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Abstract

Normalizing flow models have risen as a popular solution to the problem of
density estimation, enabling the ability to perform both high-quality synthetic data
generation as well as exact probability density evaluation. However, in contexts
where individuals are directly associated with the training data at hand, releasing
such a model raises natural privacy concerns. In this work, we propose the use
of normalizing flow models that provide explicit differential privacy guarantees
as a novel approach to the problem of privacy-preserving density estimation. We
evaluate the efficacy of such an approach empirically using benchmark datasets
and demonstrate that the proposed method substantially outperforms previous
state-of-the-art approaches.

1 Introduction

The task of density estimation concerns the construction of an estimate, given observed data, of
an unknown probability density function. Typically the construction of this estimate allows one to
perform a variety of tasks of interest, including log likelihood evaluation as well as synthetic data
generation. In contexts concerning sensitive data, the construction and subsequent release of such
an estimate could very well leak potentially private information. For example, without explicitly
asserting a rigorous privacy guarantee, nothing precludes the possibility of an individual’s data
appearing in the synthetic data generated by the model, disproportionate density being assigned to a
point corresponding to them, or any other vulnerability due to arbitrary analysis of the learned model
parameters. Since density estimation remains a task of interest to the modeling community, continued
attention is required to address how such approaches respect participant privacy.

Differential privacy [15] has emerged as the predominant notion for privacy in the context of statistical
data analysis. At a high level, differentially private analyses assert a bound on the extent to which
their output distribution can change due to the inclusion or exclusion of any one individual from the
analysis. Algorithms which adhere to this notion exhibit a number of desirable properties, including
privacy guarantees which hold regardless of the auxiliary information an adversary may have and
composition of privacy guarantees across multiple analyses. Hence differential privacy acts as a
compelling gold standard in the design of privacy-preserving analyses.

Tools for density estimation are of longstanding interest due to their versatility. Their ability to
address a wide range of tasks concerning a distribution is precisely why the existence of an accurate
and privacy-preserving density estimation would be surprising. For example, the private construction
of such a model implicitly yields a differentially private approach to anomaly detection—a task
of substantial previous investigation [3, 33, 18]—through an immediate application of likelihood
evaluation. In addition, given that density estimators often enable efficient sampling, such a model
would yield a viable method for privacy-preserving synthetic data generation. This task in particular
has been of longstanding interest to the privacy community [39] as it addresses many of the limitations
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imposed by the query model [14] by allowing large numbers of arbitrary analyses. Privately generating
a synthetic dataset only incurs a fixed privacy cost during the generation process; all subsequent
queries on the synthetic data are automatically differentially private due to the privacy notion’s
post-processing guarantee, so the privacy cost does not scale with the number of analyses performed.

Normalizing flow models present themselves as a particularly attractive approach to the task of
density estimation due to their proven empirical ability to approximate arbitrary, high-dimensional
distributions. These models approach the task of density estimation via a transformation on a chosen
base density by a sequence of invertible, non-linear transformations, enabling density querying on the
resulting distribution via an application of the change-of-variables formula. Approaches to density
estimation in this manner include: Non-linear Independent Components Estimation (NICE) [9], Real
NVP [10], Glow [27], and Masked Autoregressive Flows (MAF) [36]. It was an open question
whether normalizing flow models could be constructed in a differentially private manner to handle
the task of privacy-preserving density estimation, combining the rigorous guarantees of differential
privacy with the strong empirical performance exhibited by normalizing flows.

In this work we propose the use of normalizing flow models, trained in a differentially private
manner, as a novel approach to the task of privacy-preserving density estimation. We outline an
algorithm (DP-NF, Algorithm 1 in Section 3) that privately optimizes the model parameters via
gradient descent according to DP-SGD [1], an application of Gaussian noise to clipped gradient
updates which achieves differential privacy guarantees. Additionally, rather than perform composition
under Rényi differential privacy [31] using the moments accountant (MA) [1], we achieve tighter
privacy guarantees via composition under the recently introduced notion of Gaussian differential
privacy [11]. We apply this optimization to the parameters of a Masked Autoregressive Flow [36], our
primary architecture of consideration, and achieve empirical results (Section 4) which significantly
outperform relevant previous approaches.

