
Augur: Mining Human Behaviors from Fiction to Power
Interactive Systems

Ethan Fast, William McGrath, Pranav Rajpurkar, Michael S. Bernstein
Stanford University

{ethan.fast, wmcgrath, pranavsr, msb}@cs.stanford.edu

ABSTRACT
From smart homes that prepare coffee when we wake, to
phones that know not to interrupt us during important con-
versations, our collective visions of HCI imagine a future in
which computers understand a broad range of human behav-
iors. Today our systems fall short of these visions, however,
because this range of behaviors is too large for designers or
programmers to capture manually. In this paper, we instead
demonstrate it is possible to mine a broad knowledge base of
human behavior by analyzing more than one billion words of
modern fiction. Our resulting knowledge base, Augur, trains
vector models that can predict many thousands of user activ-
ities from surrounding objects in modern contexts: for exam-
ple, whether a user may be eating food, meeting with a friend,
or taking a selfie. Augur uses these predictions to identify ac-
tions that people commonly take on objects in the world and
estimate a user’s future activities given their current situation.
We demonstrate Augur-powered, activity-based systems such
as a phone that silences itself when the odds of you answering
it are low, and a dynamic music player that adjusts to your
present activity. A field deployment of an Augur-powered
wearable camera resulted in 96% recall and 71% precision
on its unsupervised predictions of common daily activities.
A second evaluation where human judges rated the system’s
predictions over a broad set of input images found that 94%
were rated sensible.

Author Keywords
information extraction; fiction; crowdsourcing; data mining

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: Graphical
user interfaces

INTRODUCTION
Our most compelling visions of human-computer interaction
depict worlds in which computers understand the breadth of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org. CHI’16, May 07-12,
2016, San Jose, CA, USA 2016 ACM. ISBN 978-1-4503-3362-7/16/05$15.00 DOI:
http://dx.doi.org/10.1145/2858036.2858528

Figure 1. Augur mines human activities from a large dataset of modern
fiction. Its statistical associations give applications an understanding of
when each activity might be appropriate.

human life. Mark Weiser’s first example scenario of ubiqui-
tous computing, for instance, imagines a smart home that pre-
dicts its user may want coffee upon waking up [27]. Apple’s
Knowledge Navigator similarly knows not to let the user’s
phone ring during a conversation [3]. In science fiction, tech-
nology plays us upbeat music when we are sad, adjusts our
daily routines to match our goals, and alerts us when we leave
the house without our wallet. In each of these visions, com-
puters understand the actions people take, and when.

If a broad understanding of human behavior is needed, no
method yet exists that would produce it. Today, interaction
designers instead create special-case rules and single-use ma-
chine learning models. The resulting systems can, for exam-
ple, teach a phone (or Knowledge Navigator) not to respond
to calls during a calendar meeting. But even the most clever
developer cannot encode behaviors and responses for every
human activity – we also ignore calls while eating lunch with
friends, doing focused work, or using the restroom, among
many other situations. These original HCI visions assumed
such breadth of information. To achieve this breadth, we need
a knowledge base of human activities, the situations in which
they occur, and the causal relationships between them. Even
the web and social media, serving as large datasets of human
record, do not offer this information readily.

In this paper, we show it is possible to create a broad knowl-
edge base of human behavior by text mining a large dataset
of modern fiction. Fictional human lives provide surprisingly
accurate accounts of real human activities. While we tend
to think about stories in terms of the dramatic and unusual
events that shape their plots, stories are also filled with prosaic
information about how we navigate and react to our everyday
surroundings. Over many millions of words, these mundane
patterns are far more common than their dramatic counter-
parts. Characters in modern fiction turn on the lights after
entering rooms; they react to compliments by blushing; they
do not answer their phones when they are in meetings. Our
knowledge base, Augur (Figure 1), learns these associations
between activities and objects by mining 1.8 billion words of
modern fiction from the online writing community Wattpad.

Our main technical contribution is a vector space model for
predicting human activities, powered by a domain specific
language for data mining unstructured natural langage text.
The domain specific language, TC, enables simple parser
scripts that recognize syntactic patterns in a corpus (e.g., a
verb with a human pronoun or name as its subject). TC com-
piles these scripts into parser combinators, which combine
into more complex parsers that can, for example, run a co-
occurrence analysis to identify objects that often appear near
a human activity. We represent this information via a vec-
tor space model that uses smoothed co-occurrence statistics
to represent each activity. For example, Augur maps eating
onto hundreds of food items and relevant tools such as cutlery,
plates and napkins, and connects disconnected objects such as
a fruit and store onto activities like buying groceries. Similar
parser scripts can extract subject-verb-object patterns such as
“he sips coffee” or “coffee spills on the table” to understand
common object behaviors. For example, Augur learns that
coffee can be sipped, and is more likely to be spilled when
another person appears.

To enable software development under Augur, we expose
three core abstractions. Activity detection maps a set of ob-
jects onto an activity. Object affordances return a list of ac-
tions that can be taken on or by an object. Activity prediction
uses temporal sequences of actions in fiction to predict which
activities may occur next. Augur allows applications to sub-
scribe to events on these three APIs, firing when an activity
or prediction is likely. For example, a heads up display might
register a listener onto pay money, which fires when objects
such as cash registers, bills, and credit cards are recognized
by a computer vision system. The application might then re-
act by making your bank balance available with a single tap.
Using this API, we have created a proof-of-concept applica-
tion called Soundtrack for Life, a Google Glass application
that plays music to suit your current activity.

Our evaluation tests the external validity of Augur. To ex-
amine whether the nature of fiction introduces bias into Au-
gur’s system predictions, we compare the frequency counts
of its mined activities to direct human estimates, finding that
84% of its estimates are nearly indistinguishable from human
estimates. Next, we perform a field deployment of Sound-
track for Life to collect a realistic two-hour dataset of daily

activities with a human subject and then manually evaulate
Augur’s precision and recall. Augur demonstrated 97% re-
call and 76% precision over these daily activities. Finally,
we stress-test Augur on a broader set of activities by asking
external raters to evaluate its predictions on widely ranging
images drawn from a sample of 50 #dailylife posts on Instra-
gram. Here, raters classified 94% of Augur’s predictions as
sensible, even though computer vision extracted the most se-
mantically relevant objects in only 64% of the images.

