Graphical Perception

Graphical Perception

Which best encodes quantities?
Position
The ability of viewers to interpret visual
(graphical) encodings of information and thereby
Length
decode information in graphs.
Area
Volume
Value (Brightness)
Color Hue
Orientation (Angle)
Shape

Mackinlay's ranking of encodings

Topics

QUANTITATIVE	ORDINAL	NOMINAL
Position	Position	Position
Length	Density (Val)	Color Hue
Angle	Color Sat	Texture
Slope	Color Hue	Connection
Area (Size)	Texture	Containment
Volume	Connection	Density (Val)
Density (Val)	Containment	Color Sat
Color Sat	Length	Shape
Color Hue	Angle	Length
Texture	Slope	Angle
Connection	Area (Size)	Slope
Containment	Volume	Area
Shape	Shape	Volume

- Signal Detection
- Magnitude Estimation
- Pre-Attentive Visual Processing
- Using Multiple Visual Encodings
- Gestalt Grouping
- Change Blindness

Detecting Brightness

Which is brighter?

Detecting Brightness
(128, 128, 128)
(144, 144, 144)

Which is brighter?

Detecting Brightness

Detecting Brightness

(134, 134, 134)
(128, 128, 128)

Which is brighter?

Just Noticeable Difference

JND (Weber's Law)

$$
\Delta S=k \frac{\Delta I}{I}
$$

Ratios more important than magnitude
Most continuous variation in stimuli perceived in discrete steps

Steps in font size

```
Sizes standardized in 16 th century
...a, a a a a a a a a a व व
```

Estimating Magnitude

Steven's Power Law

$$
S=I^{p}
$$

$\mathrm{p}<1$: underestimate
$p>1$: overestimate

[graph from Wilkinson 99, based on Stevens 61]

Exponents of power law

Sensation	Exponent
Loudness	0.6
Brightness	0.33
Smell	0.55 (Coffee) -0.6 (Heptane)
Taste	0.6 (Saccharine) $\mathbf{- 1 . 3}($ Salt $)$
Temperature	$1.0(\mathrm{Cold})-1.6(\mathrm{Warm})$
Vibration	$0.6(250 \mathrm{~Hz})-0.95(60 \mathrm{~Hz})$
Duration	1.1
Pressure	1.1
Heaviness	1.45
Electic Shock	3.5

[Psychophysics of Sensory Function, Stevens 61]

Apparent magnitude scaling

[Cartography: Thematic Map Design, Figure 8.6, p. 170, Dent, 96]
$\mathbf{S}=\mathbf{0 . 9 8 A ^ { 0 . 8 7 }}$ [from Flannery 77]

Proportional symbol map

Graduated sphere map

[Cleveland and McGill 84]

Figure 3. Graphs from position-angle experiment.

Relative magnitude estimation

Position (common) scale Position (non-aligned) scale

Length
Slope
Angle

Area

Volume

Color hue-saturation-density

Mackinlay's ranking of encodings
QUANTITATIVE ORDINAL
Position Position
Length Density (Value)
Angle
Slope
Area (Size)
Volume
Density (Value)
Color Sat
Color Hue
Texture
Connection
Containment
Shape

Color Sat Color Hue Texture Connection Containment Length Angle Slope Area (Size)
Volume
Shape

NOMINAL
Position
Color Hue
Texture
Connection
Containment
Density (Value)
Color Sat
Shape
Length
Angle
Slope
Area
Volume

Administrivia

Assignment 1
 Scores and comments will be returned shortly

\square

Protovis Tutorial

Creating interactive visualizations in JavaScript using the Protovis framework (protovis.org)

Friday October 9, 4-5:30pm
104 Gates
Led by Mike Bostock

Next Week (10/12 \& 10/14)

Jeff and Mike will out attending VisWeek.
Mon 10/12: Color
Guest lecturer: Jason Chuang, Stanford CS
Wed 10/14: Flash/Flare Tutorial
Tutorial leader: Jason Chuang, Stanford CS

How many 3's

1281768756138976546984506985604982826762 9809858458224509856458945098450980943585 9091030209905959595772564675050678904567 8845789809821677654876364908560912949686