1.1 Related Work

Gaussian mixture models (GMMs) are known to be a particularly strong density estimation baseline
[35] given that they are a universal approximator of densities - that is, they are able to approximate
any density function arbitrarily well given a sufficient number of components [30]. They approach
the task of density estimation through a weighted sum of Gaussian distributions, parameterized in
full by their respective means, covariance matrices, and weights. The first differentially private
algorithm for learning the parameters of a Gaussian mixture model comes from the work of [32]
which makes use of their sample-and-aggregate framework to convert non-private algorithms into
private algorithms, applied to the task of learning mixtures of Gaussians. However, their approach
exhibits strong assumptions on the range of the parameter space and assumes a uniform mixture of
spherical Gaussians in their investigation. Follow-up work of [25] proposes a modernized approach
which improves upon the sample complexity of the aforementioned work and removes the strong a
priori bounds on the parameters of the mixture components, although it makes the assumption that
the components of the mixture are sufficiently well-separated.

There has also been work in learning the parameters of a Gaussian mixture model through differen-
tially private variants of expectation maximization (EM). One notable instance of this is DPGMM
[41], which achieves a privacy guarantee at each iteration of EM through the addition of calibrated
Laplace noise to the estimated parameters following the maximization step. These individual privacy
guarantees are then combined into an overall privacy guarantee via sequential composition, i.e., by
taking their sum. The work of [37] follows a conceptually similar approach of applying either cali-
brated Laplace or Gaussian noise to the parameters of the model at the end of each EM iteration, but
demonstrates significantly better privacy guarantees through composition via the moments accountant
and zero-concentrated differential privacy (zCDP) [6]. Given that their work makes no significant
assumptions about the task and provides an empirical evaluation of their methods, this is likely the
closest in nature to our approach. As such, is included as a baseline in our experimental results.

In addition, we take note of more classical approaches to the task of privacy-preserving density
estimation. One of the simplest yet most widely used methods for density estimation is through the
use of histograms, and previous work [8] has investigated their private estimation. Unfortunately, such
an approach scales poorly with the dimension and complexity of the distribution while asserting an
unrealistic discretization of the space. Kernel density estimation is another closely related approach,
often characterized as the smooth analog to the classical discrete histogram. The work of [22]
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proposes a method for privately querying the density of such an estimator through the addition of
calibrated Gaussian noise. As a non-parametric approach, it has the drawback that it requires storage
of the entire dataset at test time to enable querying (proving impractical for large-scale datasets) while
still degrading similarly with dimension.

We also include a brief overview of the extensive literature concerning density estimation via
normalizing flows. One important subset are those characterized by coupling layers: transformations
which partition the dimensions of its input and map them in an way which retains invertibility while
maintaining a tractable Jacobian. This includes Non-linear Independent Components Estimation
(NICE) [9], as well as its subsequent generalization Real NVP [10]. Another notable approach,
Glow [27], makes use of such coupling layers while also proposing the use of an invertible weight
matrix decomposition to generalize the notion of permutation layers. Alternatively, some make use
of autoregressive transformations, which are transformations that utilize the chain rule of probability
to represent a joint distribution as a product of its conditionals. Such models include Masked
Autoregressive Flow (MAF) [36], a generalization of Real NVP optimized for density estimation,
as well as its closely related Inverse Autoregressive Flow [28] optimized for variational inference,
among others [34, 23].

2 Preliminaries

2.1 Normalizing Flows

Let p(·) be the probability density function characterizing an unobservable distribution of interest,
and let X = {x(1), . . . ,x(n)} be n observed i.i.d. samples from this distribution. The task of
density estimation is to find an approximation of p(·) via some model pθ(·) givenX . In the context
of normalizing flows, this model is characterized by a prior distribution q(·), chosen to exhibit a
simple and tractable density (e.g. the spherical multivariate Gaussian distribution), and a sequence
of K bijective functions fθ = f1 ◦ f2 ◦ . . . fK , in full parameterized by θ. fθ in this case acts as a
transformation between the prior distribution q(·) and the approximated distribution pθ(·).

Given such a model, it can be used to efficiently sample x ∼ pθ by first sampling z ∼ q and then
transforming the sample as x = fθ(z). If pθ is a good approximation of p, then this generative
process gives an efficient (approximate) oracle for sampling from the unknown distribution.

