
Bjoern Hartmann CS376 Fall 04 11/4/2004

CS376 Project Milestone 1
Lightweight Application Instrumentation for User-Initiated
Feedback in Off-the-Desktop Interfaces

1. ABSTRACT
[A ~100-150 word summary of the interface you plan to prototype, the hypothesis of the value that it provides the user, and how you plan to evaluate if your
hypothesis is true or false.]
Effective user-centered application design requires knowledge about user needs and real-
world system usage, among other factors. Existing research has mostly focused on
observational or predictive short-term evaluation of screen-and-mouse/keyboard-based
applications. The proposed project will investigate ways to gather application usage data in
an entirely different context: situations where the user will be actively involved in providing
feedback (possibly infrequently) over an extended period of time during her real work with
novel, off-the-desktop applications. Motivation for this approach (beyond looking for low-
hanging fruit) comes from the following observations: users are good judges of when to
report interesting incidents or software failures and may be willing to report these incidents
if associated cost is low; long-term evaluation in the “real world” can provide deeper insight
into usage than short-term studies; novel interfaces that lack standardization have a greater
need for user evaluation. Goals for the project are to devise an abstract framework of how
to collect and report user data in such a context; to possibly develop a software toolkit
encoding the instrumentation principles in software; to design one instrumented off-the-
desktop user interface; and finally to study efficacy of the proposed technique(s) through a
small-scale comparative evaluation.

2. TASK ANALYSIS
[Who are the users? What tasks will the users need to perform? What new tasks do they desire to perform? Where are the tasks performed? How are the tasks
learned? What set of tools does the user have now? How often do your users perform the tasks? What happens when things go wrong? What’s the relationship
between the user and his or her data? How do your users communicate with each other? With whom do they communicate? Use the questions above to guide your
task analysis. This should be one or two paragraphs..
There are two target audiences: developers that create interfaces and the users that then
interact with these interfaces. Let us deal with each in turn.

Developers or interface designers need to understand their target audiences. One way to
achieve this goal is through direct data collection from real world users with instrumented
applications. For effective instrumentation, developers need theoretical guidelines and
practical tools to help them add the functionality to their existing hardware or software
projects. A published framework for how to think about long-term lightweight user data can
be employed to guide design decisions by hardware and software engineers. Software
developers can also benefit from an API that exposes functionality to facilitate the collection
and reporting of user information back to the software company. An abstract API would be
useful to have developers follow a specific process for recording and reporting data while a
concrete API for a given platform could focus on the specific interaction techniques
afforded by that platform.

Users in this project would be long-term beta testers or early adopters of novel computing
interfaces. They will perform real tasks that require frequent interaction with the chosen
hardware device. The added functionality this project provides is a mechanism to record

Bjoern Hartmann CS376 Fall 04 11/4/2004

meta-information about the user’s interaction. The recording of the information is user-
initiated to let the user maintain (a sense of) control over data collection. Easy, quickly
accessible commands allow the user to give short feedback without having to break out of
interaction with the device. Feedback functionality is always accessible – no matter if the
device is connected to a network or not. Data will be sent back (after user-review to give
consent over what exactly will be transmitted) to a support provider or developer which
would in turn send a response back to the device or user after some kind of analysis.
Alternatively, the data can be used by the application internally to adapt to user habits.

3. IDEATION
[Sketches and Storyboards of your ideas. This will be the main part of your grade for this assignment. We want to see lots and lots of ideas. Brainstorm! Not all
your ideas have to be related to your proposed system. You are not required to digitize sketches. Sketches should be in whatever format enables you to work
quickly; we recommend pen and paper. They should be accompanied by short blurbs to explain each idea. We will be evaluating sketches based on two criteria:
volume and breadth. Please also turn in your half-baked and "dumb" ideas. The goal of this section is to encourage brainstorming and ideation. Come up with
lots of ideas, and have them span a broad design space. Some will be more compelling than others, and that's okay.]
Ideas for possible implementation in specific interfaces:

3.1 “Note2Anoto” functionality for a digital pen:
The Anoto digital pen, commercialized by Logitech under the name “io,” uses an optical
sensor embedded in a standard ball-point pen to track user writing on specially watermarked
paper. In addition to the normal physical record of ink on paper, the Anoto pen can transfer
all stroke information as images to a computer using USB or Bluetooth interfaces. OCR may
then be used to turn the handwritten notes into editable text. I suggest to introduce a special
feedback identifier – a unique symbol or the string “NOTE2ANOTO” that users can
employ anywhere in their notebooks to compose messages to be sent back to
Anoto/Logitech. Upon synchronization with a PC, the feedback information will be
extracted and presented for verification before being emailed back to the company. Three
types of feedback come to my mind:
1. Usability problems: Hardware problems such as optical recognition errors if the pen is

angled too much or when a faint dot pattern cannot be discerned in bright outdoor light.
Software problems like jumbled OCR recognition if text was written down in changing
orientations on the page.

