Fair NLP

May 6, 2020 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning Stanford University

Recap

- Basic Data Preprocessing Techniques for Fairness
- The Expected Joint Distribution Under $Y \perp A$

$$P_{exp}(Y = y, A = a) = P(Y = y) \cdot P(A = a)$$
$$= \frac{|\{x \in \mathcal{D} | x_Y = y\}|}{|\mathcal{D}|} \cdot \frac{|\{x \in \mathcal{D} | x_A = a\}|}{|\mathcal{D}|}$$

Our Observed Joint Distribution

$$P_{obs}(Y = y, A = a) = \frac{|\{x \in \mathcal{D} | x_Y = y, x_A = a\}|}{|\mathcal{D}|}$$

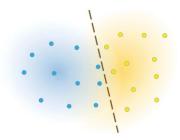
Resample/Reweigh Data to Match Expected Distribution

Recap

• Reweighting

$$W(x) = \frac{P_{exp}(Y = x_y, A = x_a)}{P_{obs}(Y = x_y, A = x_a)}$$

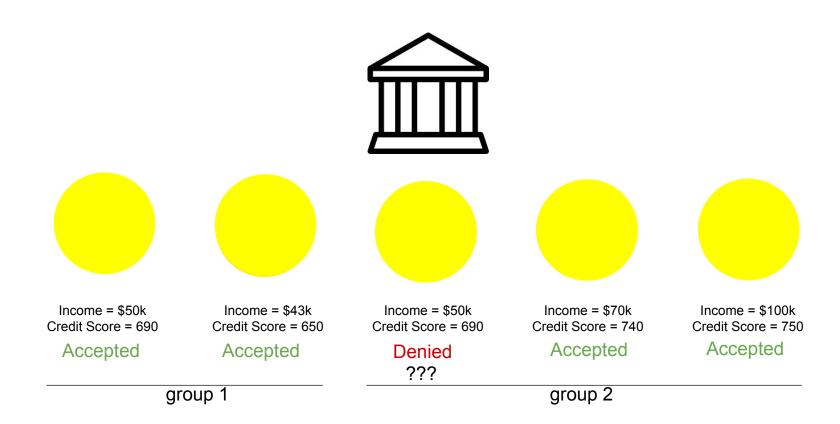
- Resampling
 - Universal Sampling
 - Sample uniformly
 - Preferential Sampling
 - Sample based on model uncertainty



Outline

- Fairness Through Data/Prediction Manipulations
 - Individual Fairness
 - Optimized Pre-processing
 - Learning to Defer
- Fair NLP
 - Biases in NLP Models
 - Data Augmentation
 - Debiasing Word Embedding
 - Adversarial Learning

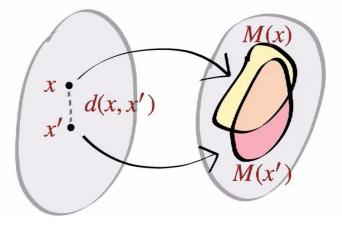
Individual Fairness



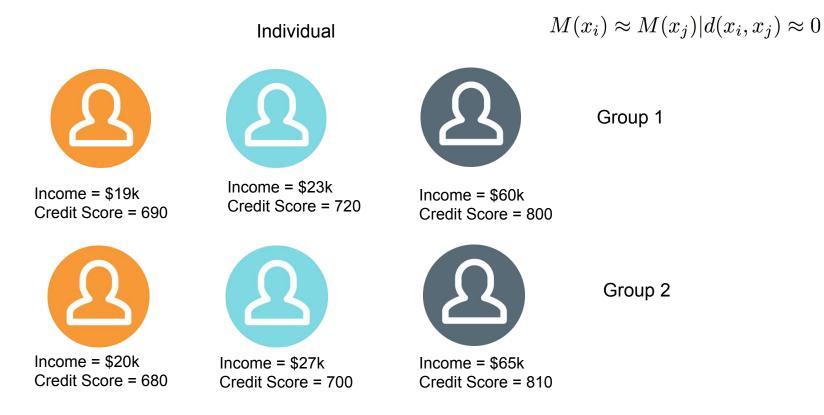
Individual Fairness

- A predictor M achieves individual fairness under a distance metric d iff
 - Similar Samples are treated similarly, in other words