Since fθ is invertible, one can also perform exact likelihood evaluation on observed points from the
data distribution via the change of variables formula, as follows:

log pθ(x) = log q(f−1θ (x)) + log
∣∣∣det

(
∂f−1

θ (x)

∂x

)∣∣∣ = log q(f−1θ (x)) +
∑K
i=1 log

∣∣∣det
(
∂f−1

i (x)

∂x

)∣∣∣.
Finding a good approximation pθ is achieved through optimization of θ so as to minimize the negative
log likelihood of the observed dataset: L(θ) = − 1

N

∑N
i=1 log pθ(x(i)). In practice, one will typically

find the MLE θ∗ = arg minθ L(θ) using some non-convex optimization method, such as stochastic
gradient descent.

2.2 Differential Privacy

Differential privacy [15] has become the gold standard for ensuring the privacy of statistical analyses
applied to sensitive databases. On a high level, it ensures that changing a single entry in the database
will have only a small change in the distribution of analysis results.

Definition 1 ([15]) A randomized algorithmM : D → R satisfies (ε, δ)-differential privacy (DP)
if for any two input database D,D′ ∈ D that differ in a single entry and for any subset of outputs
S ⊆ R, it satisfies: Pr[M(D) ∈ S] ≤ eεPr[M(D′) ∈ S] + δ.

One common algorithmic approach for achieving differential privacy is adding noise that scales with
the sensitivity of the function being evaluated, which is the maximum change in the function’s value
that can result from changing a single data point. Differentially private algorithms are robust to
post-processing, meaning that any data-independent function of a differentially private output retains
the same privacy guarantee, and they enjoy composition, meaning that the privacy parameters degrade
gracefully as additional analyses are performed on the dataset. The simplest version of composition
is that the privacy parameters ε and δ “add up” over multiple analyses.
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Differentially Private Stochastic Gradient Descent was introduced in [1] as an approach to private
non-convex optimization. At each step t, DP-SGD subsamples1 a small set of data points and uses this
batch to compute a gradient update. To achieve a differential privacy guarantee, DP-SGD achieves
adds mean-zero Gaussian noise to the average of the per-example gradients. The standard deviation
of this noise must scale with the sensitivity of the gradient estimation, although naturally this is
unbounded by default, so the algorithm first clips each of the per-example gradients to ensure that
each of their `2 norms is at most C, and then adds noise which scales with C.

[1] also introduced the moments accountant, which provided tight privacy composition across
multiple gradient update steps in DP-SGD. To describe the moments accountant, given an algorithm
M and two neighboring datasets D,D′, first we denote the privacy loss of a particular outcome
o as L(o) = log(Pr(MD = o)/Pr(MD′ = o)). The moments accountant calculates a privacy
budget by means of bounding the moments of the privacy loss random variable L(o). That is, if
we consider the log of the moment generating function (MGF) of the privacy loss random variable
evaluated at λ, i.e. αM(λ;D,D′) = logEo∼MD [eλL

(o)

], the worst case over all neighboring
databases maxD,D′ αM(λ;D,D′) composes linearly across multiple mechanisms (Theorem 2.1 [1])
and allows for conversion to an associated (ε, δ)-differential privacy guarantee through the relation
δ = minλ exp[αM(λ)− λε].

Figure 1: Cumulative privacy loss ε given Life
Science training parameters (q = b/N =
100/21384 = 4.676 × 10−3, σ = 2.1, δ = 1 ×
10−4) as a function of training iterations.

Follow up work of [11] has provided an alterna-
tive analysis for DP-SGD utilizing privacy com-
position under the framework of µ-Gaussian
differential privacy, which acts as the basis for
our analysis. Noting that each iteration of DP-
SGD achieves a µ-GDP guarantee depending
on the standard deviation of noise applied to
gradient updates, the overall privacy guarantee
corresponding to k applications, each satisfy-
ing µi-GDP, is

√
µ2
1 + µ2

2 + . . . µ2
k-GDP. One

is then able to convert this overall µ-GDP guar-
antee to a corresponding (ε, δ)-differential pri-
vacy guarantee by noting that an algorithm is
µ-GDP if and only if it is (ε, δ(ε))-differentially
private for all ε ≥ 0, where δ(ε) = Φ(− ε

µ +
µ
2 )− eεΦ(− ε

µ −
µ
2 ) and Φ(·) is the cumulative

density function of the Normal distribution.