Our work contributes infrastructure and interfaces that draw
on broad information about the associations between human
interactions in the world. These interfaces can query how
human behavior is conditioned by the context around the user.
We demonstrate that fiction can provide deep insight into the
minutae of human behavior, and present an architecture based
a domain specific language for text mining that can extract
this information at scale.

RELATED WORK
Our work is inspired by techniques for mining user behav-
ior from data. For example, query-feature graphs show how
to encode the relationships between high-level descriptions
of user goals and underlying features of a system [10], even
when these high-level descriptions are different from an ap-
plication’s domain language [2]. Researchers have applied
these techniques to applications such as AutoCAD [21] and
Photoshop [2], where the user’s description of a domain and
that domain’s underlying mechanics are often disjoint. With
Augur, we introduce techniques that mine real-world human
activities that typically occur outside of software.

Other systems have developed powerful domain-specific sup-
port by leveraging user traces. For example, in the program-
ming community, research systems have captured emergent
practice in open source code [9], drawn on community sup-
port for debugging computer programs [13], and modeled
how developers backtrack and revise their programs [29]. In
mobile computing, the space of user actions is small enough
that it is often possible to predict upcoming actions [19]. In
design, a large dataset of real-world web pages can help guide
designers to find appropriate ideas [16]. Creativity-support
applications can use such data to suggest backgrounds or al-
ternatives to the current document [18, 25]. Augur comple-
ments these techniques by focusing on unstructured data such
as text and modeling everyday life rather than behavior within
the bounds of one program.

Ubiquitous computing research and context-aware comput-
ing aim to empower interfaces to benefit from the context in
which they are being used [22, 1]. Their visions motivated the
creation of our knowledge base (e.g., [27, 3]). Some applica-
tions have aimed to model specific activities or contexts such
as jogging and cycling (e.g., [7]). Augur aims to augment
these models with a broader understanding of human life. For
example, what objects might be nearby before someone starts
jogging? What activities do people perform before they de-
cide to go jogging? Doing so could improve the design and
development of many such applications.

We draw on work in natural language processing, informa-
tion extraction, and computer vision to distill human activites
from fiction. Prior work discusses how to extract patterns
from text by parsing sentences [5, 8, 4, 6]. We adapt and ex-
tend these approaches in our text mining domain-specific lan-
guage, producing an alternative that is more declarative and
potentially easier to inspect and reason about. Other work in
NLP and CV has shown how vector space models can extract
useful patterns from text [23], or how other machine learning
algorithms can generate accurate image labels [14] and clas-
sify images given a small closed set of human actions [17].
Augur draws on insights from these approaches to make con-
ditional predictions over thousands of human activities.

Our research also benefits from prior work in commonsense
knowledge representation. Existing databases of linguistic
and commonsense knowledge provide networks of facts that
computers should know about the world [20]. Augur captures
a set of relations that focus more deeply on human behavior
and the causal relationships between human activities. We
draw on forms of commonsense knowledge, like the Word-
Net hierarchy of synonym sets [24], to more precisely extract
human activities from fiction. Parts of this vocabulary may be
mineable from social media, if they are of the sort that people
are likely to advertise on Twitter [15]. We find that fiction
offers a broader set of local activities.

AUGUR
Augur is a knowledge base that uses fiction to connect hu-
man activities to objects and their behaviors. We begin with
an overview of the basic activities, objects, and object affor-
dances in Augur, then then explain our approach to text min-
ing and modeling.

Human Activities
Augur is primarily oriented around human activities, which
we learn from verb phrases that have human subjects, for
example “he opens the fridge” or “we turn off the lights.”
Through co-occurrence statistics that relate objects and ac-
tivities, Augur can map contextual knowledge onto human
behavior. For example, we can ask Augur for the five activi-
ties most related to the object “facebook” (in modern fiction,
characters use social media with surprising frequency):

activity score frequency
--
message 0.71 1456
get message 0.53 4837
chat 0.51 4417
close laptop 0.45 1480
open laptop 0.39 1042

Here score refers to the cosine similarity between a vector-
embedded query and activities in the Augur knowledge base
(we’ll soon explain how we arrive at this measure).

Like real people, fictional characters waste plenty of time
messaging or chatting on Facebook. They also engage in ac-
tivities like post, block, accept, or scroll feed.

Similarly, we can look at relations that connect multiple ob-
jects. What activities occur around a shirt and tie? Augur

captures not only the obvious sartorial applications, but no-
tices that shirts and ties often follow specific other parts of
the morning routine such as take shower:

activity score frequency
--
wear 0.05 58685
change 0.04 56936
take shower 0.04 14358
dress 0.03 16701
slip 0.03 59965

In total, Augur relates 54,075 human activities to 13,843 ob-
jects and locations. While the head of the distribution con-
tributes many observed activities (e.g., extremely common
activities like ask or open door), a more significant portion
lie in the bulk of the tail. These less common activities, like
reply to text message or take shower, make up much of the
average fictional human’s existence. Further out, as the tail
diminishes, we find less frequent but still semantically inter-
esting activities like throw out flowers or file bankruptcy.

Augur associates each of its activities with many objects, even
activities that appear relatively infrequently. For example,
unfold letter occurs only 203 times in our dataset, yet Au-
gur connects it to 1072 different objects (e.g., handwriting,
envelope). A more frequent activity like take picture occurs
10,249 times, and is connected with 5,250 objects (e.g., cam-
era, instagram). The abundance of objects in fiction allows us
to make inferences for a large number of activities.

Object Affordances
Augur also contains knowlege about object affordances: ac-
tions that are strongly associated with specific objects. To
mine object affordances, Augur looks for subject-verb-object
sentences with objects either as their subject or direct object.
Understanding these behaviors allows Augur to reason about
how humans might interact with their surroundings. For ex-
ample, the ten most related affordances for a car:

activity score frequency

honk horn 0.38 243
buckle seat-belt 0.37 203
roll window 0.35 279
start engine 0.34 898
shut car-door 0.33 140
open car-door 0.33 1238
park 0.32 3183
rev engine 0.32 113
turn on radio 0.30 523
drive home 0.26 881

Cars undergo basic interactions like roll window and buckle
seat-belt surprisingly often. These are relatively mundane ac-
tivities, yet abundant in fiction.