$$M(x_i) \approx M(x_j) | d(x_i, x_j) \approx 0$$



Individual Fairness



Fairness Criteria

Individual Treatment	Group Treatment				
Fairness Through Unawareness	Demographic Parity				
Excludes Sensitive Information A from the predictor	$P(\hat{Y} = 1 A = 1) = P(\hat{Y} = 1 A = 0)$				
Individual Fairness	Equal Opportunity/Odds				
$M(x_i) \approx M(x_j) d(x_i, x_j) \approx 0$	$P(\hat{Y} = 1 A = 0, Y = 1) = P(\hat{Y} = 1 A = 1, Y = 1)$ $P(\hat{Y} = 1 A = 0, Y) = P(\hat{Y} = 1 A = 1, Y)$				

Outline

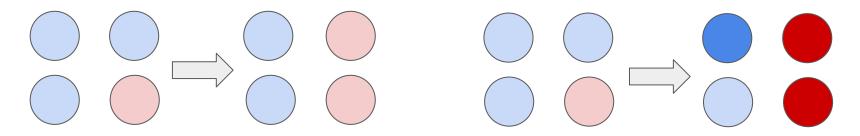
- Fairness Through Data/Prediction Manipulations
 - Individual Fairness
 - Optimized Pre-processing
 - Learning to Defer
- Fair NLP
 - Biases in NLP Models
 - Data Augmentation
 - Debiasing Word Embedding
 - Adversarial Learning

Optimized Pre-Processing for Fairness

- Can We Automate the Resampling Process?
 - Turn the the manual process into an optimization based approach
 - Include more criteria than Demographic Fairness
 - Allow transformations of data
- Optimized Pre-Processing
 - Given sensitive feature D, learn a probabilistic mapping $p_{\hat{X},\hat{Y}|X,Y,D}$ that transfers
 - Satisfies three constraints

$$\{(D_i, X_i, Y_i)\}_{i=1}^n \xrightarrow{p_{\hat{X}, \hat{Y}|X, Y, D}} \{(D_i, \hat{X}_i, \hat{Y}_i)\}_{i=1}^n$$

Resampling and Transforming



Resampling

Transforming

Constraint 1: Utility Preservations

- A Utility Function to Preserve the Joint Probability
 - e.g. KL Divergence

 $p_{\hat{X},\hat{Y}}$ \langle $p_{X,Y}$

transformed data

original data

Constraint 2: Discrimination Control

- Constrain the dependency of the target variable y given sensitive feature d to march target $p_{Y_T}(y)$
 - J distance measure $J(p,q) = \left| \frac{p}{q} 1 \right|$
 - $\circ ~~ \epsilon_{y,d}$ a small number used as our tolerance

$$J\left(p_{\hat{Y}|D}(y|d), p_{Y_T}(y)\right) \le \epsilon_{y,d} \,\forall \, d \in \mathcal{D}, y \in \{0,1\}$$

When $p_{\hat{Y}|D}(y|d) = p_{Y_T}(y)$, we achieve Demographic Parity

Calmon el al, 2017

Constraint 3: Distortion Control

• An Implementation of the Individual Fairness

 $M(x_i) \approx M(x_j) | d(x_i, x_j) \approx 0$

- The Mapped Sample \hat{X}, \hat{Y} Has to Stay Close to the Original Sample [x, y]
 - $\circ \ c_{d,x,y}$ tolerance
 - $\circ~\delta$ a similarity function
 - 1 very different
 - 0 very similar

$$\Pr\left(\delta((x,y),(\hat{X},\hat{Y}))=1 \mid D=d, X=x, Y=y\right) \le c_{d,x,y}$$

