CS448B :: 5 Oct 2009 Graphical Perception

Jeffrey Heer Stanford University

Graphical Perception

The ability of viewers to interpret visual (graphical) encodings of information and thereby decode information in graphs.

Which best encodes quantities?

Position Length Area Volume Value (Brightness) Color Hue Orientation (Angle) Shape

Mackinlay'	s ranking of	encodings
QUANTITATIVE	ORDINAL	NOMINAL
Position Length Angle Slope Area (Size) Volume Density (Val) Color Sat Color Hue Texture Connection Containment	Position Density (Val) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume	Position Color Hue Texture Connection Containment Density (Val) Color Sat Shape Length Angle Slope Area
Shape	Shape	Volume

Topics

- Signal Detection
- Magnitude Estimation
- Pre-Attentive Visual Processing
- \cdot Using Multiple Visual Encodings
- \cdot Gestalt Grouping
- \cdot Change Blindness

Steven's Power Law

Exponents of power law

Sensation	Exponent	
Loudness	0.6	
Brightness	0.33	
Smell	0.55 (Coffee) - 0.6 (Heptane)	
Taste	0.6 (Saccharine) -1.3 (Salt)	
Temperature	1.0 (Cold) – 1.6 (Warm)	
Vibration	0.6 (250 Hz) – 0.95 (60 Hz)	
Duration	1.1	
Pressure	1.1	
Heaviness	1.45	
Electic Shock	3.5	

[Psychophysics of Sensory Function, Stevens 61]

Apparent magnitude scaling

Proportional symbol map

[Cartography: Thematic Map Design, Figure 8.8, p. 172, Dent, 96]

Graduated sphere map

Relative magnitude estimation

Mackinlay's ranking of encodings

QUANTITATIVE	ORDINAL	NOMINAL
Position Length Angle Slope Area (Size) Volume Density (Value) Color Sat Color Hue Texture Connection Containment	Position Density (Value) Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size) Volume Shapo	Position Color Hue Texture Connection Containment Density (Value) Color Sat Shape Length Angle Slope Area Volumo

Assignment 1

Scores and comments will be returned shortly

Assignment 2: Visual Data Analysis

Use visualization software (Tableau) to form & answer questions First steps:

- Step 1: Pick a domain
- Step 2: Pose questions
- Step 3: Find Data
- Iterate
- Create visualizations
- Interact with data
- Refine your questions
- Make wiki notebook
- Keep record <u>of your analysis</u>
- Prepare a final graphic and caption

Due by end of day on Monday, October 12

Protovis Tutorial

Creating interactive visualizations in JavaScript using the Protovis framework (protovis.org)

Friday October 9, 4-5:30pm 104 Gates Led by Mike Bostock

Next Week (10/12 & 10/14)

Jeff and Mike will out attending VisWeek. Mon 10/12: **Color** Guest lecturer: Jason Chuang, Stanford CS Wed 10/14: **Flash/Flare Tutorial**

Tutorial leader: Jason Chuang, Stanford CS

Pre-attentive vs. Attentive Visual Processing

How many 3's

 $\begin{array}{l} 1281768756138976546984506985604982826762\\ 9809858458224509856458945098450980943585\\ 9091030209905959595772564675050678904567\\ 8845789809821677654876364908560912949686\end{array}$

[based on slide from Stasko]

Pre-Attentive features

[Information Visualization. Figure 5. 5 Ware 04]

More Pre-attentive Features

Line (blob) orientation Length Width Size Curvature Number Terminators Intersection Closure Colour (hue)

Intensity

Flicker Direction of motion

Binocular lustre Stereoscopic depth 3-D depth cues Lighting direction

Julesz & Bergen [1983]; Wolfe et al. [1992] Triesman & Gormican [1988] Julesz [1985] Triesman & Gelade [1980] Triesman & Gormican [1988] Julesz [1985]; Trick & Pylyshyn [1994] Julesz & Bergen [1983] Julesz & Bergen [1983] Enns [1986], Triesman & Souther [1985] Nagy & Sanchez [1990, 1992]; D'Zmura [1991]; Kawai et al. [1995]; Bauer et al. [1996] Beck et al. [1983]; Triesman & Gormican [1988] Julesz [1971] Nakayama & Silverman [1986]; Driver & McLeod [1992] Wolfe & Franzel [1988] Nakayama & Silverman [1986] Enns [1990] Enns [1990] http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Pre-attentive conjunctions

Spatial conjunctions are often pre-attentive

- Motion and 3D disparity
- Motion and color
- Motion and shape
- 3D disparity and color
- 3D disparity and shape

Most conjunctions are **not** pre-attentive

Feature-integration theory

One-dimensional: Lightness

One-dimensional: Shape

Correlated dims: Shape or lightness

Speeded Classification

Redundancy Gain

Facilitation in reading one dimension when the other provides redundant information

Filtering Interference

Difficulty in ignoring one dimension while attending to the other

Types of Dimensions

Integral Filtering interference and redundancy gain

Separable No interference or gain

Configural Interference, "condensation", no redundancy gain

Asymmetrical One dim separable from other, not vice versa

• Example: The Stroop effect - color naming is influenced by word identity, but word naming is not influenced by color

Orientation and Size (Single Mark)

FIGURE 3.36. A map of temperature and precipitation using symbol size and orientation to represent data values on the two variables.

How well can you see temperature or precipitation? Is there a correlation between the two? [MacEachren 95]

Shape and Size (Single Mark)

Length and Length (Single Mark)

[MacEachren 95]

Summary of Integral-Separable

Each card has 4 features:

- Color
- Symbol
- Number
- Shading/Texture

A set consists of 3 cards in which each feature is the SAME or DIFFERENT on each card.

Principles

Figure/Ground Proximity Similarity Symmetry Connectedness Continuity Closure Common Fate Transparency

Layering: Gridlines

Signal and background compete above, as an electrocardiogram traceline becomes caught up in a thick grid. Below, the screened-down grid stays behind traces from each of 12 monitoring leads:⁴

Lussusses marine and a second s

mmmulllllllungunununun mmmullillille

Electrocardiogram tracelines [from Tufte 90]

Layering: Gridlines

Layering: color and line width

Change Blindness

[Example from Palmer 99, originally due to Rock]

Change detection

Change detection

Demonstrations

http://www.psych.ubc.ca/~rensink/flicker/download/ http://www.dothetest.co.uk/

Summary

Choosing effective visual encodings requires knowledge of visual perception

Visual features/attributes

- Individual attributes often pre-attentive
- \cdot Multiple attributes may be separable, often integral

Gestalt principles provide high-level guidelines

We don't always see everything that is there