursuit of complex and open-ended
goals, whether short-term like disaster response or long-term
like spaceflight [8, 9, 64]. Organizations achieve this com-
plexity through a set of formal structures — roles, teams, and
hierarchies — that encode responsibilities, interdependencies
and information flow without necessarily pre-specifying all
actions [15, 84].

We combine organizational structures with computational
crowdsourcing techniques to create flash organizations:
rapidly assembled and reconfigurable organizations composed
of online crowd workers (Figure 1). We instantiated this ap-
proach in a crowdsourcing platform that computationally con-
venes large groups of expert crowd workers and directs their
efforts to achieve complex goals such as product design, soft-
ware development and game production.

We introduce two technical contributions that address the cen-
tral challenges in structuring crowds like organizations. The
first problem: organizations typically assume asset specificity,
the ability for organization members to develop effective col-
laboration patterns by working together over time [84]. Clearly
crowds, with workers rapidly assembled on-demand from plat-
forms such as Upwork (www.upwork.com), do not offer asset
specificity. So, our system encodes the division of labor into a
de-individualized role hierarchy, inspired by movie crews [2]
and disaster response teams [8], enabling workers to coor-
dinate using their knowledge of the roles rather than their
knowledge of each other.

The second problem: organizational structures need to be con-
tinuously reconfigured so that the organization can adapt as
work progresses, for example by changing roles or adding
teams [9, 64, 84]. Coordinating many workers’ reconfigura-
tions in parallel, however, can be challenging. So, our system
enables reconfiguration through a model inspired by version
control: workers replicate (branch) the current organizational
structure and then propose changes (pull requests) for those
up the hierarchy chain to review, including the addition of new
tasks or roles, changes to task requirements, and revisions of
the organizational hierarchy itself.

Enabling new forms of organization could have dramatic im-
pact: organizations have become so influential as the backbone
of modern economies that Weber argued them to be the most
important social phenomenon of the twentieth century [83].
Flash organizations advance a future where organizations are
no longer anchored in traditional Industrial Revolution-era la-
bor models, but are instead fluidly assembled and re-assembled
from globally networked labor markets. These properties
could eventually enable organizations to adapt at greater speed
than today and prototype new ideas far more quickly.

In the rest of the paper, we survey the foundations for this
work and describe flash organizations and their system in-
frastructure. Following this review, we present an evaluation
of three flash organizations and demonstrate that our system
allows crowds, for the first time, to work iteratively and adap-
tively to achieve complex and open-ended goals. The three
organizations used our system to engage in complex collec-
tive behaviors such as spinning up new teams quickly when
unplanned changes arose, training experts on-demand in areas
such as medical privacy policy when the crowd marketplace
could not provide the expertise, and enabling workers to sug-
gest bottom-up changes to the work and the organization.

RELATED WORK
In this section, we motivate flash organizations through an
integration of the crowdsourcing and organizational design

research literature, and connect their design to lessons from
distributed work and peer production (Table 1).

Crowdsourcing workflows
Crowdsourcing is the process of making an open call for con-
tributions to a large group of people online [7, 37]. In this
paper, we focus especially on crowd work [42] (e.g., Amazon
Mechanical Turk, Upwork), in which contributors are paid for
their efforts. Current crowd work techniques are designed for
decomposable tasks that are coordinated by workflows and
algorithms [55]. These techniques allow for open-call recruit-
ment at massive scale [68] and have achieved success in mod-
ularizable goals such as copyediting [6], real-time transcrip-
tion [47], and robotics [48]. The workflows can be optimized
at runtime among a predefined set of activities [16]. Some
enable collaborative, decentralized coordination instead of
step-by-step instructions [46, 87]. This research area has made
recent progress in achieving significantly more complex and
interdependent goals [43], such as knowledge aggregation [30],
writing [43, 62, 79], ideation [85, 86], clustering [12], and
programming [11, 50].

One major challenge to achieving complex goals has been that
microtask workflows struggle when the crowd must define
new behaviors as work progresses [43, 44]. If crowd workers
cannot be given plans in advance, they must form such action
plans themselves [51]. However, workers do not always have
the context needed to author correct new behaviors [12, 82],
resulting in inconsistent or illogical changes that fall short of
the intended outcome [44].

Recent work instead sought to achieve complex goals by mov-
ing from microtask workers to expert workers. Such sys-
tems now support user interface prototyping [71], question-
answering and debugging for software engineers [11, 22, 50],
worker management [28, 45], remote writing tasks [62], and
skill training [78]. For example, flash teams demonstrated that
expert workflows can achieve far more complex goals than can
be accomplished using microtask workflows [71]. We piloted
the current study using the flash teams approach but they kept
failing at complex and open-ended goals because these goals
could not be fully decomposed a priori. We realized that flash
teams still relied on immutable workflows akin to an assembly
line. They always used the same pre-specified sequence of
tasks, roles, and dependencies.

Rather than structuring crowds like assembly lines, flash orga-
nizations structure crowds like organizations. This perspective
implies major design differences from flash teams. First, work-
ers no longer rely on a workflow to know what to do; instead,
a centralized hierarchy enables more flexible, de-individuated
coordination without pre-specifying all workers’ behaviors.
Second, flash teams are restricted to fixed tasks, roles, and
dependencies, whereas flash organizations introduce a pull
request model that enables them to fully reconfigure any or-
ganizational structure enabling open-ended adaptation that
flash teams cannot achieve. Third, whereas flash teams hire
the entire team at once in the beginning, flash organizations’
adaptation means the role structure changes throughout the
project, requiring on-demand hiring and onboarding. Taken
together, these affordances enable flash organizations to scale

www.upwork.com

Coordination Structures Source of labor Example outcomes
Peer production Shared repositories (wikis, code) Open call to volunteers Wikipedia, Debian Linux [3]
Crowdsourcing Computational microtask workflows Open call to paid crowdsourcing market-

places or volunteers
ImageNet [19], GalaxyZoo [54]

Traditional organizations Roles, teams, hierarchy Employees Incident Command [8], Xerox [15]
Flash organizations Computationally-reconfigurable roles,

teams, hierarchy
Open call to paid crowdsourcing market-
places

EMS Report, True Story, Enter-
prise Workshop Planning Portal

Table 1: Coordination infrastructure and labor source in peer production, crowdsourcing, and traditional and flash organizations.

to much larger sizes than flash teams, and to accomplish more
complex and open-ended goals. So, while flash teams’ pre-
defined workflows enable automation and optimization, flash
organizations enable open-ended adaptation.

Organizational design and distributed work
Flash organizations draw on and extend principles from organi-
zational theory. Organizational design research theorizes how
a set of customized organizational structures enable coordina-
tion [52]. These structures establish (1) roles that encode the
work responsibilities of individual actors [41], (2) groupings of
individuals (such as teams) that support local problem-solving
and interdependent work [13, 29], and (3) hierarchies that sup-
port the aggregation of information and broad communication
of centralized decisions [15, 88]. Flash organizations compu-
tationally represent these structures, which allows them to be
visualized and edited, and uses them to guide work and hire
workers. Some organizational designs (e.g., holacracy) are
beginning to computationally embed organizational structures,
but flash organizations are the first centralized organizations
that exist entirely online, with no offline complement. Organi-
zational theory also describes how employees and employers
are typically matched through the employee’s network [23],
taking on average three weeks for an organization to hire [17].
Flash organizations use open-calls to online labor markets
to recruit interested workers on-demand, which differs dra-
matically from traditional organizations and requires different
design choices and coordination mechanisms.

Organizational design research also provides important insight
into virtual and distributed teams. Many of the features af-
forded by collocated work, such as information exchange [65]
and shared context [14], are difficult to replicate in distributed
and online environments. Challenges arise due to language
and cultural barriers [63, 34], incompatible time zones [66, 69],
and misaligned incentives [26, 67]. Flash organizations must
design for these issues, especially because the workers will
not have met before. We designed our system using best prac-
tices for virtual coordination, such as loosely coupled work
structures [35, 65], situational awareness [20, 27], current state
visualization [10, 57], and rich communication tools [65].

Peer production
Flash organizations also relate to peer production [3]. Peer
production has produced notable successes in Wikipedia and
in free and open source software. One of the main differences
between flash organizations and peer production is whether
idea conception, decision rights, and task execution are central-
ized or decentralized. Centralization, for example through a
leadership hierarchy, supports tightly integrated work [15, 88];
decentralization, as in wiki software, supports more loosely

coupled work. Peer production tends to be decentralized,
which offers many benefits, but does not easily support inte-
gration across modules [4, 33], limiting the complexity of the
resulting work [3]. Flash organizations, in contrast, use cen-
tralized structures to achieve integrated planning and coordi-
nation,even across diverse disciplines. In addition, by tapping
into online labor markets, flash organizations overcome peer
production’s struggles to attract volunteer contributors [31, 32,
56, 76]. In exchange for these benefits, flash organizations
face the additional costs of negotiating contracts, motivation
crowding [18], and paying for labor.