3 Differentially
Private Normalizing Flows

In this section we introduce our algorithm for
differentially private density estimation via normalizing flows, DP-NF, presented in Algorithm 1 and
based on the DP-SGD algorithm of [1], a differentially private method for performing stochastic
gradient descent. We also briefly discuss performance improvements based on the data-dependent
initialization of normalization layers and the use of a differentially private estimate of the distribution
to act as a prior. We emphasize that our primary technical contribution is not in the design of these
algorithms, but rather the novel application of these tools to the problem of differentially private
density estimation in a way that yields substantial performance over prior work, as demonstrated by
our empirical results in Section 4.

Training a normalizing flow model corresponds to minimizing the loss function L(θ) =

− 1
N

∑N
i=1 log pθ(x(i)). This loss function is non-convex when applied to the optimization of a

non-linear normalizing flow model, and hence optimization is typically performed via gradient de-
scent on θ. To make this training private in Algorithm 1, we update θ using the DP-SGD algorithm of
[1] described in Section 2.2, with some subtle yet important augmentations to the standard minibatch
gradient descent process to allow for an explicit privacy guarantee, in accordance with DP-SGD.

1The original algorithm of [1] does this via Poisson subsampling, but can also be done via Uniform
subsampling [40] and retain a privacy guarantee.
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First, batches are sampled via uniform subsampling, i.e., sampled such that each possible batch of
size b has equal likelihood of being chosen (as opposed to repeatedly shuffling the dataset and taking
equally sized partitions of the dataset, which is often preferred in practice). Second, rather than
computing the gradient with respect to the entire batch, the gradient with respect to each individual
data point is calculated, clipped to have maximum `2 norm C, averaged, then added with a randomly
sampled Gaussian noise vector.

Algorithm 1 also requires a privacy accountant to be specified as input. This privacy accountant
will dynamically track the ε privacy loss incurred by composition over all gradient update steps as a
function of the training parameters, and will halt the algorithm once a pre-specified budget is reached.
Common choices for this accountant include the moments accountant (MA) [1] or composition via
Gaussian differential privacy (GDP) [11]. In our experiments in Section 4, we yield preferable results
using a GDP privacy accountant.

In summary, DP-NF in Algorithm 1 is a modified version of DP-SGD, instantiated to train a normal-
izing flow model with the analyst’s choice of privacy accountant.

Algorithm 1 DP-NF, differentially private density estimation via normalizing flows

1: Input: Dataset X = {x(1), . . . ,x(n)}, initialized parameters θ, learning rate η, batch size b,
noise scale σ, upper-bound on `2 norm of per-example gradient C, training privacy budget ε,
training privacy tolerance δ, privacy accountant P .

2: t← 1
3: while P (t, b/n, σ, C, δ) < ε do
4: Take a uniformly random subsample It ⊆ {1, . . . , n} with batch size b.
5: for i ∈ It do
6: g

(i)
t ← ∇θ − log pθ(x(i))

7: ḡ
(i)
t ← g

(i)
t /max{1, ||g(i)t ||2/C}

8: end for
9: θ ← θ − η( 1

m

∑
i ḡ

(i)
t +N (0, σ2C2I))

10: t← t+ 1
11: end while
12: Output θ

The privacy guarantees of DP-NF follow immediately from those of DP-SGD [1] when instantiated
with the moments accountant, and from NoisySGD [5] when instantiated with the Gaussian differential
privacy accountant.

In practice, one will find that many deep learning models (including the normalizing flow models used
in our experiments) are much better optimized using adaptive learning rate optimization schemes.
Given this, we found significant benefit in using a direct extension to DP-SGD which applies noisy
gradients to the model according to the Adam [26] optimizer. Both methods achieve identical privacy
guarantees given that computation of the first and second moments of the noisy gradients are merely
deterministic data-independent functions of them. Thus they differ only in the post-processing of the
noisy gradients, and the privacy guarantees are unchanged.

