11

Virtual Groupware: Probabilistic Group Scheduling
CS 376 Project Milestone

Jiang Hu and Mike Brzozowski
Abstract

Scheduling a meeting with multiple people is often difficult, especially for college students. Even with widespread use of e-mail, the efficiency of such scheduling is still unsatisfactory in many cases. Unlike corporate employees, the traditional targets of group scheduling software, students tend to use a variety of schedule systems, from PDAs to paper planners. The proposed online service will use incomplete information about users’ schedules to facilitate meeting scheduling. When a meeting is to be scheduled, the system will suggest several time slots based on the probability that users will be available, given their weekly schedules and records of how they’ve responded to past invitations. Participants will then be notified by an e-mail and go to a Web site to indicate their preferences. To evaluate its effectiveness, we plan to conduct a comparative study to see whether the service affords users more efficiency and satisfaction.

Task Analysis

Our target users are college students. Unlike business users, who are usually in the office at reasonably regular times and are usually unavailable to meet on the weekends or at night, students have very erratic schedules and often find themselves “at work” 24x7. During academic quarters/semesters, students have to meet in groups for class projects, assignments, social activities, and so on. We found that when there are two or three participants planning a meeting in person, this can be done relatively quickly. So we decided to focus on meetings with multiple participants, who are not often in the same place to discuss availability. They desire a way to easily schedule meetings with a minimum of effort, but without requiring them to constantly maintain an additional calendar.
From our observation and interviews with students, this represents the majority of large group meetings, is mostly done via e-mail, sometimes augmented by Evite (see below) and occurs several times a week. Individual schedules are kept with a variety of tools, ranging from PDAs synching with Microsoft Outlook to hybrids of Word-Excel to simple paper planners. Students have access to Sundial, Stanford’s custom group scheduling system, but none we interviewed use it, because it is obscure and tedious to maintain their schedules with.
Aggravating the problem is that users do not necessarily check their e-mail constantly as business users do. Students do so from home, from wireless notebooks in class, from public computer clusters, and from work, but on busy days some students report they may not see their e-mail for hours at a time. When things go wrong, students accidentally double-book themselves or need to send last-minute corrections, as one user did when one of his participants failed to respond until the night before a meeting. Most users have a sketchy relationship with their actual data: not every event gets recorded in any system they keep, and some potential meeting times are bad not because they conflict with known appointments but because the user would prefer not to work them (e.g. they have a problem set due).
Ideation

Initially we were considering two divergent areas of research:

	
From: Mike Brzozowski <zozo@stanford.edu>
To: <cs376@cs.stanford.edu>
CC: <huj@stanford.edu>
Date: Oct 8, 2004 - 12:51am

Scott/Ron,

So we've now narrowed it down to two possible projects. I was wondering if I could bounce them off you:

1. TEMPORAL MESSAGING. (Or some other buzzwords to describe this.) Learn to automatically detect when messages have implicit deadlines for action (e.g. an event at a specific time, an inquiry about going out "tonight", an application deadline, a soft goal of responding to all official requests within 24 hours, etc.) With this you could do one of two things.
a. MOBILE FORWARDING. On some criteria, either learned or user-set, time-sensitive messages that the user is not likely to read well before the deadline are forwarded to the user's cell phone. Alternately, the user might elect to have reminders of events, or a digest of the day's events, sent to the phone as well. Evaluation could be done with a small applet left open on the desktops of participants with cell phones for a week on the users' live e-mail.

b. E-MAIL DASHBOARD. Somehow present an alternate view of the inbox that pulls aside messages deemed to have a high probability of needing followup or are time-sensitive. Perhaps use a to-do list or a calendar as a metaphor. Evaluation could be done in a controlled user test with a contrived sample corpus or the e-mail the user has left on the mail server. (Asking users to use our program for a while instead of their regular e-mail client may not prove feasible.)
Primary users would be Stanford students. Training data would come from our personal e-mail corpora.

2. PROBABLISTIC SCHEDULING. Just because a calendar shows free time doesn't necessarily mean someone wants to meet with you then. Learn a model to predict how likely a user A is to accept a meeting request from B given A's schedule, relationship with B, A's physical location at the time, how A tends to organize free time blocks, and the relationship A has with any person C who already has an appointment at that time. Two people using this system could potentially authorize agents that have learned their preferences to negotiate a mutually optimal meeting time on their behalves--letting the user set the balance between being more accommodating to A or to B.

Training data would be obtained from Outlook users who'd volunteer to answer a short questionnaire about their social network and scheduling preferences, and to work a few hypothetical meeting requests into their schedules. This training phase might be necessary to tune this to any potential user.