Like the distribution of human activities, the distribution of
objects is heavy-tailed. The head of this distribution contains
objects such as phone, bag, book, and window, which all ap-
pear more than one million times. The thick “torso” of the
distribution is made of objects such as plate, blanket, pill, and
wine, which appear between 30,000 and 100,000 times. On
the fringes of the distribution are more idiosyncratic objects
such as kindle (the e-book reader), heroin, mouthwash, and
porno, which appear between 500 and 1,500 times.

Connections between activities
Augur also contains information about the connections be-
tween human activities. To mine for sequential activties, we
can look at extracted activities that co-occur within a small
span of words. Understanding which activities occur around
each other allows Augur to make predictions about what a
person might do next.

For example, we can ask Augur what happens after someone
orders coffee:

activity score frequency

eat 0.48 49347
take order 0.40 1887
take sip 0.39 11367
take bite 0.39 6914
pay 0.36 23405

Even fictional characters, it seems, must pay for their orders.

Likewise, Augur can use the connections between activities
to determine which activities are similar to one another. For
example, we can ask for activities similar to the social media
photography trend of take selfie:

activity score frequency
--
snap picture 0.78 1195
post picture 0.76 718
take photo 0.67 1527
upload picture 0.58 121
take picture 0.57 10249

By looking for activities with similar object co-occurrence
patterns, we can find near-synonyms.

A data mining DSL for natural language
Creating Augur requires methods that can extract relevant in-
formation from large-scale text and then model it. Exploring
the patterns in a large corpus of text is a difficult and time con-
suming process. While constructing Augur, we tested many
hypotheses about the best way to capture human activties. For
example, we asked: what level of noun phrase complexity is
best? Some complexity is useful. The pattern run to the gro-
cery store is more informative for our purposes than run to
the store. But too much complexity can hurt predictions. If
we capture phrases like run to the closest grocery store, our
data stream becomes too sparse. Worse, when iterating on
these hypotheses, even the cleanest parser code tends not to
be easily reusable or interpretable.

To help us more quickly and efficiently explore our dataset,
we created TC (Text Combinator), a data mining DSL for
natural language. TC allows us to build parsers that capture
patterns in a stream of text data, along with aggregate statis-
tics about these patterns, such as frequency and co-occurrence
counts, or the mutual information (MI) between relations.
TC’s scripts can be easier to understand and reuse than hand-
coded parsers, and its execution can be streamed and paral-
lelized across a large text dataset.

TC programs can model syntactic and semantic patterns to
answer questions about a corpus. For example, suppose we
want to figure out what kinds of verbs often affect laptops:

laptop = [DET]? ([ADJ]+)? "laptop"

verb_phrase = [VERB] laptop-
freq(red_vp)

Here the laptop parser matches phrases like “a laptop” or “the
old broken laptop” and returns exactly the matched phrase.
The verb phrase parser matches pharses like “throw the bro-
ken laptop” and returns just the verb in the phrase (e.g.,
“throw”). The freq aggregator keeps a count of unique tokens
in the output stream of the verb phrase parser. On a small
portion of our corpus, we see as output:

open 11
close 7
shut 6
restart 4

To clarify the syntax for this example: square brackets (e.g.,
[NOUN]) define a parser that matches on a given part of speech,
quotes (e.g., "laptop") matches on an exact string, whitespace
is an implicit then-combinator (e.g., [NOUN] [NOUN] matches
two sequential nouns), a question mark (e.g., [DET]? option-
ally matches an article like “a” or “the”, also matching on the
empty string), a plus (e.g., [VERB]+ matches on as many verbs
as appear consecutively), and a minus (e.g., [NOUN]- matches
on a noun but removes it from the returned match). We de-
scribe TC’s full set of operators in this paper’s appendix.

We wrote the compiler for TC in Python. Behind the scenes,
our compiler transforms an input program into a parser com-
binator, instantiates the parser as a Python generator, then
runs the generator to lazily parse a stream of text data. Ag-
gregation commands (e.g., freq frequency counting and MI for
MI calculation) are also Python generators, which we com-
pose with a parser at compile time. Given many input files,
TC also supports parallel parsing and aggregation.

Mining activity patterns from text
To build the Augur knowledge base, we index more than one
billion words of fiction writing from 600,000 stories written
by more than 500,000 writers on the Wattpad writing com-
munity1. Wattpad is a community where amateur writers can
share their stories, oriented mostly towards writers of genre
fiction. Our dataset includes work from 23 of these genres,
including romance, science fiction, and urban fantasy, all of
which are set in the modern world.

Before processing these stories, we normalize them using the
spaCy part of speech tagger and lemmatizer2. The tagger la-
bels each word with its appropriate part of speech given the
context of a sentence. Part of speech tagging is important for
words that have multiple senses and might otherwise be am-
biguous. For example, “run” is a noun in the phrase, “she
wants to go for a run”, but a verb in the phrase “I run into
the arms of my reviewers.” The lemmatizer converts each
word into its singular and present-tense form. For example,
the plural noun “soldiers” can be lemmatized to the singular
“soldier” and the past tense verb “ran” to the present “runs.”

Activity-Object statistics
Activity-object statistics connect commonly co-occurring ob-
jects and human activities. These statistics will help Augur
1http://wattpad.com
2https://honnibal.github.io/spaCy/)

http://wattpad.com
https://honnibal.github.io/spaCy/

detect activities from a list of objects in a scene. We define
activities as verb phrases where the subject is a human, and
objects as compound noun phrases, throwing away adjectives.
To generate these edges, we run the TC script:

human_pronoun = "he" | "she" | "i" | "we" | "they"
np = [DET]? ([ADJ]- [NOUN])+
vp = human_pronoun ([VERB] [ADP])+
MI(freq(co-occur(np, vp, 50)))

For example, backpack co-occurs with pack 2413 times, and
radio co-occurs with singing 7987 times. Given the scale of
our data, Augur’s statistics produce meaningful results by fo-
cusing just on pronoun-based sentences.