FLASH ORGANIZATIONS
In this section, we introduce flash organizations and our sys-
tem, Foundry, which enables them. Flash organizations draw
together 1) the structure and coordination techniques of tradi-
tional organizations to enable open-ended and complex work,
and 2) the scale and computational management abilities of
crowdsourcing. We describe two problems central to the de-
sign of flash organizations, and our solutions to them: asset
specificity addressed through computational role structures,
and structure adaptation addressed through version control of
organizational structures. We enacted these contributions in
Foundry, a web platform that enables authoring, populating,
and adapting organizational structures (Figure 2).

Computational organizational structures
Flash organizations encode computational structures inspired
by organizations. However, traditional organizations premise
their organizational structures on asset specificity [84], the
value that comes from people working together over time. As-
set specificity accounts for workers becoming more and more
in sync with teammates over time and improving their ability
to coordinate and solve problems together. Clearly crowds,
with transient participants assembled on-demand through open
calls, do not offer asset specificity.

To address asset specificity, we draw on research on tempo-
rary organizations such as disaster response teams and movie
crews. These temporary organizations coordinate successfully
even without asset specificity [2, 8] by relying heavily on role
structures, which are activity-based positions that can be as-
sumed by anyone with necessary training [2, 80]. Example
role structures for a film crew include main grip and director;
example roles for a disaster response team include strike team
leader and firefighter. Role structures encode responsibilities
and interdependencies; boom operators and grips know how
to coordinate by virtue of their roles.

We thus designed flash organizations around computational
role structures. Each role represents a position for a crowd

OnboardingOn-Demand Hiring

Task DetailsTimeline

Figure 2: Foundry supports the authoring of flash organizations. The Foundry timeline (top left) displays all roles and current tasks. The task modal
(top right) displays task requirements and metadata and allows the leader to hire a new worker if necessary. When hiring for a new role (bottom left),
Foundry notifies qualified workers; those who respond enter a hiring queue. When hired, they are oriented to the purpose of the organization and
upstream and downstream tasks (bottom right).

worker in the organization, and it specifies the expertise re-
quired to fill the position (e.g., audio editor, AngularJS pro-
grammer). Roles enable automatically hiring from an online
labor market such as Upwork. Flash organizations’ role struc-
tures enable open call hiring, clarify what workers are sup-
posed to do, and specify with whom they should communicate.

A flash organization coordinates these roles by arranging
them into a hierarchy, which encodes authority and decisions
rights [83]. Hierarchies enable flash organizations to take
action with centralized, coordinated purpose, much like a di-
rector has executive authority on a movie set. Hierarchy means
that flash organizations can be formally represented as a tree
of nested role structures. The role structure encodes interde-
pendencies, and the nesting encodes hierarchy and decision
rights. Leaf nodes are roles representing workers, which can
be nested into teams. Teams can optionally be led by a team
lead. For example, a team might include a set of workers with
expertise in interface design, nested under a UI Design Lead.
At the top of the tree is the organization’s leader.

The flash organization’s hierarchy (Figure 1 top) determines
the actions that each worker can perform. The goal is for in-
formation to flow up to the central leader so that decisions can
be made with awareness of the state of the entire organization.
When a worker submits a task in the system, the hierarchy
one level above is alerted, and then reviews and accepts it
or returns it with feedback for revision. The leader has full
formal decision rights, or delegates rights to team leads.

To create a role-based hierarchy in Foundry, users add roles
(e.g., “User Interface Designer”) and link the role to at least
one skill tag listed in Upwork. Foundry utilizes these key-
words to automatically post positions to the relevant experts
on the Upwork marketplace. For example, a web engineer-
ing role can specify the Upwork “node.js” tag, and Foundry
queries Upwork for workers who match. The leaders then
begin Foundry’s on-demand hiring process to fill the role.

Once a role is created, it can be assigned tasks, the basic unit of
work in Foundry (Figure 2). Foundry tasks are parametrized
by desired duration, description, required inputs from other
tasks, required outputs to other tasks, and the individual di-
rectly responsible for ensuring the task is completed [71]. A
task timeline visualizes sequencing. Workers can start, pause,
and complete tasks using the Foundry interface. For each
role, Foundry highlights their upcoming tasks and shows the
remaining time for any active tasks. When a worker submits a
task, they upload the file to Foundry, and answer documenta-
tion questions to record decisions or other information to the
organizational record. Foundry visualizes the role hierarchy
by organizing tasks into rows by team (Figure 1).

Finally, Foundry draws on CSCW best practice for virtual or-
ganizations. A timeline interface supports shared awareness of
progress; text and video chat, availability indicators (present,
offline, idle), and Slack integration support coordination (Fig-
ure 2). Foundry automatically publishes major notifications
such as tasks started or completed, and pull requests issued.

branch ‘master’

branch ‘add-task’

branch ‘request-extension’

Figure 3: Workers can branch the current organizational structures,
make any desired edits, and then issue a pull request for review. This
mechanism enables the organization to continuously adapt.

Reconfigurable organizational structures
In contrast to crowdsourcing efforts using workflows, flash
organizations are designed to adapt throughout the work pro-
cess. To enable this adaptation, the organizational structures
must be modified as new opportunities or challenges arise. For
example, when a movie crew encounters unexpected weather,
they change which scene they are shooting, quickly activate
new parts of the organization, or redeploy experts to fill needed
roles [2]. Likewise, when a disaster response crew finds un-
expected materials at the scene of a fire, a firefighting team
must quickly reconfigure itself to mount a hazardous materials
response [8]. Flash organizations likewise must be able to
adapt to changing conditions by reconfiguring their structures.

However, for adaptation to be feasible, flash organizations
need to enable distributed workers from across the organiza-
tion to update the organizational structures in real-time. Mem-
bers of an engineering team, for example, might be adjusting
deliverables at the same time as a quality assurance lead is
changing tasks’ dependencies. This creates pressure to adapt
rapidly, but flash organizations must also not lurch without cen-
tralized purpose in reaction to each new adaptation. A single
shared, multi-author organizational structure (e.g., Google
Docs) would be reactive but susceptible to uncoordinated
changes; distributed structures ensure consistency but require
significant effort to recombine. Likewise, a globally-writeable
organizational structure (e.g., a wiki) enables changes to come
from any worker, but can cause organizational chaos if work-
ers disagree and engage in edit wars [48]; a locally-writeable
structure accessible only to the leader centralizes control but
silences good ideas from lower in the hierarchy. Flash orga-
nizations ideally require an approach that allows workers to
explore changes quickly in a sandbox, and then ask people up
the hierarchy to quickly review and merge them.

Flash organizations enable reconfiguration through a tech-
nique inspired by version control, enabling workers to branch,
merge, and issue pull requests for the organizational structures
that define the organization (Figure 3). There are many flavors
of version control, for example distributed (git) vs. centralized
(Subversion), and changes pushed directly (git and Subversion)
or through a review process (GitHub pull requests and Sub-
version with patch files). We chose our model based on flash
organizations’ design requirements. There is only one instance
of each flash organization, so a decentralized model with mul-
tiple copies is unnecessary. However, to coordinate changes,
flash organizations require a model that supports review and
automatic merging. So, at a high level, flash organizations

enable a contributor to branch (copy) the organization’s cur-
rent state and edit it while the system tracks the differences
from the master (original), then merge any changes when the
branch is ready via a pull request where other team members
review the changes and decide to accept or reject them.

Foundry adapts this model to enact both top-down organiza-
tional changes as well as bottom-up changes driven by workers.
Any member of a flash organization can branch the organiza-
tion on Foundry to create an editable copy that retains a link to
the master branch. The member then edits organizational struc-
tures to indicate desired changes, and Foundry highlights a
diff of the changes relative to the original organization. Within
the branch, the worker can edit any organizational structure
including roles, teams, and task details. When desired, the
member pulls from master to automatically merge in changes
that occurred in the master since they branched. For minor
adaptations (e.g., adding time), Foundry also provides a form
to submit a simple pull request by filling in information for
common types of adaptation.

When ready, the organization member sends the proposed
changes in the branch via a pull request for review one level up
the role hierarchy. Pull requests automatically create alerts via
a Slack integration. The alerts appear in a shared organization-
wide Slack channel, which is visible and searchable by all
members. The requester, reviewer, and other members can
discuss the proposed changes in the Slack channel. In this way,
the Foundry’s visualization of the organizational structures and
the pull requests function as boundary objects that people use
to negotiate and develop shared understanding of future plans.
The reviewer ultimately decides whether to accept and merge
the pull request back into the master organization. Foundry
then automatically merges changes back into the master branch
and issues an alert in Slack. If there are conflicts between the
master and member’s branch (e.g., the member edited a task
that task had been deleted on the master branch), the conflicts
are returned to the reviewer to resolve.