2. Requests for feature extensions: Users can submit features they would like to be added in
the future. These ideas may only come up after some time as usage patterns change with
mounting user expertise. Example: Users may want to have a feature in the recognition
software to select certain regions of a page to be sent to OCR while others (diagrams)
should be kept as images.

3. Sales: consumables such as notepads and pen refills can be ordered directly without
having to go through a shopping website. Economics may be an important argument for
companies to add features which acknowledge to the user that their product has
imperfections.

By providing the functionality directly on the paper notepad, user work flow is disrupted
only minimally – the feedback note can be scribbled anywhere at any point of the normal
writing task. I have personally ordered one of these pens, so the hardware can be provided.

Bjoern Hartmann CS376 Fall 04 11/4/2004

3.2 Capturing user frustration with dedicated hardware:
Not an off-the-desktop idea: Add a dedicated button that users can hit (hard) when the
software they are using is frustrating them (cheap-o alternative: reprogram and paint one of
the additional keys on a multimedia keyboard). This voluntary feedback can be synchronized
and combined with internal application state data to help developers infer what exactly the
problem was. The lightest implementation would send the data without any additional user
information; a more involved prototype could pop up a simple text-entry area where the
user can describe the encountered problem in a few words (“I can’t find the #$%*
command to center my text”) to provide additional context.

I am partial to the idea of adding explicit hardware to indicate confusion/system problems in
general. Let designers acknowledge the imperfection of all hard- and software and
accordingly create “failure-aware designs” - devices that come equipped with easy methods
for users to record their gripes.

Bjoern Hartmann CS376 Fall 04 11/4/2004

3.3 Capturing user confusion on Tablet PCs:
We can extend the previous example by moving to a tablet-based interface or a PDA.. Since
real-estate for physical buttons is expensive here, we could assign a combination of existing
buttons – an analogy to the “ctrl-alt-delete” on keyboards – to invoke the feedback function.
To make users aware of this function, the relevant buttons would be visually grouped, for
example by printed connected red outlines. Additionally, a slightly more complex user-
reporting scheme can be adopted: a taxonomy of different kinds of user confusion could be
developed (note the difference between “I don't understand the application” vs. “The
application doesn't understand me”) and dedicated reporting facilities for each kind of
confusion would be added to the device.

In an alternative implementation on a Tablet PC, we can invoke a marking menu through a
specific pen gesture or holding the pen in place in a particular screen region for a few
seconds. The marking menu would once again display the confusion choices and data can
again be correlated with application state variables behind the scenes.

Bjoern Hartmann CS376 Fall 04 11/4/2004

3.4 The “Red card” for vision-based recognition interfaces:
Camera-based gesture tracking is error-prone and often recognition mismatches are
mysterious to users. The idea here is again to keep the user interacting with the device while
providing feedback. The recognition setup could come equipped with a bright red card
which users can hold up in front of the camera to give the recognizer a time-out and start
feedback mode. The camera (with microphone) would then record the user speaking and
gesturing, explaining her problem. Example: “I just moved like this (waves left arm up and
down) and last time I did it the application responded with X, but now it responded with
Y.” The video can then be sent to the computer vision algorithm designers.

3.5 Multimedia complaints from digital camera users:
An increasing number of digital cameras feature small microphones to annotate pictures.
When facing a problem with the interface, photographers could press a “gripe” button (or
button combination) to voice-record a description of their problem. If the problem is related
to the image last taken, the image could be flagged together with the voice recording. During
the next transfer of pictures from camera to host computer, the specially flagged
images/audio recordings could be forwarded to the camera manufacturer. There are obvious
problems with sending your private pictures on, but I don't think users are willing to
reproduce a problem by taking a second picture of some still life.