Primary users would be Stanford professors and busy students using Outlook, and the people who need to schedule meetings with them. Professor Ng reports that a handful of AI researchers at peer institutions might be interested in volunteering for this project.

Evaluation could be asking participants to invite people to schedule appointments with them and measuring their satisfaction with the suggested times.

What do you think? One of our concerns is what the balance should be between implementation and user studies. To really get a feel for whether this is effective I feel like a trial with real user data would be best. Which do you feel like would be more feasible to study?

Thanks for your help and your feedback,
Mike

Eventually we converged on a problem area:

	[image: image1.png]

 Meeting with Scott yesterday

From: Mike Brzozowski <zozo@stanford.edu>
To: Jiang (John) Hu <huj@stanford.edu>
Date: Oct 15, 2004 - 7:38am

Hey John,

So I met with Scott yesterday and he seemed to be concerned about our evaluation methods. Self-reporting, he believes, is an unreliable metric, ergo asking people what they'd do given a situation is likely to have a good deal of skew.

He also suggested we consider working on the probabilistic scheduling project since Professor Ng and a dozen colleagues across the country are keenly interested in its outcome and are willing to serve as subjects. I think with some brainstorming we could come up with a compelling design and project.

Here's one storyboard: I want to set up a meeting with you right now. So I could go through and rattle off all the times I'm available over the next few days. I would just share my calendar so you could see when I'm free and pick whatever time suited you best. But I've got a set of hidden preferences about what times I'd prefer to meet that would require me to also enumerate everything else going on in my life for you to understand. For whatever reasons there are times I'd rather meet or not meet and not all times that I'm "free" am I equally free. So instead I send you a link to a page with my calendar shaded in different colors based on how free/willing to meet I am, so I can be confident that you'll implicitly know my preferences already. When you pick a time I know you know just how convenient or inconvenient it is for me, so I'm more likely to accept it instead of trying to renegotiate.

What form this would take still was open to debate:
1) E-mail application add-on: A piece of software will be developed to work together with some popular e-mail clients. An agent associated with the software will be able to negotiate, under the instruction from the user, with agents of other meeting participants. The agent will learn about the user’s preferences about meeting time and location, plus the importance of events and persons related to the events. After a round of negotiation, the meeting organizer’s agent will generate a list of recommended meeting time slots and allow the organizer to check before being sent out other parties.

2) Web-based scheduling application: This will allow everybody to use it as long as he/she has access to the Internet. For first-time users, the system will allow the user to enter their weekly schedule during the registration process, either “painting” it in as in Excel, entering times in directly, or importing from Outlook, Axess, or an existing Excel spreadsheet. The profile will be used to determine the flexibility of certain time slots of the user.
a. The online calendars could not only contain details of each engagement, but also indicate the degree of flexibility of each planned event. The details will not be public unless the user chooses to show it to other people; the degree of flexibility on a calendar may vary depending on the relationship between the owner of the calendar and the viewer of the calendar. For example, a required class may be colored to indicate low flexibility for all viewers, while an optional talk could have high flexibility. Items with high flexibility mean that they can be sacrificed in exchange of more important meetings, and translate into “Rather Not” [Meet] ratings for time slots.
b. Suggested time slots will be in chronological order, with probably two parallel bars to show a) the aggregated degree of preference, and b) the user’s own degree of preference. The higher the degree of flexibility one slot has, the more preferred it will be on the graph. As more invitees respond, the degree of preference of all suggested time slots are constantly updated. There may not be a perfect slot for all, but the majority will be happy with the end result.
c. Since every invitee will be able to see an aggregated calendar of flexibility for the group, he/she will be allowed to suggest alternatives in addition to the inviter’s lists.

d. Once the deadline for response passes, or feedback from each invitee is recorded, the system will send out an e-mail to all parties, announcing the winner from the suggested list. The winning time slot will also be automatically added to each person’s online calendar.

Storyboard: A wants to meet again with B, C, and D. They’ve all used the system before and each of the users checked a box that said something like, “Let these people see my free-busy times so they can schedule meetings with me this quarter.”
	A logs in and sees what the system thinks her schedule is. She has the opportunity to add events if she wants.
	She clicks Schedule Meeting and is walked through a wizard asking when the meeting must be scheduled by and who she wants to invite.

	The system shows her a grid of what it thinks are the best times. She can correct it by marking blocks as good or bad for her.
	The invites get sent. B gets an e-mail with a link to an invitation showing what the system thinks of his schedule. He can rate each suggested time and mark blocks off as bad for him.