Differentially Private Data-Dependent Priors. Section 2.1 suggested the analyst choose a data-
independent prior q, such as the multivariate spherical Gaussian. However, recent work suggests
that modest improvements in empirical results can be achieved through the use of more complex
priors, such as a mixture of Gaussians [36], or by fitting a Gaussian mixture model to the data [24].
A natural privacy-preserving approach would be to first use DP-EM [37] with privacy budget (ε1, δ1)
to estimate a prior, and then refine the prior using DP-NF with privacy budget (ε2, δ2) to yield an
encompassing normalizing flow model. This process would be (ε1+ε2, δ1+δ2)-differentially private,
and may yield preferable results in contexts where the distribution at hand is highly discontinuous,
but also locally nonlinear.

Data-Dependent Initialization of Normalization Layers. Intermediate normalization layers such
as activation normalization [27] have been proposed as a means to improve the stability of normalizing
flow models. Activation normalization is characterized by an offset and scaling of its inputs feature-
wise by a learned set of parameters b and w, i.e., (x(i) − b)/w. In practice, these parameters are
typically set via data-dependent initialization [38] by setting b andw as the per-feature means and
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Figure 2: Dimension-wise histograms of synthetically generated Life Science data, superimposed
over real data, for ε = 0.5 and δ = 10−4. Top two rows: DP-NF. Bottom two rows: DP-EM. Note
that synthetic data from DP-NF represents the real data well, while DP-EM is relatively unable to to
capture concentrated regions of density in the real data.

standard deviations observed throughout a forward pass of a sampled batch of data. These parameters
can also be estimated privately, e.g., by applying the Laplace Mechanism [15] to the clipped mean
and standard deviation, thus allowing for data-dependent initialization of these normalization layers.

4 Experimental Results

4.1 Datasets, Implementation, & Setup

The Life Science dataset is a standard density estimation benchmark dataset from the UCI machine
learning repository [12] containing 26,733 real-valued records of dimension 10. This dataset was
used in the original evaluation of our baseline model [37].

Experiments were run on a machine with 2 CPUs, 13 GB RAM, and a single NVIDIA Tesla K80
GPU, and took on the order of half an hour to five hours to run in wall-time, depending on the number
of iterations and the dimensionality of the dataset. Models were implemented in the Jax [4] deep
learning framework, and used privacy accounting implementations from TensorFlow Privacy [17].

Hyperparameter Search and Model Selection. Reported privacy budgets in our results correspond
only to the training of each model, and does not include privacy loss from hyperparameter search and
model selection. We chose not to selecting hyperparameters in a privacy-preserving manner because
this was not the focus of our contribution and because it was not done in our baseline method.2 It was
generally observed that choices in network structure itself had relatively negligible impacts on results.
We found that training parameters such as the gradient clipping bound and batch size had a much
more substantial impact on model performance, which is consistent with observations made in [1].

2These can be done privately. For example, [21] provides discrete optimization methods that can be used for
private hyperparameter search over discrete model architectures. [2] uses Report Noisy Max [16] for private
model selection. Some work has also been done to account for high-performance models without having to
spend a significant privacy budget [7, 29].
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Figure 3: Average test log likelihood across ten independent cross-validation splits as a function
of the cumulative privacy loss ε. Left: Reproduced version of Figure 3 [37] with the inclusion of
DP-NF. Right: Figure cropped to region of peak performance. DP-EM was configured to use the
Gaussian mechanism and with 3 components, as per the original work. DP-NF composed with GDP
(as well as MA for fair comparison). δ fixed to 10−4, approximately the inverse of the number of
training examples in each split.

Table 1: Average test log likelihood for varying privacy budgets ε. Error bars denote standard
deviation over ten independent cross-validation splits. Bolded results denote best performing model
for a given ε.

Life Science
δ = 1.00× 10−4 ε = 0.50 ε = 1.00 ε = 2.00 ε = 4.00

DP-NF (GDP) 9.29 ± 0.18 9.83 ± 0.12 10.49 ± 0.09 11.01 ± 0.24
DP-NF (MA) 8.99± 0.17 9.63± 0.12 10.37± 0.09 11.01± 0.18

DP-EM (MA) 1.96± 0.27 5.16± 0.20 8.67± 0.06 9.29± 0.06
DP-EM (zCDP) −9.91± 0.49 −0.87± 0.37 2.51± 0.28 5.48± 0.18

Model Architecture. The architecture of the model used in our experiments was a variant of a
Masked Autoregressive Flow (MAF) [36] composed of a repeated sequence of five blocks, each
containing a MADE [19] layer, a reversal layer, and an optional activation normalization layer.
Models were optimized via Adam, with default parameters of β1 = 0.9 and β2 = 0.999.