As in software version control, implementing this approach
requires merging the branch and the master organizational
structures. Typical version control operates using a three-way
merge on unstructured text (e.g., program code) [60]. Three-
way merges require tracking history of each version, so that
the algorithm can identify a common ancestor of the master
and the branch in order to perform the merge. So, Foundry
maintains ancestry history for organizational structures: as in
source code, the parent is the version of the organizational
structure that was branched or edited. However, three-way
merges require diffs, and most diffs are designed for text in-
stead of hierarchically structured objects like Foundry’s orga-
nizational structures. So, we use a diff algorithm designed for
structured objects (e.g., arrays) and hierarchical objects (e.g.,
JSON, which Foundry uses) [73]. With this infrastructure, the
three-way merge algorithm can return insertions, deletions,
and edits, which Foundry manages automatically, as well as
any conflicts, which Foundry returns to the user to resolve. Fol-
lowing this branch-and-merge process, Foundry hires newly
required workers and notifies members of changes.

On-demand hiring of expert crowd workers
Foundry populates the organizational structures using auto-
mated, on-demand hiring (Figure 2). On-demand hiring en-
ables flash organizations to hire relevant experts from expert
crowdsourcing marketplaces such as Upwork within about fif-
teen minutes on average. Foundry enables on-demand hiring
through worker panels that have been pre-vetted via a skill-
based qualification task. These panels are a retainer pool of
high-quality workers [5]. Example Foundry panels include
Android application development, graphic design, quality as-
surance testing, and video animation.

When a new role is added to the organizational structure,
Foundry hires by e-mailing all workers on the relevant panel
to notify them that a position is immediately available on a
first-come, first-served basis. Workers click a link in the email
to indicate interest, entering Foundry’s hiring queue. The first
qualified worker to arrive receives first place in the queue, and
has ten minutes to read the details, then choose whether to
accept. Once a worker accepts, they enter Foundry and begin
working immediately. In some situations, however, a leader
wants greater control in hiring. In these cases, they can per-
form a “warm hire” by inspecting all members of the panel,
interviewing, and then making an offer to a specific individual.

We formed panels by posting skill-based qualification
tasks [40, 61] for each panel. Upwork workers completed
a 1–3 hour task (e.g., simple Android development, logo de-
sign, QA on an existing website) to apply for the panel. Their
submissions were reviewed by an expert reviewer such as a
highly rated domain expert on Upwork. If the worker’s sub-
mission was of sufficiently high quality, the worker was added
to the panel. We envision that as the reputation systems on
platforms such as Upwork improve [24, 36], the panel role
could eventually be played by the platform itself.

Arriving in the middle of a fully functional organization re-
quires workers to quickly learn their specific responsibilities
and interdependecies, and organizational goals. Foundry on-
boards new workers by orienting them to their role respon-
sibilities and their position in the organization through a
guided walkthrough (Figure 2 panel 4). Foundry then calls
out relevant inputs, upcoming tasks, and the description of the
worker’s first task. This process takes under five minutes.

EVALUATION
Do flash organizations enable crowds to mount large-scale
coordinated efforts toward complex and open-ended goals?
In this section, we explore this question by reporting results
from a system deployment where three flash organizations pur-
sued goals that have remained challenging for crowds: open-
ended product design, software development, and game design.
These projects represent more open-ended and complex goals
than past targeted successes crowdsourcing interface prototyp-
ing [71], code debugging [11, 50], and ideation [1]. Our study
evaluation strategy [59] is inspired by prior work in crowd-
sourcing, which has likewise demonstrated proof of concept
goals via systems operating on real tasks (e.g., [6, 43, 49]).

Because this paper’s thesis is an existence claim — that flash
organizations can coordinate and adapt to complete open-

ended, complex goals — rather than a comparative “better
than” claim, we opted for a field study deployment to establish
whether flash organizations are in fact capable of complex
work, and if so, how they achieve it.

Method
We recruited three leaders from outside our research team to
run flash organizations. We sought leaders who had unique
complex goals to pursue and who represented different ex-
pertise. None of the leaders were experts in crowd work or
Upwork. We provided each leader with a budget, Foundry,
and a deadline of six weeks to achieve their goal. Leaders kept
ownership of all created products and intellectual property.

The three resulting organizations spanned software, product,
and game design. The first organization, EMS Trauma Re-
port, designed and led by a medical student, used the crowd
to create a prototype Android mobile and web application
for emergency medical technicians (EMTs) to report trauma
injuries from an ambulance en route to the hospital. The sec-
ond organization, True Story, designed and led by a team of
crowdfunded card game makers, used the crowd to design,
manufacture, and playtest a storytelling card game and an
accompanying mobile application. The third organization,
Enterprise Workshop Planning Portal, designed and led by a
member of a technology lab at the Accenture software consult-
ing firm, used the crowd to create an enterprise web portal to
administer client workshops.

All decisions were made by the organizational leaders, in-
cluding the creation and execution of roles, teams, and tasks.
Leaders could use Foundry to delegate decisions to team leads
and workers. Their customized organizational structures were
automatically populated with diverse crowd workers includ-
ing graphic designers, poets, and programmers. Table A7
(appendix) reports the panels accessible to the leaders, and
the number of applicants in each panel hiring process. When
necessary, we aided the leaders in using Foundry, but did not
make any organizational decisions on their behalf.

During the deployment, we tracked the organizational struc-
tures that each leader developed, the experts they hired and
the time elapsed when hiring them, and the number and type
of organizational adaptations. We conducted interviews with
47 participants, including the leaders, team leaders, and work-
ers. We also recruited three neutral reviewers to assess the
quality of each deliverable. These reviewers were expert in
the respective product domains. They judged whether the final
deliverables met the intended goal and were at least average
quality as compared to similarly scoped products.

RESULTS
All three leaders spun up and led an organization to complete
their goals within six weeks, convening workers on-demand in
fourteen minutes on average. Each organization successfully
completed its goal (Figure 4) to the satisfaction of the leader
and received an acceptable quality rating by the three expert
reviewers. The organizations collectively comprised 93 crowd
workers, including 22 team leads and 24 teams (Figure 5).
These workers completed 639 tasks across 3,261 person-hours
of work time. Altogether, the organizations wrote 52,000 lines

Figure 4: Three flash organizations successfully developed:(top) a tablet application and web portal for emergency medical responders; (middle) art,
content, and a supporting application for a storytelling card game; and (bottom) an enterprise IT portal for consultant workshop planning.

of software code, including two mobile applications and three
full-stack web applications, and created two illustrated 80-card
decks. The median task across organizations lasted 3.05 hours,
and the median daily concurrent work time was 14.1 hours by
a median five workers. We first present a case analysis of the
adaptation and hiring involved in each flash organization and
then present quantitative measures of these activities.

EMS Trauma Report
The EMS Trauma Report organization developed an Android
application for emergency medical technicians (techs) to use
a touch-enabled tablet from an ambulance to send advance
reports while en route to the hospital. The application allowed
techs to rapidly enter vital information such as demographics,
mechanism of injury, whether the patient is intubated, heart
rate and blood pressure, location of the trauma event, and a
photograph. The data were then uploaded to a secure hospital
web site displaying a filterable overview-plus-detail list of all
incoming trauma cases, as well as an automatically-updating
GPS location of the ambulance.

The EMS leader began by warm-hiring an Android developer,
and asking her to craft a plan for the organization. She hired a
user interface design team, and both team leads then decided to
bring on two more developers, hiring each on-demand in about
8 minutes. Together they iterated on building out prototypes of
the leader’s sketches. Next, the Android lead, who became the
de-facto organization leader, spun up a front-end engineering
team, hiring two developers to build the client application

and user interface. These groups worked together on features
such as the interaction flow for low-acuity trauma cases. Pull
requests laid out new tasks and team members.

At this point, many Android and front-end team members
noted that they could not do what they needed to do without
a back-end. The EMS leader then hired three back-end de-
velopers on-demand in 17, 27, and 60 minutes respectively.
After a day, the team hierarchy was reconfigured to make a
particularly skilled worker the team lead.

At the end of this period, an early prototype had been pro-
duced. The EMS leader spun up a user-testing team to oversee
user feedback. He took the prototype to local users and sent
their feedback to this team. Feedback included adding an
alternative high-acuity workflow. The EMS leader sketched
out wireframes for the revised design, which team leads used
to create pull requests for 15 additional tasks to cover high-
fidelity mocks, engineering, testing and debugging.