Calmon el al, 2017

Putting Things Together

$$\begin{array}{c|c} \min_{p_{\hat{X},\hat{Y}|X,Y,D}} & \Delta\left(p_{\hat{X},\hat{Y}},p_{X,Y}\right) & \text{Discrimination control}_{group \ fairness} \\ \text{s.t.} & J\left(p_{\hat{Y}|D}(y|d),p_{Y_T}(y)\right) \leq \epsilon_{y,d} \ \text{and} \\ & \mathbb{E}\left[\delta((x,y),(\hat{X},\hat{Y})) \mid D = d, X = x, Y = y\right] \\ & \leq c_{d,x,y} \\ & \uparrow \\ \end{array}$$

COMPAS Dataset

JAMES RIVELLI

Prior Offenses 1 domestic violence aggravated assault, 1 grand theft, 1 petty theft, 1 drug trafficking

Subsequent Offenses 1 grand theft

3

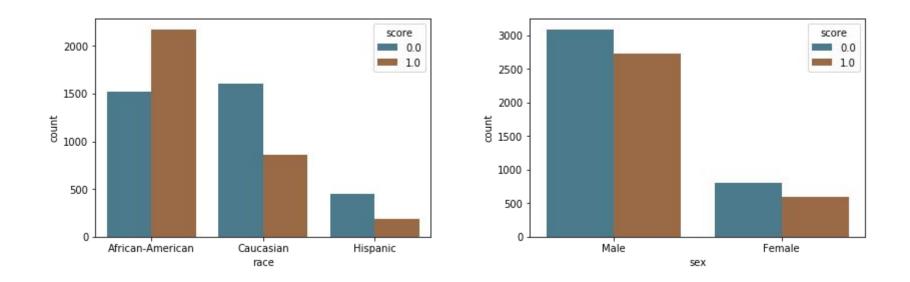
LOW RISK

ROBERT CANNON Prior Offense 1 petty theft Subsequent Offenses None

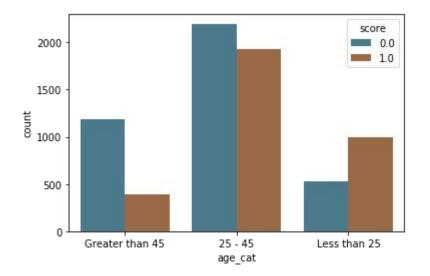
MEDIUM RISK

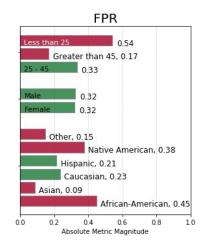
6

COMPAS Dataset

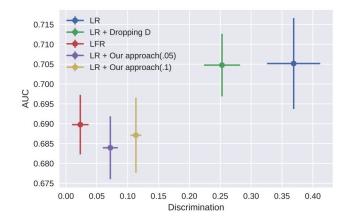


COMPAS Dataset



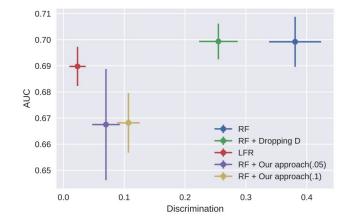


Results on COMPAS dataset



Logistic Regression

LFR - Learning Fair Representations (Zemel et al. 2013)



Random Forest

Calmon el al, 2017

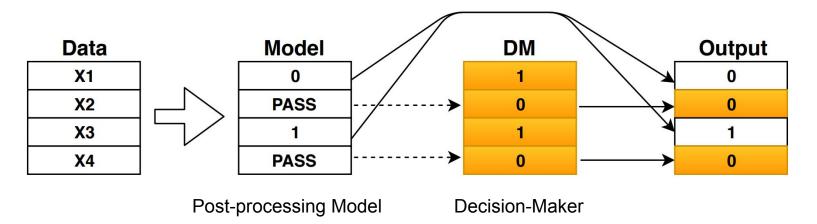
Outline

- Fairness Through Data/Prediction Manipulations
 - Individual Fairness
 - Optimized Pre-processing
 - Learning to Defer
- Fair NLP
 - Biases in NLP Models
 - Data Augmentation
 - Debiasing Word Embedding
 - Adversarial Learning

Post-Processing Methods for Fairness

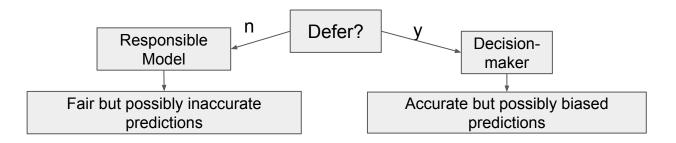
• Why Post-Processing?