In this TC script, MI (mutual information, as defined by [28])
processes our final co-occurence statistics to calculate the
mututal information of our relations:

MI(A,B) = log10

(
AB ∗ corpusSize

A ∗ B ∗ span
/log102

)
Where A and B are the frequencies of two relations, the term
AB is the frequency of collocation between A and B, the term
corpusSize is the number of words in our corpus, and span is
the window size for the co-occurrence analysis.

MI describes how much one term of a co-occurrence tells us
about the other. For example, if people type with every kind
of object in equal amounts, then knowing there is a computer
in your room doesn’t mean much about whether you are typ-
ing. However, if people type with computers far more often
than anything else, then knowing there is a computer in your
room tells us significant information, statistically, about what
you might be doing.

Object-affordance statistics
The object-affordance statistic connects objects directly to
their uses and behaviors, helping Augur understand how hu-
mans can interact with the objects in a scene. We define ob-
ject affordances as verb phrases where an object serves as
either the subject or direct object of the phrase, and we again
capture physical objects as compound noun phrases. To gen-
erate these edges, we run the TC script:

np = [DET]? ([ADJ]- [NOUN])+
vp = ([VERB] [ADP])+
svo = np vp np?
MI(freq(svo))

For example, coffee is spilled 229 times, and facebook is
logged into 295 times.

Activity-Activity statistics
Activity-activity statistics count the times that an activity is
followed by another activity, helping Augur make predictions
about what is likely to happen next. To generate these statis-
tics, we run the TC script:

human_pronoun = "he" | "she" | "i" | "we" | "they"
vp = human_pronoun ([VERB] [ADP])+
MI(freq(skip-gram(vp,2,50)))

Activity-activity statistics tend to be more sparse, but Augur
can still uncover patterns. For example, wash hair precedes

Figure 2. Augur’s activity detection API translates a photo into a set
of likely relevant activities. For example, the user’s camera might auto-
matically photojournal the food whenever the user may be eating food.
Here, Clarifai produced the object labels.

blow dry hair 64 times, and get text (e.g., receive a text mes-
sage) precedes text back 34 times.

In this TC script, skip-gram(vp,2,50) constructs skip-grams
of length n = 2 sequential vp matches on a window size
of 50. Unlike co-occurrence counts, skip-grams are order-
dependent, helping Augur find potential causal relationships.

Vector space model for retrieval
Augur’s three statistics are not enough by themselves to make
useful predictions. These statistics represent pairwise rela-
tionships and only allow prediction based on a single ele-
ment of context (e.g., activity predictions from a single ob-
ject), ignoring any information we might learn from similar
co-occurrences with other terms. For many applications it is
important to have a more global view of the data.

To make these global relationships available, we embed Au-
gur’s statistics into a vector space model (VSM), allowing
Augur to enhance its predictions using the signal of multi-
ple terms. Queries based on multiple terms narrow the scope
of possibility in Augur’s predictions, strengthing predictions
common to many query terms, and weaking those that are not.

VSMs encode concepts as vectors, where each dimension of
the vector conveys a feature relevant to the concept. For Au-
gur, these dimensions are defined by MI > 0 with Laplace
smoothing (by a constant value of 10), which in practice re-
duces bias towards uncommon human activities [26].

Augur has three VSMs. 1). Object-Activity: each vector is a
human activity and its dimensions are smoothed MI between
it and every object. 2). Object-Affordance: each vector is
an affordance and its dimensions are smoothed MI between
it and every object. 3). Activity-Prediction: each vector is a
activity and its dimensions are smoothed MI between it and
every other activity.

To query these VSMs, we construct a new empty vector, set
the indices of the terms in the query equal to 1, then find the
closest vectors in the space by measuring cosine similarity.

AUGUR API AND APPLICATIONS
Applications can draw from Augur’s contents to identify user
activities, understand the uses of objects, and make predic-
tions about what a user might do next. To enable software
development under Augur, we present these three APIs and
a proof-of-concept architecture that can augment existing ap-
plications with if-this-then-that human semantics.

We begin by introducing the three APIs individually, then
demonstrate additional example applications to follow. To
more robustly evaluate Augur, we have built one of these ap-
plications, Soundtrack for Life, into Google Glass hardware.

Identifying Activities
What are you currently doing? If Augur can answer this ques-
tion, applications can potentially help you with that activity,
or determine how to behave given the context around you.

Suppose a designer wants to help people stick to their di-
ets, and she notices that people often forget to record their
meals. So the designer decides to create an automatic meal
photographer. She connects the user’s wearable camera to a
scene-level object detection computer vision algorithm such
as R-CNN [12]. While she could program the system to fire a
photo whenever the computer vision algorithm recognizes an
object class categorized as food, this would produce a large
number of false positives throughout the day, and would ig-
nore a breadth of other signals such as silverware and dining
tables that might actually indicate eating.

So, the designer connects the computer vision output to Au-
gur (Figure 2). Instead of programming a manual set of ob-
ject classes, the designer instructs Augur to fire a notification
whenever the user engages in the activity eat food. She refers
to the activity using natural language, since this is what Au-
gur has indexed from fiction:

image = /* capture picture from user’s wearable camera */
if(augur.detect(image, "eat food"))

augur.broadcast("take photo");

The application takes an image at regular intervals. The
detect function processes the latest image in that stream,
pings a deep learning computer vision server (http://www.
clarifai.com/), then runs its object results through Au-
gur’s object-activity VSM to return activity predictions. The
broadcast function broadcasts an object affordance request
keyed on the activity take photo: in this case, the wearable
camera might respond by taking a photograph.

Now, the user sits down for dinner, and the computer vision
algorithm detects a plate, steak and broccoli (Figure 2). A
query to Augur returns:

GET /detect/plate+steak+broccoli

prediction score frequency

fill plate 0.39 203
put food 0.23 1046
take plate 0.15 1321
eat food 0.14 2449
set plate 0.12 740
cook 0.10 6566

The activity eat food appears as a strong prediction, as is (fur-
ther down) the more general activity eat. The ensemble of
objects reinforce each other: when the plate, steak and broc-
coli are combined to form a query, eating has 1.4 times higher
cosine similarity than for any of the objects individually. The
camera fires, and the meal is saved for later.

Figure 4. Augur’s object affordance API translates a photo into a list of
possible affordances. For example, Augur could help a blind user who is
wearing an intelligent camera and says they want to sit. Here, Clarifai
produced the object labels.