Possible methods for indicating that B can’t make it to a meeting Wednesday at 9 PM:
Evidence

Our contextual inquiry of users shows that usually group scheduling for them happens in one of two ways:

1. Negotiation. The coordinator enumerates several potential meeting times and seeks participants’ opinions on those times. This may take the form of an e-mail, to which people must respond, and the hope is that by process of elimination one option will emerge as the best. Alternately, some people use evite (www.evite.com) to automate this process, which presents a Web page and allows users to label times “Works Great,” “Is OK,” “Rather Not,” or “Can’t Make It”. Students we interviewed reported frustration because often optimal times are just before or after those proposed by the coordinator; making a counter-offer requires another round of e-mail and requires waiting for everyone else to respond.
2. Aggregation. The coordinator sends an e-mail asking for everyone’s time constraints, which he/she may visualize in a spreadsheet. The coordinator then selects a time for the meeting and e-mails everyone. Students cite the extra effort for the coordinator as a problem, as well as the mercurial nature of their schedules: often they will be trying to schedule two or three meetings simultaneously and by the time the coordinator chooses a time, they may no longer be available.

Our approach will combine the best of both worlds. The system is endowed with agent qualities to dynamically adjust its scheduling questions as it learns about the participants’ preferences and commitments. We free the coordinator from the responsibility of choosing time slots. Potentially users may find that taking a couple minutes to inform the system of their time commitments pays huge dividends later in that the system is more likely to come up with meeting times that satisfy everyone. At the same time we gain the benefits of aggregation, with no additional burden to the coordinator. We also aggregate data about preferences across events, and can automatically prevent people from double-booking themselves.
One of the barriers Grudin cites to widespread use of groupware is the effort required to maintain a calendar. In designing for uncertainty, we accept upfront that users will not maintain accurate calendars. Users can supply as much or as little information as they want. They still have to indicate their preferences for a sample of time slots, but if we can make it easy for them to share details of their schedules at that time (e.g. 9 PM is bad but 9:30 is OK) we can build up knowledge and create a solution that is as least as effective as Evite.
Grudin and Palen also demonstrated that the privacy of a user’s schedule is an important factor. For this reason we decided against an interface whose primary mode of interaction was a public “My Schedule” page. We believe that we can address this by allowing users to issue each other “passes” to see each others’ free-busy times that may last a quarter to enable future meetings to be scheduled. This could be easily extended to allow pairs of users to grant each other access to view their schedules, rather than initiate a formal meeting scheduling process.
We found that a large number of students, even those who don’t use calendaring software, build a schedule for weekly commitments in Excel. This indicates that users are willing to input their weekly schedules once per quarter; if we can support this behavior at least as well as Excel we may be able to replace Excel for this purpose. Even having this data alone for two or three people in a meeting group is a huge step beyond Evite.
Based on our contextual inquiry, we have decided a Web-based approach is most appropriate. Students do not standardize on any one scheduling tool, mitigating the utility of an Outlook plugin. However, everyone who has access to e-mail also has access to the Web, and the success of Evite demonstrates its viability as a scheduling medium. We remove a couple of weaknesses of the Evite model, though, by allowing more flexibility for people to respond, dynamically reshaping the options presented as time goes on, and allowing users to estimate the probability of a given meeting time being accepted before proposing it.
After seeing how fervently some people use Outlook, iCalendar, and Excel, we decided it would be ideal to allow users a way to synchronize these tools with the system. Outlook already allows users to automatically publish their free-busy times to a Web server, meaning Outlook users could potentially always be in synch with no additional work on their part. Importing Excel files or allowing users to copy in their schedules from Axess would make entering their weekly schedules easier.
Further Evidence

We plan to recruit participants from cs147 and ask them to schedule meetings with each other in groups of six. We will ask the students to cc us on all correspondence related to the scheduling process, enabling us to capture live streams of actual scheduling negotiations. We’ll follow up with a questionnaire or interview to ask students about their experience with the scheduling process. In addition to the amount of time spent on checking and responding to scheduling e-mail, we also plan to measure the participants’ satisfaction with the meeting time selected. These measures will be used as benchmarks for comparison. Most importantly, we hope to do paper prototyping to refine our interface.

Evaluation Plan

Due to the time constraint of a short quarter, we can only use paper prototype for the evaluation.

For the experimental group, a paper prototype will be used to simulate returning users of the online scheduling application. Participants will give the experimenter copies of their calendars beforehand to establish a realistic scenario. On the day of experiment, participants (in groups of four, gender matched) will have a randomly chosen coordinator. The inviter will then enter the lab to work with the prototype. After that, the invitees will work with the prototype one at a time (in a random order) and try to reach a consensus with the rest.

We are considering doing an additional control group, simulating traditional e-mail based scheduling with a paper prototype of an e-mail client to attempt to replicate the same conditions of the experimental group.
We plan to compare the workflow in both conditions, and measure the efficiency and satisfaction level of both meeting inviters and invitees, as well as the satisfaction with the meeting time chosen.