3.6 Reinforcing the habitual mind – but doing so selectively:
Location-aware mobile devices such as smart cell phones or GPS-equipped PDAs can use
georeferencing to learn geographical and temporal user patterns – for example, Bjoern
checks the Caltrain schedule on Fridays shortly before heading to the Palo Alto train station.
Anna tends to start the calendar application on her SideKick and scrolls to the next week
before calling her co-worker on Thursdays. The devices can learn these associations but
shouldn't do so indiscriminately – some patterns may be accidental, others may be conscious
but unwanted (automatically going to nytimes.com to check the news when opening up a
web browser). If the user is given the choice to control when something is learned (“pay
attention now and remind me next time” button) and when something is ignored, a closer
match between user wants and application behavior can be found.

Ideas not yet explored sufficiently:
 Using the remote control of Windows Media PCs as an input device (the TIVO

thumbs up/ thumbs down buttons already provide similar functionality)
 How can we integrate the reported data back into the development process (think

SUEDE)?

EVIDENCE
[Present some evidence that your idea is a good one. What observations did you make during your contextual inquiries that support your idea? What other systems
exist that support similar tasks?]
Some evidence for the usefulness of the proposed approach was derived from a cursory
review of literature. Automatic usage data gathering and remote evaluation of deployed
software is not a novel idea – first systems were implemented in the 1980s [1]. Hilbert and
Redmiles [2] present a detailed taxonomy and an exhaustive survey of GUI-based usability

Bjoern Hartmann CS376 Fall 04 11/4/2004

information gathering. Castillo et al. [3] conducted a study showing that users were capable
and willing to report their own critical interaction incidents with software. The same research
group also wrote about the potential usefulness of conducting ongoing studies of deployed
software [4]. Newman et al. [5] note in their paper about an informal pen-based interface
that it was difficult to evaluate the origin of a specific usability problem (pg. 312) –
additional, more detailed problem reporting tools within the software may have helped.
The shift of focus from GUI-based applications to novel forms of interaction resulted from
informal discussions with Scott Klemmer. Discussion of ideas with other CS graduate
students not involved in HCI research were a good indicator if these ideas had any appeal to
end users.

FURTHER EVIDENCE
[How will you collect further evidence to support your intuition that your system is a good one?]
I will conduct a more thorough literature review and try to get as much feedback from the
instructor and fellow graduate students. Since the suggested techniques are all bound to a
specific device, rapid testing techniques in different media such as paper prototyping do not
appear promising.

EVALUATION PLAN
[How will you evaluate your hypotheses? What type of user tests? How do you plan to set up your user tests? How many people will participate in your study?]
If my Anoto pen is delivered next week as planned, there should be enough time to develop
a working image segmentation-based prototype for the Note2Anoto idea. Alternatively, the
computer vision feedback system could be implemented – I have the hardware – but I
would need to tap into existing recognition code as well as have a access to an application
that uses gesture recognition. To evaluate the usefulness of lightweight feedback, I would
have a small number of users (think CS147 students) split into two groups – one could send
usability feedback with the pen or per video, the other group would be instructed to submit
problems via a submission form on a website. The hypothesis is that lightweight feedback on
the device itself will be used more frequently. The kind of long-term interaction envisioned
in the initial design idea will be impossible to carry out before the end of the quarter.

REFERENCES
[1] Dan R. Olsen and Bradley W. Halversen. Interface usage measurements in a user
interface management system. In Proceedings of the 1st annual ACM SIGGRAPH
symposium on User Interface Software, pages 102–108. ACM Press, 1988.

[2] David M. Hilbert and David F. Redmiles. Extracting usability information from user
interface events. ACM Comput. Surv., 32(4):384–421, 2000.

[3] José C. Castillo, H. Rex Hartson, Deborah Hix. Remote usability evaluation: can users
report their own critical incidents? CHI 98 conference summary on Human factors in
computing systems, pages 253 - 254 . ACM Press, 1998

[4] H. Rex Hartson, José C. Castillo, John Kelso, Wayne C. Neale. Remote evaluation: the
network as an extension of the usability laboratory. Pages: 228 – 235. ACM Press, 1996

Bjoern Hartmann CS376 Fall 04 11/4/2004

[5] DENIM: An Informal Web Site Design Tool Inspired by Observations of Practice, Mark
W. Newman, James Lin, Jason I. Hong, James A. Landay, Human-Computer Interaction,
2003. 18(3): pp. 259-324