During this same period, the EMS leader wondered about
compliance with federal Health Insurance Portability and Ac-
countability Act (HIPAA) regulations. He wanted to hire
someone to oversee HIPAA compliance, but Upwork did not
have workers with that expertise. He hired a web security engi-
neer in Egypt to train himself on HIPAA policy and connected
him with the local university compliance officer.

The EMS leader spun up a marketing team on-demand to
create materials to pitch the app to funders and users. While

Enterprise Workshop Portal EMS Report True Story

Enterprise Workshop Portal

EMS Report

True Story

Figure 5: Final organizational structures (top) and completed timelines (bottom) for the three flash organizations. Colors indicate different roles
and corresponding tasks (details in Appendix). Structures varied from flat to nested hierarchies, and included 24 teams and 639 tasks across 3,261
person-hours of work time.

creating marketing materials, a worker proposed replacing
the hiring web page with a feature overview page. The team
agreed and he used Foundry to create pull requests to add tasks
for creating the new page.

True Story
The True Story (TS) organization produced a storytelling card
game including a deck of cards. Each card in the final game
(http://truestorytime.org/game/) is a prompt for players to
tell a story from their life, for example “Unknown Territory”
or “Fake It Till You Make It”. The organization developed an
artistic style for the card decks, and a short poem on each card
that corresponds with the prompt (e.g., “Crushing”: Subtle
looks, pounding pulse / However long the hover lasts / Between
friend zone and fun zone). An Android application was also
made for use in the game to record stories as they are told.

The TS leaders first used on-demand hiring to quickly hire a
team of 12 poets to write a short poem to print on each card.
They then realized they wanted an integrated tone across the
poems and so hired a new poet to review the poems and create
a integrated set. On-demand hiring enabled the 160 cards to
be created quickly and provided a range of creative ideas.

The TS leaders also divided out the design and manufacturing
of the actual cards. They hired different teams to design
the back and front of the cards, the card packaging, and a
game logo. The TS leaders then decided to playtest their
game. They hired a playtesting lead on-demand, who hired
playtesters to organize their friends for game nights and record
the proceedings. She shipped test card decks to the playtesters
and synthesized their results for the TS leaders.

As the deadline neared, the TS leaders decided to make a mo-
bile application and website that could record the stories told
in the game. To achieve this goal in one week, the TS leaders,
team leads and workers submitted over 50 pull request changes
to add a series of new roles and tasks. Creating a mobile ap-
plication required hiring an entire new team with Android

development experience — a set of skills non-overlapping
with the existing organization and leaders’ expertise. The TS
leaders hired a team lead who created roles and assigned tasks
to design, test and produce the mobile app and website.

Enterprise Workshop Planning Portal
The Enterprise Workshop Planning Portal (ENT) organization
designed and engineered a web application to administer client
workshops. The organization began with vague requirements
and, through iteration, developed a spec wherein workshop or-
ganizers enter information about the workshop clients. Work-
shop organizers then use the system to build a schedule for
the session and monitor progress via a dashboard. The ENT
organization had to coordinate with Accenture employees to
maintain brand consistency and understand the teams’ needs.

The ENT leader began by interviewing and warm-hiring the
design and back-end team leads in 30 minutes and 11 hours,
respectively. Each team lead then hired 3 team members on-
demand in an average of 16 minutes. The back-end team lead
struggled to make a plan, so the ENT leader reconfigured the
hierarchy, asking him to continue to code but asking another
team member to lead the team. Later, the ENT leader did not
like the mockups created by a member of the design team,
but appreciated his leadership expertise, so used Foundry to
move that UI Designer into a team lead role and assign his
remaining design tasks to three other UI Designers who had
delivered higher quality mocks.

Quality assurance and user testing teams were hired on-
demand as the project neared completion. The QA experts
were hired in an average of 18 minutes each. While they were
waiting for the developers to finish implementing features for
them to test, the team lead used Foundry to initiate pull re-
quests that prepared all of the quality assurance test cases to
be completed and standardize their reporting.

The ENT leader asked users in his organization for prototype
feedback, which prompted requirements to be redesigned,

http://truestorytime.org/game/

Median
hiring time

Pull
requests

Leaders Team
leads

Workers

EMS Report 13min40s 335 7.2% 92.8% 0.0%
True Story 12min30s 113 21.2% 47.8% 31.0%
Enterprise 15min13s 118 66.9% 17.9% 15.3%

Table 2: Automated hiring and organizational reconfigurations.

delaying the project. Workers issued a series of pull requests
to adjust project scope and implementation goals. To build
out the desired interaction design, the front-end team shifted
from plain HTML to AngularJS, leading to a series of pull
requests for front-end engineering. The ENT leader then felt
the development team was understaffed for meeting the goal
he had in mind. He used Foundry to automatically hire three
more front-end and three back-end developers. Days later, one
of the AngularJS developers had a family emergency. The
team needed more AngularJS expertise, so he used Foundry to
request front and back-end developers who knew AngularJS.
At this point, the leader felt at risk for missing budget and
schedule goals, so all teams revised work plans using pull
requests to scope a less ambitious deliverable.

Results: Reconfiguring organizational structures
Each organization continuously adapted to changing condi-
tions by adding people, tasks, teams, and time, and by revis-
ing groupings, hierarchy, and task requirements. These on-
demand adaptations, which included 113 pull request changes
in True Story, 118 in Enterprise and 335 in EMS Report
(Table 2), resulted in 566 pull request changes. They came
from leaders (9.4%), team leads (68.2%), and team members
(22.4%). Adaptation was continuous over the duration of
each organization, with a median of four changes per day per
organization. Changes were both top-down per the leaders’
directives, and bottom-up per workers’ initiative.

Top-down adaptations allowed quick realignment whenever
the leader needed to react to new information or unexpected
feedback. Table 3 summarizes examples, including adding
new roles and reconfiguring existing hierarchies. Such top-
down adaptations are more reminiscent of traditional requester-
driven crowdsourcing models. Flash organizations also al-
lowed crowd workers to initiate reconfigurations bottom-up.
Examples in Table 3 include adding tasks that had not been
anticipated to revise the content of a web page.

Flash organizations’ adaptations were not without issue. For
one, tracking adaptations in Foundry as the changes became
more fine-grained (e.g., bug fixes) was less useful for work-
ers, who found little need to update the task list and instead
engaged in real-time teaming to rapidly identify, claim, and
patch bugs. This dynamic suggests that Foundry could inte-
grate with other services to match planning needs. A second
issue: some workers felt the ability to adapt came at the ex-
pense of careful planning; they wished the leaders engaged
in a more extensive planning process with fewer and smaller
adaptations throughout. This feedback could be used to inspire
research that hybridizes both planning and adaptation.

Results: On-demand hiring
Seventy five workers were hired automatically across each
organization (Table A1 in the Appendix). Leaders used this
on-demand hiring process to fill new organizational structures

Bottom-up change: add new tasks EMS Trauma Report
One of the marketers realized that the application’s hiring page would be
better off as a feature overview. Other workers agreed, so he created four
pull requests adding tasks to redesign the page and its content.
Bottom-up change: add new tasks Enterprise Workshop Portal
As the engineering teams completed their milestones, the quality assur-
ance team took the initiative to create pull requests with tasks that would
coordinate the upcoming engineering team’s testing process.
Top-down change: reconfigure hierarchy EMS Trauma Report
A back-end engineer showed particular initiative and skill. The EMS leader
reconfigured his role in the team hierarchy, making him the team lead.
Top-down change: add new role True Story
The True Story leaders sourced card content from team of poets. Upon
review, they decided to create a new role on the team to integrate content.

Table 3: The flash organizations used top-down pull requests per leaders’
directives, and bottom-up pull requests per workers’ initiative.

Hiring a team of poets True Story
The True Story leaders hired a team of twelve poets on-demand. They wrote
creative content for the game cards.
HIPAA consultation on-demand EMS Trauma Report
The EMS leader hired a web security engineer in Cairo to train himself on
American HIPAA privacy laws and advise the team.
Rapid team expansion Enterprise Workshop Portal
The ENT leader expanded engineering capacity by hiring four new front-end
and back-end engineers on-demand in as little as 7 minutes each.

Table 4: The flash organizations hired on-demand to rapidly spin up new
expertise.

in a median of 13.7 minutes. In contrast, (manual) warm hires
took much longer, a median 15 hours. These hiring processes
unfold on significantly different scales: automated hires in
a median 14 minutes, warm hires in a median 15 hours, and
traditional organization hiring pipelines in 14–25 days [17].

The organizations used on-demand hiring to quickly hire peo-
ple with needed expertise and to source diverse ideas. Exam-
ples are summarized in Table 4, including the team of 12 poets
hired on-demand to create content for the TS game, and the
engineer hired to train himself on American privacy laws.