Expanding Activites with Object Affordances
How can you interact with your environment? If Augur
knows how you can manipulate your surroundings, it can help
applications facilitate that interaction.

Object affordances can be useful for creating accessible tech-
nology. For example, suppose a blind user is wearing an intel-
ligent camera and tells the application they want to sit (Figure
4). Many possible objects would let this person sit down, and
it would take a lot of designer effort to capture them all. In-
stead, using Augur’s object affordance VSM, an application
could scan nearby objects and find something sittable:

image = /* capture picture from user’s wearable camera */
if(augur.affordance(image, "sit"))
alert("sittable object ahead");

The affordance function will process the objects in the lat-
est image, executing its block when Augur notices an object
with the specified affordance. Now, if the user happens to be
within eyeshot of a bench:

GET /affordance/bench

prediction score frequency

sit 0.13 600814
take seat 0.12 24257
spot 0.11 16132
slump 0.09 8985
plop 0.07 12213

Here the programmer didn’t need to stop and think about all
the scenarios or objects where a user might sit. Instead, they
just stated the activity and augur figured it out.

Predicting Future Activities
What will you do next? If Augur can predict your next ac-
tivity, applications can react in advance to better meet your
needs in that situation. Activity predictions are particularly
useful for helping users avoid problematic behaviors, like for-
getting their keys or spending too much money.

In Apple’s Knowledge Navigator [3], the agent ignores a
phone call when it knows that it would be an inappropriate
time to answer. Could Augur support this?

answer = augur.predict("answer call")
ignore = augur.predict("ignore call")

if(ignore > answer)
augur.broadcast("silence phone");

else
augur.broadcast("unsilence phone");

http://www.clarifai.com/
http://www.clarifai.com/

Figure 3. Augur’s APIs map input images through a deep learning object detector, then initializes the returned objects into a query vector. Augur then
compares that vector to the vectors representing each activity in its database and returns those with lowest cosine distance.

The augur.predict fuction makes new activity predictions
based on the user’s activities over the past several minutes. If
the current context suggests that a user is using the restroom,
for example, the prediction API will know that answering a
call is an unlikely next action. When provided with an activ-
ity argument, augur.predict returns a cosine similarity value
reflecting the possibility of that activity happening in the near
future. The activity ignore call has less cosine similarity than
answer call for most queries to Augur. But if a query ever
indicates a greater cosine similarity for ignore call, the appli-
cation can silence the phone. As before, Augur broadcasts the
desired activity to any listening devices (such as the phone).

Suppose your phone rings while you are talking to your best
friend about their relationship issues. Thoughtlessly, you
curse, and your phone stops ringing instantly:
GET /predict/get call+curse

prediction score frequency

throw phone 0.24 3783
ignore call 0.18 567
ring 0.18 7245
answer call 0.17 4847
call back 0.17 1883
%call number 0.17 486
leave voicemail 0.17 146

Many reactions besides cursing might also trigger ignore call.
In this case, adding curse to the prediction mix shifts the odds
between ignoring and answering significantly. Other results
like throw phone reflect the biases in fiction. We will investi-
gate the impact of these biases in our Evaluation.

Applications
Augur allows developers to build situationally reactive appli-
cations across many activities and contexts. Here we present
three more applications designed to illustrate the potential of
its API. We have deployed one of these applications, A Sound-
track for Life, as a Google Glass prototype.

The Coffee-Aware Smart Home
In Weiser’s ubiquitous computing vision [27], he introduces
the idea of calm computing via a scenario where a woman
wakes up and her smart home asks if she wants coffee. Au-
gur’s activity prediction API can support this vision:
if(augur.predict("make coffee") { askAboutCoffee(); }

Suppose that your alarm goes off, signaling to Augur that
your activity is wake up. Your smart coffeepot can start brew-
ing when Augur predicts you want to make coffee:

GET /predict/wake up

prediction score frrequency
--
want breakfast 0.38 852
throw blanket 0.38 728
%throw cover 0.37 1053
shake awake 0.37 774
hear shower 0.36 971
take bath 0.35 1719
make coffee 0.34 779
check clock 0.34 2408

After people wake up in the morning, they are likely to make
coffee. They may also want breakfast, another task a smart
home might help us with.

Spending Money Wisely
We often spend more money than we have. Augur can help
us maintain a greater awarness of our spending habits, and
how they affect our finances. If we are reminded of our bank
balence before spending money, we may be less inclined to
spend it on frivolous things:

if(predict("pay") {
balance = secure_bank_query();
speak("your balance is "+ balance);

}

If Augur predicts we are likely to pay for something, it will
tell us how much money we have left in our account. What
might triggger this prediction?

GET /predict/enter store

prediction score frequency

scan 0.19 5319
ring 0.19 7245
pay 0.17 23405
swipe 0.17 1800
shop 0.13 3761
%buy 0.10 32240

For example, when you enter a store, you may be about to pay
for something. The pay prediction also triggers on ordering
food or coffee, entering a cafe, gambling, and calling a taxi.

GET /predict/call taxi

prediction score frequency

hail taxi 0.96 228
pay 0.96 181
take taxi 0.96 359
get taxi 0.96 368
tell address 0.95 463
get suitcase 0.82 586

Figure 5. A Soundtrack for Life is a Google Glass application that plays
musicians based on the user’s predicted activity, for example associating
working with The Glitch Mob.

A Soundtrack for Life
Many of life’s activities are accompanied by music: you
might cook to the refined arpeggios of Vivaldi, exercise to
the dark ambivalence of St. Vincent, and work to the elec-
tronic pulse of the Glitch Mob. Through an activity detection
system we have built into Google Glass (Figure 5), Augur can
arrange a soundtrack for you that suits your daily preferences.
We built a physical prototype for this application as it takes
advantage of the full range of activities Augur can detect.
var act2music = {

"cook": "Vivaldi", "drive": "The Decemberists",
"surfing": "Sea Wolf", "buy": "Atlas Genius",
"work": "Glitch Mob", "exercise": "St. Vincent",

};
var act = augur.predict();
if (act in act2music){
play(act2music[act]);

}

For example, if you are brandishing a spoon before a pot on
the stove, you are likely cooking. Augur plays Vivaldi.
GET /predict/stove+pot+spoon

prediction score frequency

cook 0.50 6566
pour 0.39 757
place 0.37 25222
stir 0.37 2610
eat 0.34 49347

EVALUATION
Can fiction tell us what we need in order to endow our inter-
active systems with basic knowledge of human activities? In
this section, we investigate this question through three stud-
ies. First, we compare Augur’s activity predictions to human
activity predictions in order to understand what forms of bias
fiction may have introduced. Second, we test Augur’s ability
to detect common activities over a two-hour window of daily
life. Third, to stress test Augur over a wider range of activ-
ities, we evaluate its activity predictions on a dataset of 50
images sampled from the Instagram hashtag #dailylife.