- Flexibility: No need to fine-tune the ML model
- Model Agnostic: Can be applied across a wide range of models
- Learning to Defer



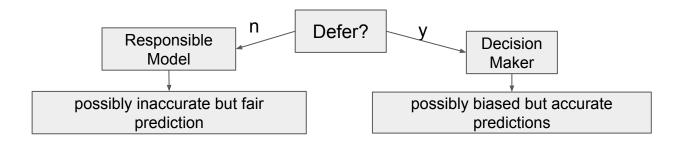
Learning to Defer

- Working Together with A Black-box Decision-maker Model
 - Decision-maker models (e.g. human) have access to important information that our model does not has
 - Decision-maker models might be biased
- Performance and Fairness Trade-offs
 - Fix the unfair predictions of the decision-maker model
 - Defer to the decision-maker the model is uncertain

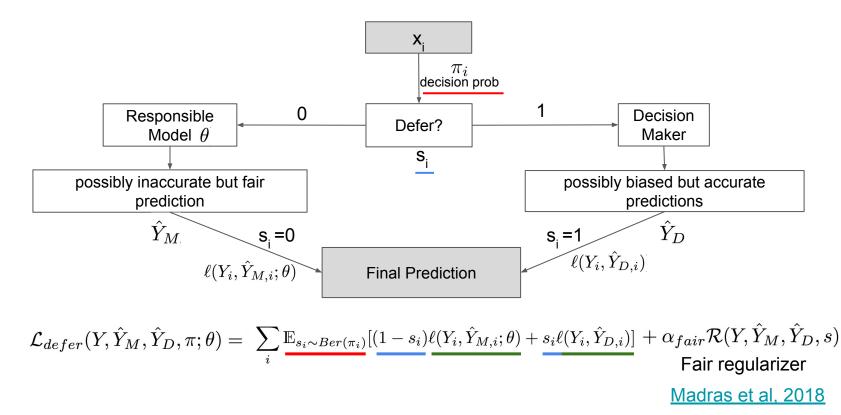


Learning to Defer

- Decision-maker Model
 - Considered as a black-box model
 - No fine-tuning, no access to its training data
- Responsible Model
 - Have access to additional data
 - Stick to fairness constraints



Training the Defer Model



Results on COMPAS

- DM Model
 - High-Accuracy DM has more data, Highly-Biased DM is extremely biased

0.78

0.76

0.74 0.72

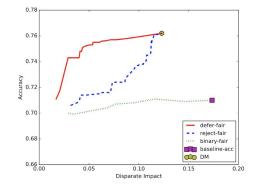
0.70

0.68

0.66

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.4

ACC



COMPAS, High-Accuracy DM

- DM Decision-maker model
- Defer Fair Learning to Defer
- Reject- Fair Only reject or accept DM

COMPAS, Highly-Biased DM

Disparate Impact

reject-fair

defer-fair

DM biased

baseline-acc

- Baseline Model trained only to optimize accuracy, no DM
- Binary Fair Baseline optimized
 with fairness

Madras et al, 2018

Outline

- Fairness Through Data/Prediction Manipulations
 - Individual Fairness
 - Optimized Pre-processing
 - Learning to Defer

• Fair NLP

- Biases in NLP Models
- Data Augmentation
- Debiasing Word Embedding
- Adversarial Learning