Although flash organizations could in theory recruit new crowd
workers for each new task, the organizations in practice ac-
creted members over time. Leaders used Foundry’s hiring
functionality to rehire members for new tasks. Rehiring mini-
mized the necessary onboarding, and meant that organization
members inhabited several different roles in the organizational
structure at different points in time. On-demand hiring pro-
duced other challenges. There was a somewhat unpredictable
skill fit of the hired crowd experts. Reliable reputation sig-
nals remain an issue for online labor markets [36, 70]. Future
research can aim to improve crowd platforms’ reputation sys-
tems, and in particular to identify professionals with similar
styles or skills in a domain.

DISCUSSION
Like many other social structures, the nature of work is being
reshaped by the internet, computation and algorithms. Across
industries as diverse as data entry (Amazon Mechanical Turk),
design and programming (Upwork), and transportation (Uber),
responsibilities that used to be the domain of human managers
are becoming the domain of computational systems. To date
these systems have focused on distributed and independent

work [7]. In this paper, we envision a future in which com-
putational systems instead orchestrate flash organizations that
achieve complex and open-ended goals requiring diverse ex-
pertise. We present a field deployment of our system in which
flash organizations automatically hired experts from the crowd
into role-based organizational structures and reconfigured the
structures as work progressed.

Flash organizations advance crowdsourcing research by intro-
ducing organizational structures as a new approach for coor-
dinating online workers assembled through open call. This
approach adapts the coordination affordances of organizations
for computational systems and crowds. In doing so, flash
organizations open a set of goals previously out of reach for
crowdsourcing.

Reciprocally, flash organizations also advance research on
organizational design in three main ways. First, flash organi-
zations draw on the principles of role-based coordination that
enable temporary organizations, but represent the first example
of a computational system that encodes and reconfigures these
role structures. Future research can explore the social and be-
havioral dynamics introduced by this approach. Second, flash
organizations convene expertise near-instantaneously rather
than reconfiguring fixed groups of employees like traditional
organizations. This property means these temporary organi-
zations can fluidly assemble participants from online labor
markets, a novel capability compared to traditional organiza-
tions. But it introduces a trade-off between rapid hiring and
workers’ familiarity with each other and with the organiza-
tional context. Future research can explore this trade-off, and
develop approaches for supporting familiarity [75] and helping
with relevant context. Third, because flash organizations log
all organizational activity, they offer an unprecedented oppor-
tunity to conduct data science on organizational structures and
processes. Organizational structures are a powerful coordi-
nation mode in their own right, but coupled with large-scale
data on tasks, roles, hierarchies, and customized workflows,
they offer a powerful tool that can usher in an era of flexible
networked collaboration.

Flash organizations advance a future of work that is increas-
ingly mediated by computation and algorithms. As new such
techniques are developed, continued conversation around de-
sired social outcomes is necessary [25, 77]. If the sociotech-
nical ecosystem is not designed carefully, flash organizations
(like other labor shifts through history) may drive down wages
and impose rigid working conditions [39, 58]. Instead, we
hope that flash organizations will offer crowd workers, who
are currently predominantly piecework employees, the oppor-
tunity to join longer-term and more fulfilling projects. More
broadly, flash organizations envision a world that enables
crowd workers to pursue long-term careers [42], including
skill growth [78], access to labor collectives [74], and guaran-
tees of stable income.

Limitations
Flash organizations may not be appropriate for every kind of
goal, and more research is needed to explore this design space
and its failure points. For example, because flash organizations
are nimble, they are likely to prove a good fit for early-stage

organizations, or organizations that want to prototype new
project-level efforts. However, efforts that require high asset
specificity and rely on years of expertise, for example familiar-
ity with Google’s massive code base, may benefit from more
traditional formats. Hybrid opportunities exist: large stable
organizations could view their own employees as a crowd,
engaging workers in primary projects while rotating them onto
secondary on-demand projects to enable secondary teams to
grow rapidly if needed.

Other tradeoffs and limitations exist: flash organizations reach
a worldwide labor pool, but must therefore contend with cul-
tural and timezone differences [34, 66, 69]; flash organizations
enable near-strangers to coordinate effectively through roles,
but strangers are less effective than familiar teams [38]; crowd
platforms’ hiring can be noisy due to over-inflated reputation
systems [24, 36]. No organizational form is perfect for all
situations [52], and flash organizations are better suited for
situations where these tradeoffs matter less. Future designs
will iterate on these issues.

We chose a field deployment as our evaluation strategy, which
allowed us to demonstrate the feasibility, strengths, and limita-
tions of the approach. Field study deployments are less able
to isolate specific causal mechanisms than a randomized field
experiment with a matched counterfactual. However, they are
a strong fit when the phenomenon is nascent [21], and they
provide a strong method for “thick” [53] descriptive accounts,
including strengths and limitations.

CONCLUSION
Through flash organizations, we envision a world in which any-
one with an internet connection can assemble an organization
from an online labor market and then lead that organization
in pursuit of complex, open-ended goals. Engineering such a
future would enable a crowd workforce to flexibly assemble
and reassemble itself into collectives that rival modern organi-
zations in their prevalence, impact and achievements. Toward
this future, flash organizations contribute: (1) methods for
computationally structuring crowds like organizations, with
roles, teams, and hierarchies; (2) system infrastructure for au-
thoring, hiring, and guiding flash organizations; (3) role-based
coordination to enable crowd workers to coordinate via knowl-
edge of each others’ positions; (4) a version control model
for reconfiguring flash organizations’ structures to adapt the
organization; and (5) a deployment demonstrating that these
techniques enable crowds to achieve open-ended goals.

ACKNOWLEDGMENTS
The authors thank Kartik Sawhney, Jare Fagbemi, Michael
Kim, Maxine Fonua, Corey Garff, Matthew Kim and Jay Pa-
tel for their efforts on this project. Additional thanks to Stu
Card, Aniket Kittur, Tom Malone, Pamela Hinds, Sharad Goel,
Clark Barrett, and Anita Woolley for feedback on early drafts.
This work was supported by the National Science Foundation
(award IIS-1351131), Accenture Technology Labs, Microsoft
FUSE Labs, the Stanford Cyber Initiative, the Stanford In-
stitute for Research in the Social Sciences, and a Stanford
Interdisciplinary Graduate Fellowship.

REFERENCES
1. Ricardo Matsumura Araujo. 2013. 99designs: An

Analysis of Creative Competition in Crowdsourced
Design. In Proceedings of the First AAAI Conference on
Human Computation and Crowdsourcing. 17–24.

2. Beth A. Bechky. 2006. Gaffers, Gofers, and Grips:
Role-Based Coordination in Temporary Organizations.
Organization Science 17, 1 (2006), 3–21. DOI:
http://dx.doi.org/10.1287/orsc.1050.0149

3. Yochai Benkler. 2002. Coase’s Penguin, or, Linux and
The Nature of the Firm. Yale Law Journal (2002),
369–446.

4. Yochai Benkler. 2013. Peer Production and Cooperation.
In Handbook on the Economics of the Internet. 1–29.

5. Michael S. Bernstein, Joel Brandt, Robert C. Miller, and
David R. Karger. 2011. Crowds in Two Seconds:
Enabling Realtime Crowd-powered Interfaces. In
Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology. ACM, New York, NY,
33–42. DOI:http://dx.doi.org/10.1145/2047196.2047201

6. Michael S. Bernstein, Greg Little, Robert C. Miller,
Björn Hartmann, Mark S. Ackerman, David R. Karger,
David Crowell, and Katrina Panovich. 2010. Soylent: A
Word Processor with a Crowd Inside. In Proceedings of
the 23rd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). ACM, New York,
NY, USA, 313–322. DOI:
http://dx.doi.org/10.1145/1866029.1866078

7. Jeffrey P. Bigham, Michael S. Bernstein, and Eytan Adar.
2015. Human-Computer Interaction and Collective
Intelligence. In Handbook of Collective Intelligence. MIT
Press, 57–84.

