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Announcements
� Project fair on Thursday
� Shorter lecture and discussion to earn us back enough time for 

the project fair  

� Jeff Hancock joining next Tuesday while Michael is at CSCW
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Course Overview
week 1 Intro to Interaction; Intro to Social Computing
week 2 Intro to Design; Interaction
week 3 Interaction; Social Computing
week 4 Social Computing
week 5 Design
week 6 AI+HCI; Media
week 7 Foundations
week 8 Access; Programming
week 9 Collaboration; Visualization
week 10 Education; Critiques of HCI
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MIT Personal Robotics Group UC Berkeley InterACT laboratory

People: where the AI hits the road



�5Interactive AI on live TV
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Interactive AI in everyday use

Siri, image from Engadget

Google Autocomplete



Automation is not the answer
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Intelligence 
Augmentation



“AI will take over 
human jobs”

A reaction to:



Engelbart Institute



SRI



Artificial  
Intelligence
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Intelligence  
Augmentation

Replace human intelligence
with artificial intelligence

Augment human intelligence
with artificial intelligence



Modeling 
Uncertainty 
and Error



Software agents
� Delegate to proactive 

software and artificial 
intelligence
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Direct manipulation

� Users should always 
have full control

Pattie Maes, MIT Media Lab Ben Shneiderman, U. Maryland
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When do you intervene? 



The problem
� Unlike traditional interfaces, introducing an AI into a system 

creates an element of uncertainty  

� Will it understand you correctly? Will it make the correct 
inferences?  

� How do you design a system that can be robust to these kinds 
of errors?
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Mixed-initiative 
interaction



Mixed-initiative: combine the 
best of both worlds 
[Horvitz CHI ’99]

� Utility-based calculation:
� u(A,G) = (positive) utility of taking 

an automated action when the 
goal is correctly guessed

� u(A,¬G) = (negative) utility of 
taking the same action when the 
goal is incorrectly guessed

� u(¬A,G) and u(¬A,¬G) similarly
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Desired 
goal

Not 
desired 

goal

Take action u(A,G) u(A,¬G)

No action u(¬A,G) u(¬A,¬G)

YO
U READ THIS



Mixed-initiative: utility calculation 
[Horvitz CHI ’99]

� What’s the expected value of taking 
action?
�  

� What’s the expected value of taking 
no action?
�
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Desired 
goal

Not 
desired 

goal

Take action u(A,G) u(A,¬G)

No action u(¬A,G) u(¬A,¬G)

(P(G) ⋅ u(A, G)) + (P(¬G) ⋅ u(A, ¬G))

(P(G) ⋅ u(¬A, G)) + (P(¬G) ⋅ u(¬A, ¬G))



Mixed initiative: visually

�20P(G)

Expected
value

0 1

u(A, G)

u(¬A, G)

u(¬A, ¬G)

u(A, ¬G)

If it’s 
unlikely that 
the 
user has the 
given goal

If it’s likely 
that the 
user has the 
given goal



Mixed initiative: visually

�21P(G)

Expected
value

0 1

u(A, G)

u(¬A, G)

u(¬A, ¬G)

u(A, ¬G)

Utility of inaction



Mixed initiative: visually

�22P(G)

Expected
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0 1

u(A, G)

u(¬A, G)
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Mixed initiative: visually

�23P(G)

Expected
value

0 1

u(A, G)

u(¬A, G)

u(¬A, ¬G)

u(A, ¬G)
Utili

ty 
of 

act
ion

Utility of inaction

Higher utility  
not to act

Higher utility  
to act



What if making an error is costly?

�24P(G)

Expected
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u(¬A, G)
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down!)



What if making an error is costly?

�25P(G)

Expected
value

0 1

u(A, G)

u(¬A, G)

u(¬A, ¬G)

u(A, ¬G)

Util
ity
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Utility of inaction

(This moved
down!)

Higher utility  
not to act

Higher 
utility  
to act

Now we only
take action if 
we are even more  
certain that we
correctly estimated
the user’s goal



What if we ask the user?

�26P(G)

Expected
value
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u(A, G)
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u(Ask, G)
Utility of asking



What if we ask the user?

�27P(G)

Expected
value

0 1

u(A, G)

u(¬A, G)

u(¬A, ¬G)

u(A, ¬G)
Utilit

y o
f ac

tion Utility of inaction

Asking often carries lower risk, but also lower utility

u(Ask, ¬G)

Inaction zone Act zone

Utility of asking
Ask zone u(Ask, G)



So, when does this screw up?
� When the system cannot accurately assess the probability of 

the user having the goal P(G)  
 
or 

� When the utilities are not correctly estimated 
e.g., too high a utility for asking if the user doesn’t  
have the goal G. “Are you writing a letter right now?”
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Interactive 
Machine 
Learning



Now: diving into the ML models
� AI systems are built on the back of machine learning models
� What lessons can we apply to make these models more 

powerful and effective?  