Biases of NLP Models

- Denigration
 - The use of culturally or historically derogatory terms
- Under-representation
 - The disproportionately low representation of a specific group
 - e.g., a classifier's performance is adversely affected due to sampling biases of the minority protected group
- Stereotyping
 - An over-generalized belief about a particular category of people
 - e.g., a classifier attributes man to computers more than woman
- Recognition
 - Algorithms perform different for protected groups because of their inherent characteristics
 - e.g., a voice recognition algorithm has better capabilities in recognizing voices in low frequency

Biases of NLP Models

Task	Example of Representation Bias in the Context of Gender	S				
Machine	Translating "He is a nurse. She is a doctor." to Hungarian and back to					
Translation	English results in "She is a nurse. He is a doctor." (Douglas, 2017)					
Caption Generation	An image captioning model incorrectly predicts the agent to be male					
	because there is a computer nearby (Burns et al., 2018).					
Speech	Automatic speech detection works better with male voices than female	v				
Recognition	voices (Tatman, 2017).					
Sentiment Analysis	Sentiment Analysis Systems rank sentences containing female noun					
	phrases to be indicative of anger more often than sentences containing					
	male noun phrases (Park et al., 2018).					
Language Model	"He is doctor" has a higher conditional likelihood than "She is doctor"					
	(Lu et al., 2018).					
Word Embedding	Analogies such as "man : woman :: computer programmer : homemaker"					
	are automatically generated by models trained on biased word					
	embeddings (Bolukbasi et al., 2016).	_				

(S)tereotyping, (D)enigration, (R)ecognition, (U)nder-representation

Sun et al, 2019

Outline

- Fairness Through Data/Prediction Manipulations
 - Individual Fairness
 - Optimized Pre-processing
 - Learning to Defer

• Fair NLP

- Biases in NLP Models
- Data Augmentation
- Debiasing Word Embedding
- Adversarial Learning

Data Augmentation

Biased Dataset Data Augmentation Original Data Augmented

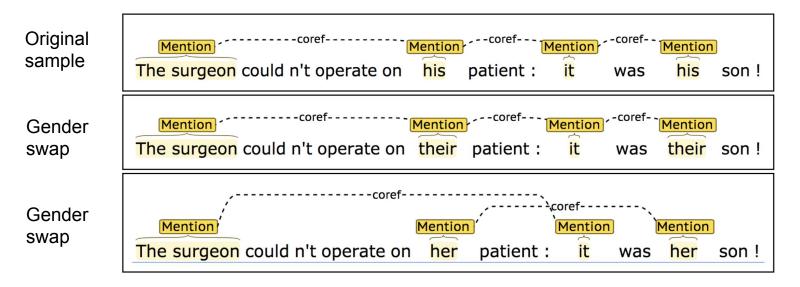
Data

Coreference Resolution

A man and his son get into a terrible car crash. The father dies, and the boy is badly injured. In the hospital, the surgeon looks at the patient and exclaims, "I can't operate on this boy, he's my son!

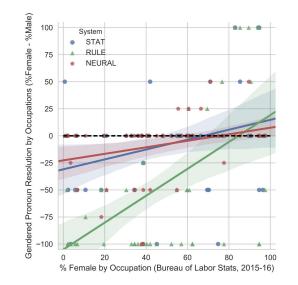
Does this paragraph make sense to you?

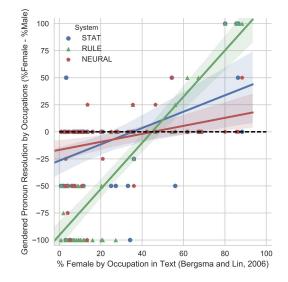
Gender Swapping in Coreference Resolution



Rudinger et al, 2018

Results





STAT- Statistical Model (<u>Durrett et al, 2013</u>) RULE - Rule Based Model (<u>Lee et al, 2011</u>) NEURAL - Neural Based Model (<u>Clark et al, 2016</u>)