Bias of Fiction
If fiction were truly representative of our lives, we might be
constantly drawing swords and kissing in the rain. Our first
evaluation investigates the character and prevelance of fiction
bias. We tested how closely a distribution of 1000 activi-
ties sampled from Augur’s knowledge base compared against

human-reported distributions. While these human-reported
distributions may differ somewhat from the real world, they
offer a strong sanity check for Augur’s predictions.

Method
To sample the distribution of activities in Augur, we first ran-
domly sampled 100 objects from the knowledge base. We
then used Augur’s activity identification API to select 10 hu-
man activities most related to each object by cosine similar-
ity. In general, these selected activities tended to be relatively
common (e.g., cross and park for the object “street”). We
normalized these sub-distributions such that the frequencies
of their activities summed to 100.

Next, for each object we asked five workers on Amazon Me-
chanical Turk to estimate the relative likelihood of its selected
activities. For example, given a piano: “Imagine a random
person is around a piano 100 times. For each action in this
list, estimate how many times that action would be taken.
The overall counts must sum to 100.” We asked for integer
estimates because humans tend to be more accurate when es-
timating frequencies [11].

Finally, we computed the estimated true human distribution
(ETH) as the mean distribution across the five human esti-
mates. We compared the mean absolute error (MAE) of Au-
gur and the individual human estimates against the ETH.

Results
Augur’s MAE when compared to the ETH is 12.46%, which
means that, on average, its predictions relative to the true hu-
man distribution are off by slightly more than 12%. The mean
MAE of the individual human distributions when compared
to the ETH is 6.47%, with a standard deviation of 3.53%.
This suggests that Augur is biased, although its estimates are
not far outside the variance of individual humans.

Investigating the individual distributions of activities suggests
that the vast majority of Augur’s prediction error is caused by
a few activities in which its predictions differ radically from
the humans. In fact, for 84% of the tested activities Augur’s
estimate is within 4% of the ETH. What accounts for the these
few radically different estimates?

The largest class of prediction error is caused by general ac-
tivities such as look. For example, when considering raw co-
occurrence frequencies, people look at clocks much more of-
ten than they check the time, because look occurs far more
often in general. When estimating the distribution of activi-
ties around clock, human estimators put most of their weight
on check time, while Augur put nearly all its weight on look.
Similar mistakes involved the common but understated activ-
ities of getting into cars or going to stores. Human estimators
favored driving cars and shopping at stores.

A second and smaller class of error is caused by strong con-
nections between dramatic events that take place more often
in fiction than in real life. For example, Augur put nearly all
of its prediction weight for cats on hissing while humans dis-
tributed theirs more evenly across a cat’s possible activities.
In practice, we saw few of these overdramaticized instances
in Augur’s applications and it may be possible to use paid

Figure 6. We deployed an Augur-powered wearable camera in a field test over common daily activities, finding average rates of 96% recall and 71%
precision for its classifications.

crowdsourcing to smooth out them out. Further, this result
suggests that the ways fiction deviates from real life may be
more at the macro-level of plot and situation, and less at the
level of micro-behaviors. Yes, fictional characters somtimes
find themselves defending their freedom in court against a
murder charge. However, their actions within that courtroom
do tend to mirror reality — they don’t tend to leap onto the
ceiling or draw swords.

Field test of A Soundtrack for Life
Our second study evaluates Augur through a field test of
our Glass application, A Soundtrack for Life. We recorded
a two-hour sample of one user’s day, in which she walked
around campus, ordered coffee, drove to a shopping center,
and bought groceries, among other activities (Figure 6).

Method
We gave a Google Glass loaded with A Soundtrack for Life
to a volunteer and asked her, over a two hour period, to to
enact the following eight activities: walk, buy, eat, read, sit,
work, order, and drive. We then turned on the Glass, set the
Soundtrack’s sampling rate to 1 frame every 10 seconds, and
recorded all data. The Soundtrack logged its predictions and
images to disk.

Blind to Augur’s predictions, we annotated all image frames
with a set of correct activities. Frames could consist of no
labeled activities, one activity, or several. For example, a
subject sitting at a table filled with food might be both sit-
ting and eating. We included plausible activities among this
set. For example, when the subject approaches a checkout
counter, we included pay both under circumstances in which
she did ultimately purchase something, and also under others
in which she did not. Over these annotated image frames, we
computed precision and recall for Augur’s predictions.

Results
We find rates of 96% recall and 71% precision across activ-
ity predictions in the dataset (Figure 1). When we break up
these rates by activity, Augur succeeds best at activities like
walk, buy and read, with precision and recall score higher
than 82%. On the other hand, we see that the activities work,
drive, and sit cause the majority of Augur’s errors. Work is
triggered by a diverse set of contextual elements. People work
at cafes or grocercy stores (for their jobs), or do construc-
tion work, or work on intellectual tasks, like writing research
papers on their laptops. Our image annotations did not cap-
ture all these interpretations of work, so Augur’s disagree-
ment with our labeling is not surprising. Drive is also trig-
gered by a large number of contexuntual elements, including
broad scene descriptors like “store” or “cafe,” presumably be-
cause fictional characters often drive to these places. And sit
is problematic mostly because it is triggered by the common

Activity Ground Truth Frames Precision Recall

Walk 787 91% 99%

Drive 545 63% 100%

Sit 374 59% 86%

Work 115 44% 97%

Buy 78 89% 83%

Read 33 82% 87%

Eat 12 53% 83%

Average 71% 96%

Table 1. We find average rates of 96% recall and 71% precision over
common activities in the dataset. Here Ground Truth Frames refers to
the total number of frames labeled with each activity.

scene element “tree” (real-world people probably do this less
often than fictional characters). We also observe simpler mis-
takes: for example, our computer vision algorithm thought
the bookstore our subject visited was a restaurant, causing a
large precision hit to eat.