How many 3's

Visual pop-out: Shape

Visual pop-out: Color

http://www.csc.ncsu.edu/faculty/healey/PP/index.html

Feature Conjunctions

Pre-Attentive features

More Pre-attentive Features

Line (blob) orientation	Julesz \& Bergen [1983]; Wolfe et al. [1992]
Length	Triesman \& Gormican [1988]
Width	Julesz [1985]
Size	Triesman \& Gelade [1980]
Curvature	Triesman \& Gormican [1988]
Number	Julesz [1985]; Trick \& Pylyshyn [1994]
Terminators	Julesz \& Bergen [1983]
Intersection	Julesz \& Bergen [1983]
Closure	Enns [1986]; Triesman \& Souther [1985]
Colour (hue)	Nagy \& Sanchez [1990, 1992]; D'Zmura [1991]; Kawai et al. [1995]; Bauer et al. [1996]
Intensity	Beck et al. [1983]; Triesman \& Gormican [1988]
Flicker	Julesz [1971]
Direction of motion	Nakayama \& Silverman [1986]; Driver \& McLeod [1992]
Binocular lustre	Wolfe \& Franzel [1988]
Stereoscopic depth	Nakayama \& Silverman [1986]
3-D depth cues	Enns [1990]
Lighting direction	Enns [1990]

Feature-integration theory

Multiple Attributes

One-dimensional: Lightness 0

White
White
Black
White
Black

Correlated dims: Shape or lightness

One-dimensional: Shape

Orthogonal dims: Shape \& lightness

Speeded Classification

Redundancy Gain

Facilitation in reading one dimension when the other provides redundant information

Filtering Interference

Difficulty in ignoring one dimension while attending to the other

Types of Dimensions

Integral Filtering interference and redundancy gain
Separable No interference or gain
Configural Interference, "condensation", no redundancy gain
Asymmetrical One dim separable from other, not vice versa
Example: The Stroop effect - color naming is influenced by word identity,
but word naming is not influenced by color

Size and Value

VALUE IN MILIONS OF DOLLARS
-.......

VALUE IN MILIONS OF DOLLARS

Orientation and Size (Single Mark)

FIGURE 3.36. A map of temperature and precipitation using symbol size and orienFIGURE 3.36. A map of temperature and precipit
tation to represent data values on the two variables.

How well can you see temperature or precipitation? Is there a correlation between the two?

Length and Length (Single Mark)

Angle and Angle (Composed Marks)

Integral
\uparrow
\downarrow
Separable

Set	$\theta \theta$	000	\checkmark
Color Symbol Number Shading/Texture	00	000	11
	2	000	-
	218	\checkmark	11
	\cdots	Remem	

Gestalt Grouping

Principles

Figure/Ground
Proximity
Similarity
Symmetry
Connectedness
Continuity
Closure
Common Fate
Transparency

Figure/Ground

Ambiguous

Lutal

Principle of surroundednes

Principle of relative size

Figure/Ground

Proximity

[Ware oo]

Similarity

Rows dominate due to similarity [from Ware 04]

Connectedness

Connectedness overrules proximity, size, color shape [from Ware 04]

Symmetry

Bilateral symmetry gives strong sense of figure [from Ware 04]

Continuity

Continuity: Vector fields

Closure

We see a circle behind a rectangle, not a broken circle [from Ware 04]

Transparency

Layering: Gridlines

Signal and background compete above, as an electrocardiogram traceline becomes caught up in a thick grid. Below, the screened-down grid stays behind traces from each of 12 monitoring leads: ${ }^{4}$

Layering: Gridlines

Stravinsky score [from Tufte 90]

Layering: color and line width

IBM Series III Copier [from Tufte 90]

Small Multiples

Change Blindness

Change detection

Change detection

Demonstrations

http://www.psych.ubc.ca/~rensink/flicker/download/ http://www.dothetest.co.uk/

Summary

Choosing effective visual encodings requires
knowledge of visual perception
Visual features/attributes

- Individual attributes often pre-attentive
- Multiple attributes may be separable, often integral

Gestalt principles provide high-level guidelines We don't always see everything that is there