4.2 Density Estimation Tasks

We implemented our algorithm for differentially private normalizing flows on the Life Science dataset,
and evaluated our performance against the baseline of DP-EM [37] for a variety of quantitative and
qualitative metrics related to density estimation tasks.

First, Figure 2 shows that DP-NF provides a qualitative increase in sample quality under visualization.
It presents dimension-wise histograms of synthetically generated features for all 10 features of the
Life Science dataset, using DP-NF (top two rows) and DP-EM (bottom two rows) for comparison.
Both methods used ε = 0.5 and δ = 10−4. In every plot, the synthetic data in orange is superimposed
over the real data in blue. We qualitatively see that for nearly all ten features, the distribution of data
generated by DP-NF closely matches that of the real data, while DP-EM was relatively unable to
replicate regions of concentrated density for certain dimensions. This could be due to the fact that
that for a fixed number of components, the DP-EM model is constrained to cover the support of the
distribution and must ignore nuanced details. Normalizing flow models, on the other hand, have
heightened expressiveness over traditional statistical methods like Gaussian mixture models, and we
see that they are able to capture these nuances more readily.

Next we move to quantitative performance measures, and Figure 3 presents average log likelihood
assigned to a held out test set under DP-NF and the baseline method DP-EM [37] as a function
of ε. We divided the dataset into 10 pairs of training (90%) and test sets (10%), and reported the
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Figure 4: Synthetically generated Life Science data for ε = 2, 4, and 6, projected to two dimensions
via PCA. Top row: DP-NF. Bottom row: DP-EM. Right: Real data. Note the compression to the
left of the distribution of real data that is captured by DP-NF as ε increases, but not present in the
synthetic data generated by DP-EM.

average test log likelihood per data point across the 10 independent trials. Better methods should
assign higher log likelihood for points in the held out test set since these points were indeed sampled
from the underlying distribution of interest. We found that DP-NF reliably assigned much higher
likelihoods to holdout data than that of DP-EM for identical privacy budgets, across a variety of
privacy accountant methods.

The privacy guarantees of DP-NF proved quite practical, providing substantial privacy improvements
over DP-EM for the same model performance. For example, DP-NF matched the peak performance
of DP-EM (achieved around ε ≈ 4) for only an expenditure of ε ≈ 0.5. These results are also listed
in Table 1 with error bars showing standard deviation across 10 independent runs.

[37] showed performance of DP-EM under several different privacy accountant methods, with the
moments accountant of [1] providing the best performance. We compared DP-NF using the moments
accountant for fair comparison, and using the novel Gaussian differential privacy (GDP) accountant
of [5]. Figure 3 and Table 1 show that DP-NF outperforms DP-EM for all privacy accountant methods
considered for either model, emphasizing that while the GDP accountant does provide some benefit,
the vasy majority of the performance improvements come from the DP-NF method itself.

As another qualitative evaluation of sample visualization, Figure 4 shows the density of synthetic data
generated by each model when projected to two dimensional space via PCA, for varying ε values.
The top row shows DP-NF, the bottom row shows DP-EM, and the right figure shows the real data. In
all plots, lighter pixels correspond to regions of higher density, and dark pixels indicate lower density.
We see that DP-NF is better able to capture some of the observable qualities exhibited in the real data,
for example the gradual compression of density to the left of the distribution.

5 Conclusion

In this work, we have demonstrated the efficacy of differentially private normalizing flow models as a
novel approach to the task of privacy-preserving density estimation. We have shown the ability of
these models to assign high likelihoods to holdout data and generate qualitatively realistic synthetic
data, improving on existing state-of-the-art methods. Going forward, there exist several interesting
directions for further development. For example, it remains to be seen how normalization layers such
as activation normalization, whose parameters are likely disproportionally sensitive to perturbation
during differentially private optimization, could be better adapted to such. Further, in this study we
only considered a particular subset of normalizing flows in existence. Although, many alternative
neural density estimators capable of expressing highly discontinuous distributions are in continuous
development, including FFJORD [20], Neural Spline Flows [13], Neural Autoregressive Flows [23],
and Transformation Autoregressive Networks [34].
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