Fairness Through Data/Prediction Manipulations

May 1, 2020 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning Stanford University

Summary of ML Interpretability

Summary of ML Interpretability

Model Specific		Post Hoc Methods				
		Proxy Methods	Feature Interaction	Example Based Methods	Visualization Based Methods	
	 Regularization Bayesian NN Modular Networks 	LIMEAnchors	LRPDeepLiftSHAP	 Counterfactual Examples Contrastive Examples Concept Based Methods 	 Activation Visualization Feature Attribution 	
pros	 work well in specific scenarios 	 simple and fast 	 game theory interpretation 	 understand model beyond existing data 	intuitivevisualiable	
cons	 model specific requires training performance trade-offs 	 linear models rule models 	 computational challenges 	quality of samples	● highly qualitative	

Summary of ML Interpretability

	Feature Importance/Attribution		Activation Visualization		Example Based Methods				
Methods	LIME	Layer-wise Relevance Propagation	DeepLift	SHAP	Integrated Gradients	Concept Vector (TCAV)	Saliency Maps	Counterfact ual Example	Contrastive Example
Synthesize Samples?	×	×	×	×	×	×	×	1	 Image: A start of the start of
Local Explanation?	~	1	~	1	1	×	×	1	1
Use Cases	Visualize features that neural networks focus on			Analyze la performan netv	yer-by-layer ce of neural vorks	Analyze neur a hypothet	al networks in ical context		

Summary of Feature Importance/Attribution

Feature Importance/Attribution					
	LIME	Layer-wise Relevance Propagation	DeepLift	SHAP	Integrated Gradients
Model Capacity	Linear	Decomposition Rule	Gradient Based	Game Theory	Gradient Based
Sensitivity *	×	 ✓ 	✓	×	 ✓
Implementation Invariant *	×	×	×	×	 ✓
Computational Cost	low	low	low	high	low
Use A Baseline	×	×	 Image: A second s	×	 ✓
Guarantees	×	×	×	Game Theory	Symmetry-Preserving Linearity

- Fairness in Machine Learning
 - Preventing algorithms from being biased toward a protected group when allocating favorable outcomes

Attribute	FHA	ECOA
Race	\checkmark	\checkmark
Color	\checkmark	\checkmark
National origin	\checkmark	\checkmark
Religion	\checkmark	\checkmark
Sex	\checkmark	\checkmark
Familial status	\checkmark	
Disability	\checkmark	
Exercised rights under CCPA		\checkmark
Marital status		\checkmark
Recipient of public assistance		\checkmark
Age		\checkmark

Fair Housing Acts (FHA)

Equal Credit Opportunity ACts (ECOA)

Mehrabi et al, 2019

Fair ML Model

Fairness Through Unawareness (FTU)

Demographic Parity

Equal Opportunity

Equal Odds

Income

 $P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$

 $P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$

 $P(\hat{Y} = 1 | A = 0, Y) = P(\hat{Y} = 1 | A = 1, Y)$ $P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$

P(Y = 1|A = 0, Y = 1) = P(Y = 1|A = 1, Y = 1) $P(\hat{Y} = 1|A = 0, Y = 1) = P(\hat{Y} = 1|A = 1, Y = 0)$

- Fair Representation Learning
 - Prejudice Removing Regularizer

$$-\mathcal{L}(\mathcal{D}; \boldsymbol{\Theta}) + \eta \mathrm{R}(\mathcal{D}, \boldsymbol{\Theta}) + \frac{\lambda}{2} \|\boldsymbol{\Theta}\|_{2}^{2}$$

Loss of the Model Fairness Regularizer L2 Regularizer

Mutual Information

Mid MI, 0 Pearson

- Fair Representation Learning
 - Prejudice Removing Regularizer

$$- \mathcal{L}(\mathcal{D}; oldsymbol{\Theta}) + \eta \mathrm{R}(\mathcal{D}, oldsymbol{\Theta}) + rac{\lambda}{2} \|oldsymbol{\Theta}\|_2^2$$

Loss of the Model Fairness Regularizer L2 Regularizer

• Fair Representations Through Adversarial Learning

Outline

- Basic Data Manipulation Techniques
 - Reweighing
 - Practice question
 - Universal Sampling
 - Preferential Sampling
- Individual Fairness
- Optimized Pre-processing
- Learning to Defer

Fair ML Methods

- Pre-processing Methods
 - Transform data before ML models learn
 - e.g., Reweighting, Resampling (this lecture)
- In-processing Methods
 - Constrain ML models while they learn
 - e.g., Prejudice Removing Regularizer, Adversarial Learning (Lecture 1 & 3)
- Post-processing Methods
 - Make predictions from a black-box ML model fair in the post-processing stage
 - e.g., Learning to Defer (this lecture)