Rudinger et al, 2018

Results

Method	Anon.	Resour.	Aug.	OntoNotes	T1-p	T1-a	Avg	Diff	Т2-р	T2-a	Avg	Diff
E2E				66.5	67.2	59.3	63.2	7.9*	81.4	82.3	81.9	0.9
E2E	\checkmark	\checkmark	\checkmark	66.3	63.9	62.8	63.4	1.1	81.3	83.4	82.4	2.1
Feature	\checkmark	\checkmark		61.2	61.8	62.0	61.9	0.2	67.1	63.5	65.3	3.6
Feature	\checkmark	\checkmark	\checkmark	61.0	62.3	60.4	61.4	1.9*	71.1	68.6	69.9	2.5

E2E (<u>Lee et al. 2011</u>) Feature (<u>Durrett et al. 2013</u>) Diff - Difference between pro/anti

Zhao et al, 2018

Outline

- Fairness Through Data/Prediction Manipulations
 - Individual Fairness
 - Optimized Pre-processing
 - Learning to Defer

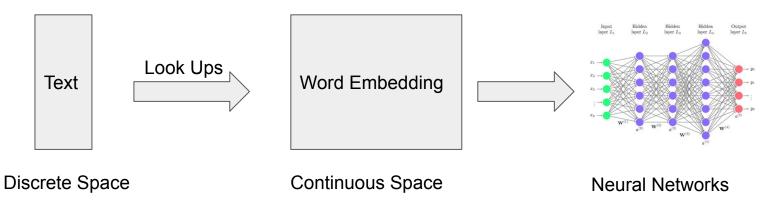
• Fair NLP

- Biases in NLP Models
- Data Augmentation
- Debiasing Word Embedding
- Adversarial Learning

Word Embeddings

• An Essential Part of Deep NLP Models

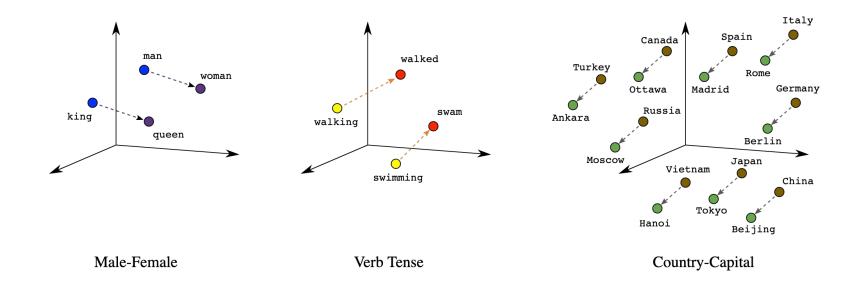
- Classifications (e.g., Sentiment Analysis)
- Text Generation (e.g., translation, summarization)
- Text Retrieval (e.g., Question Answering)
- Visual-Language Representations (e.g., Image Captioning)



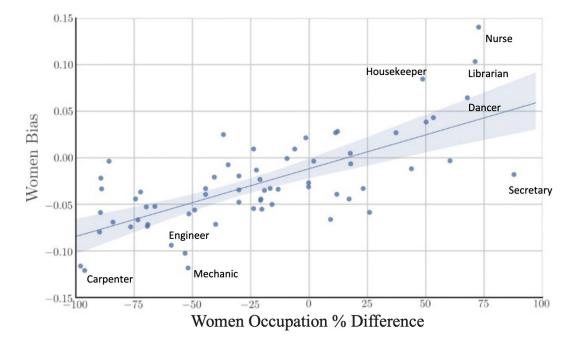
Word Embeddings

- Embedding Techniques
 - GloVe (Pennington et al, 2014)
 - Word2Vec (Rong et al, 2014)
- Trained Through A Proxy Task
 - Word proximity (GloVe)
 - SkipGram (Word2Vec)

Geometric Properties of Word Embeddings



Can Word Embedding Be Biased?



