
CS 376: Methods Exercises
For each exercise, choose the appropriate analysis approach (e.g., paired or unpaired t-test,
ANOVA or repeated measures ANOVA, chi square) and execute it. I recommend using online
calculators, though learning R increases your street cred as a data scientist.

First, download all data at: https://hcicourses.stanford.edu/cs376/2018/slides/methods.zip

Second, if you’d like them, tutorials and online calculators:
 t-test and paired t-test: http://graphpad.com/quickcalcs/ttest1/?Format=SD
 ANOVA: http://vassarstats.net/anova1u.html
 Posthoc tests (Bonferroni and Tukey):

http://statistica.mooo.com/OneWay_Anova_with_TukeyHSD
 Repeated measures and two-way ANOVA: http://vassarstats.net/anova202corr.html
 Chi square: http://graphpad.com/quickcalcs/chisquared1.cfm

1. FeedMe
In “Enhancing Directed Content Sharing on the Web”, we wanted to encourage people to share
more interesting web content with their friends and contacts. We focused on web junkies who
consume a huge amount of content through online news readers (e.g., RSS). We created a
browser extension called FeedMe that recommended friends who might be interested, based
on their previous sharing activity, and made it two clicks to share it with them:

Among other things we measured, we hypothesized that users would prefer the
recommendation interface. We ran a within-subjects experiment where users had one week
with just a box where they typed in their friends’ addresses to send, and the other week where
we included the recommendations (above) as well. We called them “Aspen” and “Sierra” so
that participants wouldn’t think that we were trying to convince them that one was better than
the other. We counterbalanced so that half the people saw Aspen the first week, and half saw
Sierra, and then we switched after a week and each user shifted to the other condition. At the
end of the two weeks, we asked participants to choose their favorite interface: Aspen
(recommendations), Sierra (control condition), or neither.

http://graphpad.com/quickcalcs/ttest1/?Format=SD
http://graphpad.com/quickcalcs/chisquared1.cfm
http://vassarstats.net/anova202corr.html
http://statistica.mooo.com/OneWay_Anova_with_TukeyHSD
http://vassarstats.net/anova1u.html

Which of the two interfaces do people prefer most? Consider which of the answer options
you really want to be comparing in order to answer this question.
Data is at: https://hcicourses.stanford.edu/cs376/2018/slides/feedme.csv
(Don’t forget to create summary statistics and/or graph it first.)

2. Twitch crowdsourcing
In “Twitch Crowdsourcing: Crowd Contributions in Short Bursts of Time”, we explored whether
it might be possible to get people to participate in crowdsourcing tasks in a couple of seconds
each time they unlocked their phone. We replaced the phone unlock screen with something
that had them help populate a local census, rank images, or verify NLP fact extractions from
Stanford’s Wikipedia page:

We wanted to understand whether these unlock screens impacted cognitive load and speed
any more than a simple, traditional slide-to-unlock. We had participants do a challenging short-
term memory task, and measured their completion times. Between stages of the task, we
either showed one of these Twitch Crowdsourcing activities (Census/Dress, Census/Energy,
Census/Activity, Census/People, or Structure the Web), or the control (Slide-to-Unlock).
Because reaction times are typically not normally distributed, and most statistical tests assume
normally distributed outcomes, we did a mathematical transformation on the times, so the final
dependent variable is the ‘transformedDuration’ column. Each participant (‘phoneID’) did the
task many times.

Is there a significant difference in reaction times between unlock approaches?
Bonus: control for participant (phoneID) in your analysis

Data is at: https://hcicourses.stanford.edu/cs376/2018/slides/twitch-unlocks.csv
(Don’t forget to create summary statistics and/or graph it first.)

https://hcicourses.stanford.edu/cs376/2018/slides/feedme.csv

3. Information scraps
In “Note to Self: Examining Personal Information Keeping in a Lightweight Note-Taking Tool”,
we wanted to better understand information scraps, or the pieces of personal information that
fall outside our existing tools. So, we created a browser plugin that was a quick-capture and
quick-access note tool, like a plaintext Evernote in the browser. We got lots of people to use it,
and many let us look at their note behavior for scientific purposes.

As we looked at the data, we found that only 28% of notes were ever deleted, and nearly a
quarter of those notes were deleted within a day of being captured. So, we started wondering
whether such notes were mainly serving as memory triggers, and thus might be shorter in
length. We split up all notes according to whether they were deleted in less than a day, or not.

Is there a significant difference in character length between notes that were deleted within a
day, and those that were not?

Data is at: https://hcicourses.stanford.edu/cs376/2018/slides/listit-notes.csv
(Don’t forget to create summary statistics and/or graph it first.)

4. Twitch crowdsourcing redux
We showed that the ANOVA was significant when considering different unlock screens.
However, since the ANOVA just tells you that there is a difference somewhere between those
means, we didn’t know which unlock screens were different from which other ones:
Census/Dress, Census/Energy, Census/Activity, Census/People, and the control Slide-to-Unlock.

Which pairs of conditions are significantly different than each other?

Data is at: https://hcicourses.stanford.edu/cs376/2018/slides/twitch-unlocks.csv

The list.it interface. Top left: note capture and search; Middle left: example note; Bottom right: quick capture bar.

(Don’t forget to create summary statistics and/or graph it first.)

5. Micro- vs. Macro-tasking
In “Break It Down: A Comparison of Macro- and Microtasks”, we sought to understand whether
information workers and crowd workers were better off doing large chunks of tasks
(macrotasks) or splitting them up into lots of tiny microtasks like is common on Amazon
Mechanical Turk. For example, are workers better at adding together a whole receipt at a time?
Or would they better off with microtasks that direct them to add pairs of numbers
incrementally? We hypothesized that microtasks might be slower, but more robust to
interruption. So we did a 2x2 experiment where we manipulated whether the task was a micro-
or macro-task and whether the worker got interrupted with another task in the middle. We
measured the total time it took to complete the task, minus the time it took to complete the
interruption.

Are micro- or macro-tasks faster, and which one is more robust to interruptions? Any
interaction effects to report?

Data is at: https://hcicourses.stanford.edu/cs376/2018/slides/cs376_addition_tasktime.csv
(Don’t forget to create summary statistics and/or graph it first.)

https://hcicourses.stanford.edu/cs376/2018/slides/cs376_addition_tasktime.csv

	CS 376: Methods Exercises
	1. FeedMe
	2. Twitch crowdsourcing
	3. Information scraps
	4. Twitch crowdsourcing redux
	5. Micro- vs. Macro-tasking