8. Gregory A. Bigley and Karlene H. Roberts. 2001. The
incident command system: High-reliability organizing for
complex and volatile task environments. Academy of
Management Journal 44, 6 (2001), 1281–1299. DOI:
http://dx.doi.org/10.2307/3069401

9. Shona L. Brown and Kathleen M. Eisenhardt. 1997. The
Art of Continuous Change: Linking Complexity Theory
and Time-Paced Evolution in Relentlessly Shifting
Organizations. Administrative Science Quarterly 42, 1
(1997), 1–34. DOI:http://dx.doi.org/10.2307/2393807

10. John M. Carroll, Dennis C. Neale, Philip L. Isenhour,
Mary Beth Rosson, and D. Scott McCrickard. 2003.
Notification and awareness: Synchronizing task-oriented
collaborative activity. International Journal of Human
Computer Studies 58, 5 (2003), 605–632. DOI:
http://dx.doi.org/10.1016/S1071-5819(03)00024-7

11. Yan Chen, Steve Oney, and Walter S. Lasecki. 2016.
Towards Providing On-Demand Expert Support for
Software Developers. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 3192–3203. DOI:
http://dx.doi.org/10.1145/2858036.2858512

12. Lydia B. Chilton, Greg Little, Darren Edge, Daniel S.
Weld, and James A. Landay. 2013. Cascade:
Crowdsourcing taxonomy creation. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems. New York, NY, USA, 1999–2008. DOI:
http://dx.doi.org/10.1145/2470654.2466265

13. Susan G. Cohen. 1997. What Makes Teams Work: Group
Effectiveness Research from the Shop Floor to the
Executive Suite. Journal of Management 23, 3 (6 1997),
239–290. DOI:
http://dx.doi.org/10.1177/014920639702300303

14. Catherine Durnell Cramton. 2001. The Mutual
Knowledge Problem and Its Consequences for Dispersed
Collaboration. Organization Science 12, 3 (6 2001),
346–371. DOI:
http://dx.doi.org/10.1287/orsc.12.3.346.10098

15. Richard Daft. 2015. Organization Theory and Design.
Cengage Learning.

16. Peng Dai, Mausam, and Daniel S. Weld. 2010.
Decision-Theoretic Control of Crowd-Sourced
Workflows. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence (AAAI-10).
1168–1174.

17. Steven J. Davis, R. Jason Faberman, and John C.
Haltiwanger. 2013. The Establishment-Level Behavior of
Vacancies and Hiring. The Quarterly Journal of
Economics 128, 2 (5 2013), 581–622. DOI:
http://dx.doi.org/10.1093/qje/qjt002

18. Edward L. Deci, Richard Koestner, and Richard M. Ryan.
1999. A meta-analytic review of experiments examining
the effects of extrinsic rewards on intrinsic motivation.
Psychological Bulletin 125, 6 (1999), 627–668. DOI:
http://dx.doi.org/10.1037/0033-2909.125.6.627

19. Jia Deng Jia Deng, Wei Dong Wei Dong, R. Socher,
Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A
large-scale hierarchical image database. In 2009 IEEE
Conference on Computer Vision and Pattern Recognition.
2–9. DOI:http://dx.doi.org/10.1109/CVPR.2009.5206848

20. Paul Dourish and Victoria Bellotti. 1992. Awareness and
Coordination in Shared Workspaces. In Proceedings of
the 1992 ACM Conference on Computer-supported
Cooperative Work. ACM, New York, NY, USA, 107–114.
DOI:http://dx.doi.org/10.1145/143457.143468

21. Amy C. Edmondson, Harvard Business School, and
Stacy E. Mcmanus. 2007. Methodological Fit in
Management Field Research. Academy of Management
Review 32, 4 (2007), 1155–1179. DOI:
http://dx.doi.org/10.5465/AMR.2007.26586086

22. Ethan Fast and Michael S. Bernstein. 2016. Meta:
Enabling Programming Languages to Learn from the
Crowd. In Proceedings of the 29th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’16). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/2984511.2984532

http://dx.doi.org/10.1287/orsc.1050.0149
http://dx.doi.org/10.1145/2047196.2047201
http://dx.doi.org/10.1145/1866029.1866078
http://dx.doi.org/10.2307/3069401
http://dx.doi.org/10.2307/2393807
http://dx.doi.org/10.1016/S1071-5819(03)00024-7
http://dx.doi.org/10.1145/2858036.2858512
http://dx.doi.org/10.1145/2470654.2466265
http://dx.doi.org/10.1177/014920639702300303
http://dx.doi.org/10.1287/orsc.12.3.346.10098
http://dx.doi.org/10.1093/qje/qjt002
http://dx.doi.org/10.1037/0033-2909.125.6.627
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1145/143457.143468
http://dx.doi.org/10.5465/AMR.2007.26586086
http://dx.doi.org/10.1145/2984511.2984532

23. Roberto M. Fernandez and Nancy Weinberg. 1997.
Sifting and Sorting: Personal Contacts and Hiring in a
Retail Bank. American Sociological Review 62, 6 (1997),
883–902.

24. S S Gaikwad, D Morina, A Ginzberg, C Mullings, S
Goyal, D Gamage, C Diemert, M Burton, S Zhou, M
Whiting, K Ziulkoski, A Ballav, A Gilbee, S S Niranga,
V Sehgal, J Lin, L Kristianto, J Regino, N Chhibber, D
Majeti, S Sharma, K Mananova, D Dhakal, W Dai, V
Purynova, S Sandeep, V Chandrakanthan, T Sarma, S
Matin, A Nassar, R Nistala, A Stolzoff, K Milland, V
Mathur, R Vaish, and M S Bernstein. 2016. Boomerang:
Rebounding the Consequences of Reputation Feedback
on Crowdsourcing Platforms. In Proceedings of the 29th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’16). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/2984511.2984542

25. Mary L. Gray, Siddharth Suri, Syed Shoaib Ali, and
Deepti Kulkarni. 2016. The Crowd is a Collaborative
Network. In Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing (CSCW ’16). ACM, New York, NY, USA,
134–147. DOI:
http://dx.doi.org/10.1145/2818048.2819942

26. Jonathan Grudin. 1994. Groupware and Social Dynamics:
Eight Challenges for Developers. Commun. ACM 37, 1
(1994), 92–105. DOI:
http://dx.doi.org/10.1145/175222.175230

27. Carl Gutwin and Saul Greenberg. 2002. A descriptive
framework of workspace awareness for real-time
groupware. Computer Supported Cooperative Work 11,
3-4 (2002), 411–446. DOI:
http://dx.doi.org/10.1023/A:1021271517844

28. Daniel Haas, Jason Ansel, Lydia Gu, and Adam Marcus.
2015. Argonaut: Macrotask Crowdsourcing for Complex
Data Processing. In Proceedings of the VLDB
Endowment, Vol. 8. 1642–1653. DOI:
http://dx.doi.org/10.14778/2824032.2824062

29. J. Richard Hackman. 1987. The Design of Work Teams.
In Handbook of Organizational Behavior, Jay W. Lorsch
(Ed.). Prentice Hall, Englewood Cliffs, NJ.

30. Nathan Hahn, Joseph Chang, Ji Eun Kim, and Aniket
Kittur. 2016. The Knowledge Accelerator: Big Picture
Thinking in Small Pieces. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA, 2258–2270. DOI:
http://dx.doi.org/10.1145/2858036.2858364

31. Kieran Healy and Alan Schussman. 2003. The ecology of
open-source software development. Unpublished
manuscript, January 29 (2003), 2003.

32. Benjamin Mako Hill. 2013. Essays on volunteer
mobilization in peer production. Ph.D. Dissertation.
Massachusetts Institute of Technology.

33. Benjamin Mako Hill and Andres Monroy-Hernandez.
2013. The Cost of Collaboration for Code and Art:
Evidence from a Remixing Community. In Proceedings
of the 2013 Conference on Computer Supported
Cooperative Work. ACM, New York, NY, USA,
1035–1045. DOI:
http://dx.doi.org/10.1145/2441776.2441893

34. Pamela Hinds, Lei Liu, and Joachim Lyon. 2011. Putting
the Global in Global Work: An Intercultural Lens on the
Practice of Cross-National Collaboration. The Academy
of Management Annals 5, 1 (6 2011), 135–188. DOI:
http://dx.doi.org/10.1080/19416520.2011.586108

35. Pamela J. Hinds and Cathleen McGrath. 2006. Structures
that Work: Social Structure, Work Structure and
Coordination Ease in Geographically Distributed Teams
Pamela. In Proceedings of the 2006 20th anniversary
conference on Computer supported cooperative work
(CSCW ’06). ACM, New York, NY, USA, 343–352. DOI:
http://dx.doi.org/10.1145/1180875.1180928

36. John J. Horton, Leonard N. Stern, and Joseph M. Golden.
2015. Reputation Inflation: Evidence from an Online
Labor Market. (2015).

37. Jeff Howe. 2008. Crowdsourcing: How the power of the
crowd is driving the future of business. Century.

38. Robert S. Huckman, Bradley R. Staats, and David M.
Upton. 2009. Team Familiarity, Role Experience, and
Performance: Evidence from Indian Software Services.
Management Science 55, 1 (2009), 85–100. DOI:
http://dx.doi.org/10.1287/mnsc.1080.0921

39. Lilly C. Irani and M. Six Silberman. 2013. Turkopticon:
Interrupting Worker Invisibility in Amazon Mechanical
Turk. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, New York,
NY, USA, 611–620. DOI:
http://dx.doi.org/10.1145/2470654.2470742

40. Stephane Kasriel and Jacob Morgan. Hire Fast & Build
Things: How to recruit and manage a top-notch team of
distributed engineers.