Types of Gender Associations

• Definitional Gender Associations

$$\overrightarrow{\mathrm{man}} - \overrightarrow{\mathrm{woman}} \approx \overrightarrow{\mathrm{king}} - \overrightarrow{\mathrm{queen}}$$

• Stereotypical Gender Associations

 $\overrightarrow{\text{man}} - \overrightarrow{\text{woman}} \approx \overrightarrow{\text{computer programmer}} - \overrightarrow{\text{homemaker}}$

Bolukbasi et al, 2016

Definitional and Stereotypical Associations

sewing-carpentry nurse-surgeon blond-burly giggle-chuckle sassy-snappy volleyball-football

Gender stereotype *she-he* analogies.

register-nurse-physician interior designer-architect feminism-conservatism vocalist-guitarist diva-superstar cupcakes-pizzas housewife-shopkeeper softball-baseball cosmetics-pharmaceuticals petite-lanky charming-affable hairdresser-barber

queen-king waitress-waiter Gender appropriate *she-he* analogies. sister-brother mother-father ovarian cancer-prostate cancer convent-monastery

Bolukbasi et al, 2016

Gender Subspace

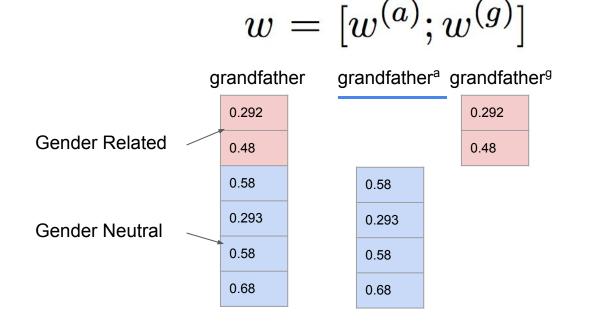
$$\overrightarrow{\text{grandmother}} - \overrightarrow{\text{grandfather}} = \overrightarrow{\text{gal}} - \overrightarrow{\text{guy}} = g$$

 $\overrightarrow{she} - \overrightarrow{he}$ $\overrightarrow{her} - \overrightarrow{his}$ $\overrightarrow{woman} - \overrightarrow{man}$ $\overrightarrow{Mary} - \overrightarrow{John}$ $\overrightarrow{herself} - \overrightarrow{himself}$

$$\overrightarrow{\text{daughter}} - \overrightarrow{\text{son}} \\ \overrightarrow{\text{mother}} - \overrightarrow{\text{father}} \\ \overrightarrow{\text{gal}} - \overrightarrow{\text{guy}} \\ \overrightarrow{\text{girl}} - \overrightarrow{\text{boy}} \\ \overrightarrow{\text{female}} - \overrightarrow{\text{male}}$$