A stress test over #dailylife
Our third evaluation investigates whether a broad set of in-
puts to Augur would produce meaningful activity predictions.
We tested the quality of Augur’s predictions on a dataset of
50 images sampled from the Instagram hashtag #dailylife.
These images were taken in a variety of environments across
the world, including homes, city streets, workplaces, restau-
rants, shopping malls and parks. First, we sought to measure
whether Augur predicts meaningful activities given the ob-
jects in the image. Second, we compared Augur’s predictions
to the human activity that best describes each scene.

Method
To construct a dataset of images containing real daily ac-
tivites, we sampled 50 scene images from the most recent
posts to the Instagram #dailylife hashtag 3, skipping 4 images
that did not represent real scenes of people or objects, such as
composite images and drawings.

We ran each image through an object detection service to pro-
duce a set of object tags, then removed all non-object tags
with WordNet. For each group of objects, we used Augur to
generate 20 activity predictions, making 1000 in total.

We used two external evaluators to independently analyze
each of these predictions as to their plausibility given the in-
put objects, and blind to the original photo. A third external
evaluator decided any disagreements. High quality predic-
tions describe a human activity that is likely given the objects
in a scene: for example, using the objects street, mannequin,
mirror, clothing, store to predict the activity buy clothes. Low
quality predictions are unlikely or nonsensical, such as con-
necting car, street, ford, road, motor to the activity hop.
3https://instagram.com/explore/tags/dailylife/

https://instagram.com/explore/tags/dailylife/

Quality Samples Percent Success
Augur VSM predictions 1000 94%
Augur VSM scene recall 50 82%
Computer vision object
detection

50 62%

Table 2. As rated by external experts, the majority of Augur’s predic-
tions are high-quality.

Next, we showed evaluators the original image and asked
them to decide: 1) whether computer vision had extracted the
set of objects most important to understanding the scene 2)
whether one of Augur’s predictions accurately described the
most important activity in each scene.

Results
The evaluators rated 94% of Augur’s predictions are high
quality (Table 2). Among the 44 that were low quality, many
can be accounted for by tagging issues (e.g., “sink” being
mistagged as a verb). The others are largely caused by rel-
atively uncommon objects connecting to frequent and overly-
abstract activities, for example the uncommon object “table-
ware” predicts “pour cereal”.

Augur makes activity predictions that accurately describe
82% of the images, despite the fact that CV extracted the most
important objects in only 62%. Augur’s knowledge base is
able to compensate for some noise in the neural net: across
those images with good CV extraction, Augur succeeded at
correctly predicting the most relevant activity on 94%.

DISCUSSION
Augur’s design presents a set of opportunities and limitations,
many of which we hope to address in future work.

First, we acknowledge that data-driven approaches are not
panaceas. Just because a pattern appears in data does not
mean that it is interpretable. For example, “boyfriend is re-
sponsible” is a statistical pattern in our text, but it isn’t nec-
essarily useful. Life is full of uninterpretable correlations,
and developers using Augur should be careful not to trigger
unusual behaviors with such results. A crowdsourcing layer
that verifies Augur’s predictions in a specific topic area may
help filter out any confusing artifacts.

Similarly, while fiction allows us to learn about an enormous
and diverse set of activities, in some cases it may present a
vocabulary that is too open ended. Activities may have sim-
ilar meanings, or overly broad ones (like work in our evalu-
ation). How does a user know which to use? In our testing,
we have found that choice of phrase is often unimportant. For
example, the cosine similarity between hail taxi and call taxi
is 0.97, which means any trigger for one is in practice equiv-
alent to the other (or take taxi or get taxi). In this sense a
large vocabulary is actively helpful. However, for other activ-
ities choice of phrase does matter, and to identify and collpase
these activities, we again see potential for the refinement of
Augur’s model through crowdsourcing.

In the process of pursuing this research, we found ourselves
in many data mining dead ends. Human behavior is complex,
and natural language is complex. Our initial efforts included
heavier-handed integration with WordNet to identify object

classes such as locations and peoples’ names; unfortunately,
“Virginia” is both. This results in many false positives. Like-
wise, activity prediction requires an order of magnitude more
data to train than the other APIs given the N2 nature of its
skip-grams. Our initial result was that very few scenarios lent
themselves to accurate activity prediction. Our solution was
to simplify our model significantly (e.g., looking at only pro-
nouns) and gather ten times the raw data from Wattpad. In
this case, more data beat more modeling intelligence.

More broadly, Augur suggests a reinterpretation of our role as
designers. Until now, the designer’s goal in interactive sys-
tems has been to articulate the user’s goals, then fashion an
interface specifically to support those goals. Augur proposes
a kind of “open-space design” where the behaviors may be
left open to the users to populate, and the designer’s goal is
to design reactions that enable each of these goals. To sup-
port such an open-ended design methdology, we see promise
in Augur’s natural language descriptions. Activities such as
“sit down”, “order dessert” and “go to the movies” are not
complex activity codes but human-language descriptions. We
speculate that each of Augur’s activities could become a com-
mand. Suppose any device in a home could respond to a re-
quest to “turn down the lights”. Today, Siri has tens of com-
mands; Augur has potentially thousands.

CONCLUSION
Interactive systems find themselves in a double bind: they
cannot sense the environment well enough to build a broad
model of human behavior, and they cannot support the
breadth of human needs without that model. Augur proposes
that fiction — an ostensibly false record of humankind —
provides enough information to break this stalemate. Augur
captures behaviors across a broad range of activities, from
drinking coffee, to starting a car, to going out to a movie.
These behaviors often represent concepts that designers may
have never thought to hand-author.

Moving forward, we will integrate this information as a prior
into the kinds of activity trackers and machine learning mod-
els that developers already use. We aim to develop a broader
suite of Augur applications and test them in the wild.