41. Daniel Katz and Robert Kahn. 1978. The Social
Psychology of Organizations. John Wiley & Sons, New
York.

42. Aniket Kittur, Jeffrey V. Nickerson, Michael S. Bernstein,
Elizabeth M. Gerber, Aaron Shaw, John Zimmerman,
Matthew Lease, and John J. Horton. 2013. The Future of
Crowd Work. In Proceedings of the 2013 Conference on
Computer Supported Cooperative Work (CSCW ’13).
ACM, New York, NY, USA, 1301–1318. DOI:
http://dx.doi.org/10.1145/2441776.2441923

43. Aniket Kittur, Boris Smus, Susheel Khamkar, and
Robert E. Kraut. 2011. CrowdForge: Crowdsourcing
complex work. In Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’11). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/2047196.2047202

http://dx.doi.org/10.1145/2984511.2984542
http://dx.doi.org/10.1145/2818048.2819942
http://dx.doi.org/10.1145/175222.175230
http://dx.doi.org/10.1023/A:1021271517844
http://dx.doi.org/10.14778/2824032.2824062
http://dx.doi.org/10.1145/2858036.2858364
http://dx.doi.org/10.1145/2441776.2441893
http://dx.doi.org/10.1080/19416520.2011.586108
http://dx.doi.org/10.1145/1180875.1180928
http://dx.doi.org/10.1287/mnsc.1080.0921
http://dx.doi.org/10.1145/2470654.2470742
http://dx.doi.org/10.1145/2441776.2441923
http://dx.doi.org/10.1145/2047196.2047202

44. Anand Kulkarni, Matthew Can, and Björn Hartmann.
2012a. Collaboratively crowdsourcing workflows with
turkomatic. In Proceedings of the ACM 2012 Conference
on Computer Supported Cooperative Work (CSCW ’12).
ACM, New York, NY, USA, 1003–1012. DOI:
http://dx.doi.org/10.1145/2145204.2145354

45. Anand Kulkarni, Philipp Gutheim, Prayag Narula, David
Rolnitzky, Tapan S. Parikh, and Björn Hartmann. 2012b.
MobileWorks: Designing for Quality in a Managed
Crowdsourcing Architecture. IEEE Internet Computing
Magazine 16, 5 (2012), 28. DOI:
http://dx.doi.org/10.1109/MIC.2012.72

46. Walter S. Lasecki, Juho Kim, Nick Rafter, Onkur Sen,
Jeffrey P. Bigham, and Michael S. Bernstein. 2015.
Apparition: Crowdsourced User Interfaces That Come To
Life As You Sketch Them. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems. ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/2702123.2702565

47. Walter S. Lasecki, Christopher Miller, Adam Sadilek,
Andrew Abumoussa, Donato Borrello, Raja Kushalnagar,
and Jeffrey P. Bigham. 2012. Real-time captioning by
groups of non-experts. In Proceedings of the 25th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’15). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/2380116.2380122

48. Walter S. Lasecki, Kyle I. Murray, Samuel White,
Robert C. Miller, and Jeffrey P. Bigham. 2011. Real-time
crowd control of existing interfaces. In Proceedings of the
24th Annual ACM Symposium on User Interface Software
and Technology (UIST ’11). ACM, New York, NY, USA.
DOI:http://dx.doi.org/10.1145/2047196.2047200

49. Walter S. Lasecki, Rachel Wesley, Jeffrey Nichols,
Anand Kulkarni, James F. Allen, and Jeffrey P. Bigham.
2013. Chorus: A Crowd-Powered Conversational
Assistant. In Proceedings of the 26th Annual ACM
Symposium on User Interface Software and Technology
(UIST ’13). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/2501988.2502057

50. Thomas D. LaToza, W. Ben Towne, Christian M. Adriano,
and Andre van der Hoek. 2014. Microtask Programming:
Building Software with a Crowd. In Proceedings of the
27th Annual ACM symposium on User Interface Software
and Technology (UIST ’14). ACM, New York, NY, USA,
43–54. DOI:http://dx.doi.org/10.1145/2642918.2647349

51. Edith Law and Haoqi Zhang. 2011. Towards large-scale
collaborative planning: answering high-level search
queries using human computation. In AAAI Conference
on Artificial Intelligence. 1210–1215. DOI:
http://dx.doi.org/10.1007/s00247-004-1242-4

52. Paul R. Lawrence and Jay W. Lorsch. 1967.
Differentiation and Integration in Complex Organizations.
Administrative Science Quarterly 12, 1 (1967), 1–47.
DOI:http://dx.doi.org/10.2307/2391211

53. Yvonna S. Lincoln and Egon G. Guba. 1985. Naturalistic
inquiry. Vol. 75. Sage.

54. Chris J. Lintott, Kevin Schawinski, AnÅ¿e Slosar, Kate
Land, Steven Bamford, Daniel Thomas, M Jordan
Raddick, Robert C. Nichol, Alex Szalay, Dan Andreescu,
Phil Murray, and Jan Vandenberg. 2008. Galaxy Zoo:
morphologies derived from visual inspection of galaxies
from the Sloan Digital Sky Survey âŸĚ. Monthly Notices
of the Royal Astronomical Society 389, 3 (9 2008),
1179–1189. DOI:
http://dx.doi.org/10.1111/j.1365-2966.2008.13689.x

55. Greg Little, Lydia B. Chilton, Max Goldman, and
Robert C. Miller. 2010. TurKit: Human Computation
Algorithms on Mechanical Turk. In Proceedings of the
23nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’10). ACM, New York,
NY, USA, 57. DOI:
http://dx.doi.org/10.1145/1866029.1866040

56. Kurt Luther, Kelly Caine, Kevin Ziegler, and Amy
Bruckman. 2010. Why it works (when it works): success
factors in online creative collaboration. In Proceedings of
the 16th ACM International Conference on Supporting
Group Work (GROUP ’10). ACM, New York, NY, USA.
DOI:http://dx.doi.org/10.1145/1880071.1880073

57. Thomas W. Malone and Kevin Crowston. 1994. The
interdisciplinary study of coordination. Comput. Surveys
26, 1 (1994), 87–119. DOI:
http://dx.doi.org/10.1145/174666.174668

58. David Martin, Benjamin V. Hanrahan, Jacki O’Neill, and
Neha Gupta. 2014. Being A Turker. In Proceedings of the
17th ACM Conference on Computer Supported
Cooperative Work & Social Computing (CSCW ’14).
ACM, New York, NY, USA, 224–235. DOI:
http://dx.doi.org/10.1145/2531602.2531663

59. Joseph E. McGrath. 1994. Methodology Matters: Doing
Research. Research Strategies 2000 (1994), 152–169.
DOI:http://dx.doi.org/10.1177/1075547004273025

60. Tom Mens. 2002. A state-of-the-art survey on software
merging. IEEE Transactions on Software Engineering 28,
5 (2002), 449–462. DOI:
http://dx.doi.org/10.1109/TSE.2002.1000449

61. Tanushree Mitra, C.J. Hutto, and Eric Gilbert. 2015.
Comparing Person- and Process-centric Strategies for
Obtaining Quality Data on Amazon Mechanical Turk. In
Proceedings of the ACM CHI’15 Conference on Human
Factors in Computing Systems (CHI ’15), Vol. 1.
1345–1354. DOI:
http://dx.doi.org/10.1145/2702123.2702553

62. Michael Nebeling, Alexandra To, Anhong Guo, Adrian A.
de Freitas, Jaime Teevan, Steven P. Dow, and Jeffrey P.
Bigham. 2016. WearWrite: Crowd-Assisted Writing from
Smartwatches. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). 3834–3846. DOI:
http://dx.doi.org/10.1145/2858036.2858169

http://dx.doi.org/10.1145/2145204.2145354
http://dx.doi.org/10.1109/MIC.2012.72
http://dx.doi.org/10.1145/2702123.2702565
http://dx.doi.org/10.1145/2380116.2380122
http://dx.doi.org/10.1145/2047196.2047200
http://dx.doi.org/10.1145/2501988.2502057
http://dx.doi.org/10.1145/2642918.2647349
http://dx.doi.org/10.1007/s00247-004-1242-4
http://dx.doi.org/10.2307/2391211
http://dx.doi.org/10.1111/j.1365-2966.2008.13689.x
http://dx.doi.org/10.1145/1866029.1866040
http://dx.doi.org/10.1145/1880071.1880073
http://dx.doi.org/10.1145/174666.174668
http://dx.doi.org/10.1145/2531602.2531663
http://dx.doi.org/10.1177/1075547004273025
http://dx.doi.org/10.1109/TSE.2002.1000449
http://dx.doi.org/10.1145/2702123.2702553
http://dx.doi.org/10.1145/2858036.2858169