Bolukbasi et al, 2016

 Decompose Word Embeddings Into Gender-Related and Gender-Neural Parts



Fine-tuning Word Embeddings Using Debiasing Regularizers

 $J = J_G + \lambda_d J_D + \lambda_e J_E$

Glove Loss Function Regulate Gender-related Words Regulate All Other Words

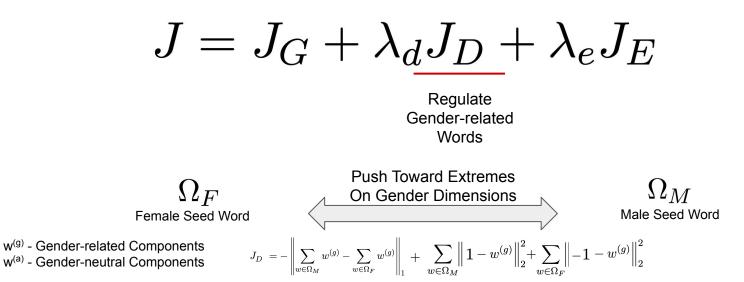
 Ω_F Female Seed Words

 Ω_N All Other Words

 Ω_M

Male Seed Words

• Fine-tuning Word Embeddings Using Debiasing Regularizers

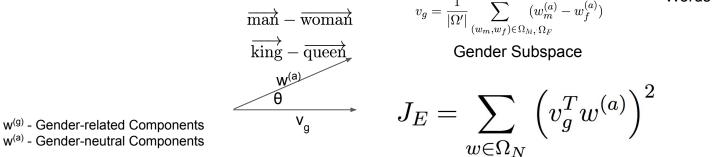


Zhao et al, 2018

Fine-tuning Word Embeddings Using Debiasing Regularizers

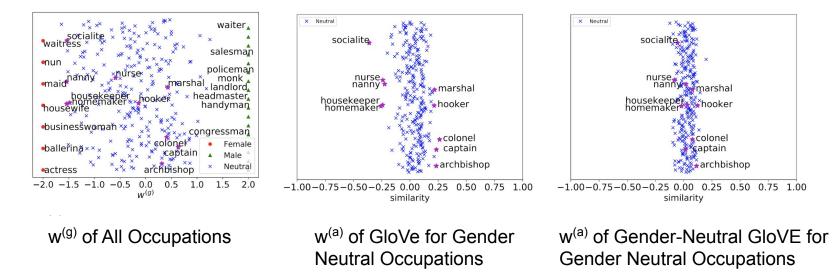
$$J = J_G + \lambda_d J_D + \lambda_e J_E$$

Regulate All Other Words



<u>Zhao et al, 2018</u>

Gender Attribute Separation



w^(g) - Gender-related Components w^(a) - Gender-neutral Components

Gender Relational Analogy

Question 1: Consider the following word pairs: pilgrim:shrine, hunter:quarry, assassin:victim, climber:peak. What relation best describes these X:Y word pairs?

(1) "X worships/reveres Y"(2) "X seeks/desires/aims for Y"

(3) "X harms/destroys Y"

(4) "X uses/exploits/employs Y"

Dataset	Embeddings	Definition	Stereotype	None
SemBias	GloVe	80.2	10.9	8.9
	GN-GloVe	97.7	1.4	0.9
SemBias (subset)	GloVe	57.5	20	22.5
	GN-GloVe	75	15	10

Jurgens et al , 2012

Coreference Resolution

Embeddings	OntoNotes-test	PRO	ANTI	Avg	Diff
GloVe	66.5	76.2	46.0	61.1	30.2
GN-GloVe	66.2	72.4	51.9	62.2	20.5
$GN-GloVe(w_a)$	65.9	70.0	53.9	62.0	16.1

w^(a) - Gender-neutral Components

Jurgens et al , 2012

Outline

- Fairness Through Data/Prediction Manipulations
 - Individual Fairness
 - Optimized Pre-processing
 - Learning to Defer

• Fair NLP

- Biases in NLP Models
- Data Augmentation
- Debiasing Word Embedding
- Adversarial Learning

Summary

- Optimized Pre-processing for Fairness
 - Optimizes several fairness criteria (Demographic Parity, Individual Fairness) at the same time
 - Transform data to meet criteria
- Post-processing Techniques for Fairness
 - Learning to Defer
 - Fix biased predictions from the decision-maker
 - Take advantage of high performance of the decision-maker model
- Word Debiasing
 - Separate gender specific and gender neutral embeddings
- Data Augmentation
 - Gender Swapping
- Adversarial Learning

Reading Assignments

- Gonen, Hila, and Yoav Goldberg. Lipstick on a Pig: Debiasing Methods Cover up Systematic Gender Biases in Word Embeddings But do not Remove Them, NAACL 2019
- Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Ryan Cotterell, Vicente Ordonez, and Kai-Wei Chang. Gender Bias in Contextualized Word Embeddings, NAACL 2019
- Marc-Etienne Brunet, Colleen Alkalay-Houlihan, Ashton Anderson, and Richard Zemel. Understanding the Origins of Bias in Word Embeddings, ICML 2019
- Sheng, Emily, Kai-Wei Chang, Prem Natarajan, and Nanyun Peng. The Woman Worked as a Babysitter: On Biases in Language Generation, EMNLP 2019
- Sap, Maarten, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A. Smith. The risk of racial bias in hate speech detection, ACL 2019

Next Lecture

Fair Visual Representations