ACKNOWLEDGMENTS
Special thanks to our reviewers and colleagues at Stanford
for their helpful feedback. This work is supported by a NSF
Graduate Fellowship.

REFERENCES
1. Gregory D Abowd, Anind K Dey, Peter J Brown, Nigel

Davies, Mark Smith, and Pete Steggles. 1999. Towards a
better understanding of context and context-awareness.
In Handheld and ubiquitous computing. Springer,
304–307.

2. Etyan Adar, Mira Dontcheva, and Gierad Laput.
CommandSpace: Modeling the relationships between
tasks, descriptions and features. In Proc. UIST 2014
(UIST ’14).

3. Apple Computer. 1987. Knowledge Navigator. (1987).

4. Niranjan Balasubramanian, Stephen Soderl, and Oren
Etzioni. AKBC-WEKEX Workshop 2012. Rel-grams: A
Probabilistic Model of Relations in Text.
(AKBC-WEKEX Workshop 2012).

5. Nathanael Chambers and Dan Jurafsky. Unsupervised
Learning of Narrative Schemas and Their Participants.
In Proc. ACL 2009 (ACL ’09).

6. Angel X. Chang and Christopher D. Manning. Technical
Report 2014. TOKENSREGEX: Defining cascaded
regular expressions over tokens. (Technical Report
2014).

7. Sunny Consolvo, David W. McDonald, Tammy Toscos,
Mike Y. Chen, Jon Froehlich, Beverly Harrison, Predrag
Klasnja, Anthony LaMarca, Louis LeGrand, Ryan
Libby, Ian Smith, and James A. Landay. 2008. Activity
sensing in the wild: A field trial of Ubifit Garden. In
Proc. CHI ’08 (CHI ’08). 1797–1806.

8. Anthony Fader, Stephen Soderland, and Oren Etzioni.
Identifying Relations for Open Information Extraction.
In Proc. EMNLP 2011 (EMNLP ’11).

9. Ethan Fast, Daniel Steffe, Lucy Wang, Michael
Bernstein, and Joel Brandt. Emergent, Crowd-scale
Programming Practice in the IDE. In Proc. CHI 2014
(CHI ’14).

10. Adam Fourney, Richard Mann, and Michael Terry.
Query-feature graphs: bridging user vocabulary and
system functionality. In Proc. UIST 2011 (UIST ’11).

11. Gerd Gigerenzer. How to make cognitive illusions
disappear: Beyond heuristics and biases. In European
review of social psychology 1991.

12. Ross Girshick, Jeff Donahue, Trevor Darrell, and
Jitendra Malik. 2014. Rich feature hierarchies for
accurate object detection and semantic segmentation. In
Proc. CVPR ’14.

13. Björn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R. Klemmer. What would other programmers do:
suggesting solutions to error messages. In Proc. of CHI
2010 (CHI ’10).

14. Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic
Alignments for Generating Image Descriptions. In Proc.
CPVR 2015.

15. Emre Kiciman. 2015. Towards Learning a Knowledge
Base of Actions from Experiential Microblogs. In AAAI
Spring Symposium.

16. Ranjitha Kumar, Arvind Satyanarayan, Cesar Torres,
Maxine Lim, Salman Ahmad, Scott R Klemmer, and
Jerry O Talton. Webzeitgeist: Design Mining the Web.
In Proc. CHI 2013 (CHI ’13).

17. Ivan Laptev, Marcin Marszaek, Cordelia Schmid, and
Benjamin Rozenfeld. Learning realistic human actions
from movies. In Proc. CVPR 2008 (CPVR ’08).

18. Yong Jae Lee, C Lawrence Zitnick, and Michael F
Cohen. 2011. Shadowdraw: real-time user guidance for
freehand drawing. In Proc. SIGGRAPH ’11.

19. Yang Li. 2014. Reflection: Enabling Event Prediction
As an On-device Service for Mobile Interaction. In
Proc. UIST ’14 (UIST ’14). 689–698.

20. H. Liu and P. Singh. ConceptNet – A Practical
Commonsense Reasoning Tool-Kit. In BT Technology
Journal 2004.

21. Justin Matejka, Wei Li, Tovi Grossman, and George
Fitzmaurice. CommunityCommands: Command
Recommendations for Software Applications. In Proc.
UIST 2009 (UIST ’09).

22. William McGrath, Mozziyar Etemadi, Shuvo Roy, and
Bjrn Hartmann. fabryq: Using Phones as Gateways to
Communicate with Smart Devices from the Web. In
Proc. EICS 2015 (EICS ’15).

23. Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
Linguistic regularities in continuous space word
representations. In Proc. NAACL-HLT 2013.

24. George A. Miller. WordNet: A Lexical Database for
English. In Commun. ACM 1995.

25. Ian Simon, Dan Morris, and Sumit Basu. MySong:
automatic accompaniment generation for vocal
melodies. In Proc. CHI 2008 (CHI ’08).

26. Peter D Turney, Patrick Pantel, and others. 2010. From
frequency to meaning: Vector space models of
semantics. Journal of artificial intelligence research 37,
1 (2010), 141–188.

27. Mark Weiser. 1991. The computer for the 21st century.
Scientific American 265, 3 (1991), 94–104.

28. Neuman Y, Assaf D, Cohen Y, Last M, Argamon S, and
Howard N. Metaphor Identification in Large Texts
Corpora. In PLoS ONE 2013.

29. YoungSeok Yoon and Brad Meyers. A Longitudinal
Study of Programmers’ Backtracking. In Proc. VL/HCC
2014 (VL/HCC ’14).

	Introduction
	Related Work
	Augur
	Human Activities
	Object Affordances
	Connections between activities
	A data mining DSL for natural language
	Mining activity patterns from text
	Activity-Object statistics
	Object-affordance statistics
	Activity-Activity statistics

	Vector space model for retrieval

	Augur API and Applications
	Identifying Activities
	Expanding Activites with Object Affordances
	Predicting Future Activities
	Applications
	The Coffee-Aware Smart Home
	Spending Money Wisely
	A Soundtrack for Life

	Evaluation
	Bias of Fiction
	Method
	Results

	Field test of A Soundtrack for Life
	Method
	Results

	A stress test over #dailylife
	Method
	Results

	Discussion
	Conclusion
	Acknowledgments
	References