63. Tsedal B. Neeley, Pamela J. Hinds, and Catherine D.
Cramton. 2012. The (Un)Hidden Turmoil of Language in
Global Collaboration. Organizational Dynamics 41, 3
(2012), 236–244. DOI:
http://dx.doi.org/10.1016/j.orgdyn.2012.03.008

64. Gerardo A. Okhuysen and Beth A. Bechky. 2009.
Coordination in Organizations: An Integrative
Perspective. Academy of Management Annals 3, 1 (1
2009), 463–502. DOI:
http://dx.doi.org/10.1080/19416520903047533

65. Gary Olson and Judith Olson. 2000. Distance Matters.
Human-Computer Interaction 15, 2 (2000), 139–178.
DOI:http://dx.doi.org/10.1207/S15327051HCI1523{_}4

66. Judith S. Olson and Gary M. Olson. 2014. How to make
distance work work. Interactions 21 (2014), 28–35. DOI:
http://dx.doi.org/10.1145/2567788

67. Wanda J. Orlikowski. 2000. Using technology and
constituting structures: A practice lens for studying
technology in organizations. Organization Science 11, 4
(2000), 404–428.

68. Galen Pickard, Wei Pan, Iyad Rahwan, Manuel Cebrian,
Riley Crane, Anmol Madan, and Alex Pentland. 2011.
Time-critical social mobilization. Science 334, 6055
(2011), 509–512.

69. Katharina Reinecke, Minh Khoa Nguyen, Abraham
Bernstein, Michael Näf, and Krzysztof Z. Gajos. 2013.
Doodle Around the World: Online Scheduling Behavior
Reflects Cultural Differences in Time Perception and
Group Decision-Making. In Proceedings of the 2013
Conference on Computer Supported Cooperative Work
(CSCW ’13). ACM, New York, NY, USA, 45–54.
http://doi.acm.org/10.1145/2441776.2441784

70. Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and
Eric Friedman. 2000. Reputation systems. Commun.
ACM 43, 12 (2000), 45–48. DOI:
http://dx.doi.org/10.1145/355112.355122

71. Daniela Retelny, Sebastien Robaszkiewicz, Alexandra To,
Walter S. Lasecki, Jay Patel, Negar Rahmati, Tulsee
Doshi, Melissa Valentine, and Michael S. Bernstein.
2014. Expert Crowdsourcing with Flash Teams. In
Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology (UIST ’14). ACM,
New York, NY, USA. DOI:
http://dx.doi.org/10.1145/2642918.2647409

72. Horst W. J. Rittel and Melvin M. Webber. 1973.
Dilemmas in a General Theory of Planning. Policy
Sciences 4, 2 (1973), 155–169. DOI:
http://dx.doi.org/10.1007/BF01405730

73. Philip J. Roberts. 2017. No Json-delta: a diff/patch pair
for json-serialized data structures. (2017).

74. Niloufar Salehi, Lilly C. Irani, Michael S. Bernstein, Ali
Alkhatib, Eva Ogbe, Kristy Milland, and Clickhappier.
2015. We Are Dynamo: Overcoming Stalling and
Friction in Collective Action for Crowd Workers. In
Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems (CHI ’15). ACM, New
York, NY, USA, 1621–1630. DOI:
http://dx.doi.org/10.1145/2702123.2702508

75. Niloufar Salehi, Andrew McCabe, Melissa Valentine, and
Michael S. Bernstein. 2017. Huddler: Convening Stable
and Familiar Crowd Teams Despite Unpredictable
Availability. In Proceedings of the 20th ACM Conference
on Computer-Supported Cooperative Work & Social
Computing (CSCW ’17). ACM, New York, NY, USA.
DOI:http://dx.doi.org/10.1145/2998181.2998300

76. Charles M. Schweik and Robert C. English. 2012.
Internet success: a study of open-source software
commons. MIT Press.

77. Ben Shneiderman. 2008. Science 2.0. Science 319, 5868
(2008), 1349–1350.

78. Ryo Suzuki, Niloufar Salehi, Michelle S. Lam, Juan C.
Marroquin, and Michael S. Bernstein. 2016. Atelier:
Repurposing Expert Crowdsourcing Tasks as
Micro-internships. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems
(CHI ’16). ACM, New York, NY, USA. DOI:
http://dx.doi.org/10.1145/2858036.2858121

79. Jaime Teevan, Shamsi T. Iqbal, and Curtis Von Veh. 2016.
Supporting Collaborative Writing with Microtasks. In
Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New
York, NY, USA. DOI:
http://dx.doi.org/10.1145/2858036.2858108

80. Melissa A. Valentine and Amy C. Edmondson. 2015.
Team Scaffolds: How Mesolevel Structures Enable Role-
Based Coordination in Temporary Groups. Organization
Science 26, 2 (2015), 405–422. DOI:
http://dx.doi.org/10.1287/orsc.2014.0947

81. Andrew H. Van de Ven, Andre L. Delbecq, and Richard
Koenig. 1976. Determinants of Coordination Modes
within Organizations. American Sociological Review 41,
2 (1976), 322. DOI:http://dx.doi.org/10.2307/2094477

82. Vasilis Verroios and Michael S. Bernstein. 2014. Context
Trees: Crowdsourcing Global Understanding from Local
Views. In Second AAAI Conference on Human
Computation and Crowdsourcing (HCOMP ’14). AAAI
Press, 210–219.

83. Max Weber, Alexander Morell Henderson, and Talcott
Parsons. 1947. The theory of social and economic
organization. Oxford University Press.

84. Oliver E. Williamson. 1979. Transaction-cost economics:
the governance of contractual relations. Journal of Law
and Economics 22, 2 (1979), 233–261.

85. Lixiu Yu, Aniket Kittur, and Robert E. Kraut. 2016a.
Distributed Analogical Idea Generation with Multiple
Constraints Lixiu. In Proceedings of the 19th ACM
Conference on Computer-Supported Cooperative Work &
Social Computing (CSCW ’16). ACM, New York, NY,
USA, 1236–1245. DOI:
http://dx.doi.org/10.1145/2556288.2557371

http://dx.doi.org/10.1016/j.orgdyn.2012.03.008
http://dx.doi.org/10.1080/19416520903047533
http://dx.doi.org/10.1145/2567788
http://doi.acm.org/10.1145/2441776.2441784
http://dx.doi.org/10.1145/355112.355122
http://dx.doi.org/10.1145/2642918.2647409
http://dx.doi.org/10.1007/BF01405730
http://dx.doi.org/10.1145/2702123.2702508
http://dx.doi.org/10.1145/2998181.2998300
http://dx.doi.org/10.1145/2858036.2858121
http://dx.doi.org/10.1145/2858036.2858108
http://dx.doi.org/10.1287/orsc.2014.0947
http://dx.doi.org/10.2307/2094477
http://dx.doi.org/10.1145/2556288.2557371

86. Lixiu Yu, Aniket Kittur, and Robert E. Kraut. 2016b.
Encouraging "Outside-the-box" Thinking in Crowd
Innovation Through Identifying Domains of Expertise. In
Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social
Computing (CSCW ’16). ACM, New York, NY, USA,
1214–1222. DOI:
http://dx.doi.org/10.1145/2818048.2820025

87. Haoqi Zhang, Edith Law, Robert C Miller, Krzysztof Z
Gajos, David C Parkes, and Eric Horvitz. 2012. Human

Computation Tasks with Global Constraints. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’12). ACM, New
York, NY, USA, 217–226. DOI:
http://dx.doi.org/10.1145/2207676.2207708

88. Yue Maggie Zhou. 2013. Designing for Complexity:
Using Divisions and Hierarchy to Manage Complex
Tasks. Organization Science 24, 2 (2013), 339–355. DOI:
http://dx.doi.org/10.1287/orsc.1120.0744

http://dx.doi.org/10.1145/2818048.2820025
http://dx.doi.org/10.1145/2207676.2207708
http://dx.doi.org/10.1287/orsc.1120.0744

	Introduction
	Related work
	Crowdsourcing workflows
	Organizational design and distributed work
	Peer production

	Flash organizations
	Computational organizational structures
	Reconfigurable organizational structures
	On-demand hiring of expert crowd workers

	Evaluation
	Method

	Results
	EMS Trauma Report
	True Story
	Enterprise Workshop Planning Portal
	Results: Reconfiguring organizational structures
	Results: On-demand hiring

	Discussion
	Limitations

	Conclusion
	Acknowledgments
	REFERENCES