� Assumed here: a basic knowledge of machine learning
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What is your black box learning?
� Machine learning models are powerful, but opaque and 

unintelligible
� Difficult to predict, design, and debug 

� This produces nonintuitive behavior:
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[Goodfellow, Shlens, Szegedy 2014]



Goal: intelligibility in ML models
� A model is intelligible to the extent that a human can predict 

how a change to model’s inputs will change its output.  
[Weld 2018]
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Linear relationship: intelligible
[image from Wikipedia]

Convolutional neural networks: far less intelligible
[image from Wikipedia]



What does the model “see”?  
[Olah et al. 2018]

� Above: labrador retriever (left) vs. tiger cat (right)  

� If it requires a person to predict its behavior, ML systems that 
are intelligibility require that people can “see what they see” to 
a certain extent
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One approach: simplify the 
model
� Sometimes you can get most of the performance with far 

higher intelligibility
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GA2M 
[Lou et al. 2013, Caruana et al. 2015]

� A model that learns all features of the form:
� In other words: the system learns univariate and bivariate 

relationships between the input features and the outcome
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∑ fi(xi) + ∑ fij(xi, xj)

Univariate features predicting pneumonia risk Bivariate interaction predicting  
pneumonia risk (note particular risk  
of young people with cancer)



LIME local explainers 
[Ribeiro et al. 2016]

� Often the learned decision boundary 
(red vs. blue) is nonlinear →

� Suppose you were trying to explain 
the bright red cross example. What 
would you do? 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� LIME: sample other points nearby (large red crosses and blue 
circles), weigh them in proportion to their proximity to the red 
cross, and learn a linear separator for them.
� This is not an accurate representation of the whole model! But still useful in local 

explanation.



Influence functions 
[Koh and Liang et al. 2017]

� Mathematical approach that traces a prediction back to the 
most influential training points that produced the prediction
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The dilemma 
[Weld and Bansal 2018]

� Any model simplification is a lie!
� But any non-simplification is unintelligible.  

� Recommendation: draw on psych research to guide explanation
� Make explanations contrastive: “Why did you recommend Movie 

X?” (implicitly: “Why didn’t you recommend Movie Y?”)
� Necessary causes are better than sufficient ones
� Use few conjuncts
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Guiding users to 
train effective 

classifiers



Interactive training 
[Fogarty et al. 2008]

� Allow users to keep training and re-training by drag-dropping 
instances into positive and negative classes as they go
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Revising your training as you go 
[Chang, Amershi and Kamar 2017]
� Facilitate concept evolution through a “could be” category that allows clustering 

into subcategories you can change labels for
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Play-along learning 
[Fiebrink, Cook, and Trueman, ICMC ‘09]

� Create the output 
(sounds) you 
desire

� “Play along” and 
demonstrate the 
input that should 
generate that 
output
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Developing 
intelligent 
software



If you wanted 
a smart 
doorbell...
� To automatically control 

entrance to your room
� To let in possible donors 

for your Stanford education
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How would 
you train the 
system 
quickly?
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Crayons: camera-based interaction  
[Fails and Olsen, CHI ’03]
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Accept

Reject

Direct-
manipulation 
training



Development challenges with ML  
[Patel et al., CHI ’08]

� Software development benefits from modularity, but machine 
learning is iterative and nonlinear

� Difficulty understanding the statistical process underlying 
machine learning algorithms

� Evaluation of progress is difficult
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Papier-Mâché: toolkit support 
for tangible input  
[Klemmer et al., CHI ’04]

� Monitoring 
window, wizard-
of-oz input, 
listeners, 
designed and 
evaluated as a 
user interface
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IDE support for ML development 
[Patel et al., UIST ’10]

� Explicit support for each step: feature extraction, model 
generation, training and testing
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AI-driven design



Does your design look a bit like this?
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AI-driven design
� Learn design patterns from high-quality designs, and make it 

straightforward to apply those design patterns to your own 
designs
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Retargeting 
designs
� “Can I borrow your 

design?” for the web
� Structured tree 

mapping algorithm
� Roughly: costs 

associated with 
violating ancestry and 
sibling relationships in 
creating a mapping �53



� Crawl the web and index large-scale 
design elements 

� Main idea: what happens if we start 
data mining designs, rather than user 
behavior?
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Webzeitgeist 
[Kumar et al., CHI ’13]
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Human-robot interaction: 
enforcing social norms  
[Porfirio et al., UIST ’17]



Adaptive interfaces 
[Gajos and Weld, IUI ‘04]
� Reactive design: remaps to output affordances
� Minimize a cost function derived from navigating between 

widgets in user traces
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Pointer Touch



We see this all over…
� …as in papers we already covered!
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Sketch the interaction to 
produce working systems
� SILK [Landay, CHI ’96]
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Quantifying Visual Preferences 
[Reinecke and Gajos CHI 2014]

� LabInTheWild data via a quiz about which web sites you like
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Quantifying Visual Preferences 
[Reinecke and Gajos CHI 2014]

� LabInTheWild 
data via a quiz 
about which 
web sites you 
like
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DesignScape: interactive layout 
[O’Donovan, Agarwala, and Hertzmann CHI ’15]
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Learning Visual Importance  
[Bylinskii et al., UIST ’17]



What to take away?
� AI can…
� Help identify effective designs
� Help map your design onto a target design
� Predict how people will react to your design
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Voice, gesture, 
and vision-based 

interaction



Interaction off the desktop 
requires intelligence
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Amazon Echo 
+ Siri

FitBit + Apple Watch Nest thermostat



AI is now a component of many 
sensing pipelines
� …as in papers we already covered!
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Activity Recognition from User-Annotated
Acceleration Data

Ling Bao and Stephen S. Intille

Massachusetts Institute of Technology
1 Cambridge Center, 4FL

Cambridge, MA 02142 USA
intille@mit.edu

Abstract. In this work, algorithms are developed and evaluated to de-
tect physical activities from data acquired using five small biaxial ac-
celerometers worn simultaneously on different parts of the body. Ac-
celeration data was collected from 20 subjects without researcher su-
pervision or observation. Subjects were asked to perform a sequence of
everyday tasks but not told specifically where or how to do them. Mean,
energy, frequency-domain entropy, and correlation of acceleration data
was calculated and several classifiers using these features were tested. De-
cision tree classifiers showed the best performance recognizing everyday
activities with an overall accuracy rate of 84%. The results show that
although some activities are recognized well with subject-independent
training data, others appear to require subject-specific training data. The
results suggest that multiple accelerometers aid in recognition because
conjunctions in acceleration feature values can effectively discriminate
many activities. With just two biaxial accelerometers – thigh and wrist
– the recognition performance dropped only slightly. This is the first
work to investigate performance of recognition algorithms with multiple,
wire-free accelerometers on 20 activities using datasets annotated by the
subjects themselves.

1 Introduction

One of the key difficulties in creating useful and robust ubiquitous, context-aware
computer applications is developing the algorithms that can detect context from
noisy and often ambiguous sensor data. One facet of the user’s context is his phys-
ical activity. Although prior work discusses physical activity recognition using
acceleration (e.g. [17,5,23]) or a fusion of acceleration and other data modalities
(e.g. [18]), it is unclear how most prior systems will perform under real-world
conditions. Most of these works compute recognition results with data collected
from subjects under artificially constrained laboratory settings. Some also evalu-
ate recognition performance on data collected in natural, out-of-lab settings but
only use limited data sets collected from one individual (e.g. [22]). A number
of works use naturalistic data but do not quantify recognition accuracy. Lastly,
research using naturalistic data collected from multiple subjects has focused on

A. Ferscha and F. Mattern (Eds.): PERVASIVE 2004, LNCS 3001, pp. 1–17, 2004.
c⃝ Springer-Verlag Berlin Heidelberg 2004

Activity recognition
� Sense the user’s physical state by using minimally invasive 

sensors
� For example, wearing five 2d accelerometers and predicting 

tasks like walking, watching TV, reading, eating...
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Patel et al. At the Flick of a Switch: Detecting and Classifying Unique Electrical Events on 
the Residential Power Line. Ubicomp ’07.



Cohn et al. Humantenna: using the body as an antenna for real-time 
whole-body interaction. CHI ’12.



Harrison, Morris, Tan. Skinput: Appropriating the Body as an Input Surface. CHI ’10.



Harrison, Benko, Wilson. Omnitouch: Wearable Multitouch Interaction Everywhere. UIST ’11.

http://dl.acm.org/citation.cfm?id=634180


EM-Sense
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Laput, G. et al. 2015. EM-Sense: Touch Recognition of Uninstrumented, 
Electrical and Electromechanical Objects. UIST ’15.



Acoustics
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Laput et al. Acoustruments: Passive, Acoustically-Driven Interactive Controls 
for Hand Held Devices. UIST ’15.



Multimodal 
interaction



Speech N-best Gesture N-best Multimodal N-
bestZoom in Checkmark Zoom out

Show info
Show all
Zoom out 

Using simultaneous inputs
� Sensor fusion can help disambiguate multiple noisy signals
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Put That There

Quickset  
[Oviatt, CHI ’99]



Reflections
� AI is a powerful tool, but brings massive user interaction 

problems as a result of the uncertainty it introduces for the 
user 

� Smart interaction design can hide or manage that uncertainty.  

� “Don’t let your AI write a check that your UI can’t cash;  
Don’t let your UI write a check that your AI can’t cash.” 
- Eytan Adar, University of Michigan
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