Fair Data Manipulation

- Biased Data
 - The presence of data that belongs to the underrepresented groups leads to data biases
 - One of the main sources of ML discriminations
- Data Debiasing
 - Adjust the distribution of the data to meet fairness criteria
 - Increase/Decrease samples based on criteria
- Reweighting
 - Adjust the importance of each sample in the loss function during training
- Resampling
 - Adjust the proportion of samples for each group

Observed: M = 10, F = 4

Expected Distribution of Fair Data

• Expected Data Distribution

$$P(Y) = P(Y|A = 1) = P(Y|A = 0)$$

which leads to $Y \perp A$

• Recall Demographic Parity

$$P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$$

Kamiran et al, 2012

Expected Distribution of Fair Data

• The Expected Joint Distribution Under $Y \perp A$

$$P_{exp}(Y = y, A = a) = P(Y = y) \cdot P(A = a)$$
$$= \frac{|\{x \in \mathcal{D} | x_Y = y\}|}{|\mathcal{D}|} \cdot \frac{|\{x \in \mathcal{D} | x_A = a\}|}{|\mathcal{D}|}$$

Our Observed Joint Distribution

$$\underline{P_{obs}}(Y = y, A = a) = \frac{|\{x \in \mathcal{D} | x_Y = y, x_A = a\}|}{|\mathcal{D}|}$$

Transform Data to Expected Distribution

Kamiran et al, 2012

Reweighting

- Sample Weight for x
 - \circ Goal: adjust our data to a distribution that leads to $Y \perp \!\!\! \perp A$, or Demographic Parity
 - W(x) = 1, we have achieved $Y \perp A$ and Demographic Parity
 - \circ W(x) > 1, increase the weight of sample x in training
 - \circ W(x) < 1, decrease the weight of sample x in training

$$W(x) = \frac{P_{exp}(Y = x_y, A = x_a)}{P_{obs}(Y = x_y, A = x_a)}$$

Reweighting Loss Function

$$\mathcal{L} = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} W(x) \cdot \mathcal{L}(\hat{Y}, x_Y)$$

Practice Question

• Calculate $W(x_3)$, A = {Sex}, Y = {Class}

Sex	Highest degree	Job type	Class
Μ	H. school	Board	+
Μ	Univ.	Board	+
Μ	H. school	Board	+
М	H. school	Healthcare	+
М	Univ.	Healthcare	_
F	Univ.	Education	_
F	H. school	Education	_
F	None	Healthcare	+
F	Univ.	Education	_
F	H. school	Board	+

Kamiran et al, 2012

Practice Question

- W(x₃)
 A₃= M
 Y₃ = +
- Expected Distribution
 - P(A = M) = 0.5
 - P(Y = +) = 0.6
 - $\circ \quad \mathsf{P}_{\mathsf{exp}}(\mathsf{A}=\mathsf{M},\,\mathsf{Y}=\texttt{+})=\texttt{0.3}$
- Observed Distribution
 - $\circ \quad \mathsf{P}_{\mathsf{obs}}(\mathsf{A}=\mathsf{M},\,\mathsf{Y}=\texttt{+})=0.4$
- Sample Weight

 \circ W(x₃) = 0.3/0.4 = 0.75

 $A = {Sex}, Y = {Class}$

Sex	Highest degree	Job type	Class
М	H. school	Board	+
Μ	Univ.	Board	+
М	H. school	Board	+
М	H. school	Healthcare	+
М	Univ.	Healthcare	_
F	Univ.	Education	_
F	H. school	Education	_
F	None	Healthcare	+
F	Univ.	Education	_
F	H. school	Board	+

Breakout Discussions

• Calculate $W(x_6)$, A = {Sex}, Y = {Class}

Sex	Highest degree	Job type	Class
М	H. school	Board	+
Μ	Univ.	Board	+
Μ	H. school	Board	+
М	H. school	Healthcare	+
Μ	Univ.	Healthcare	_
F	Univ.	Education	—
F	H. school	Education	—
F	None	Healthcare	+
F	Univ.	Education	—
F	H. school	Board	+

Kamiran et al, 2012

Breakout Discussions

W(x₆)

 A₆ = F
 Y₆ =

- Expected Distribution
 - P(A = F) = 0.5
 - P(Y = -) = 0.4
 - $P_{exp}(A = F, Y = -) = 0.2$
- Observed Distribution
 - $P_{obs}(A = F, Y = -) = 0.3$
- Sample Weight
 - \circ W(x₆) = 0.2/0.3 = 0.67

Sex	Highest degree	Job type	Class
М	H. school	Board	+
М	Univ.	Board	+
М	H. school	Board	+
Μ	H. school	Healthcare	+
Μ	Univ.	Healthcare	_
F	Univ.	Education	—
F	H. school	Education	_
F	None	Healthcare	+
F	Univ.	Education	—
F	H. school	Board	+

Practice Question

- Calculate $W(x_1) .. W(x_{10})$
- Put $W(x_i)$ into the loss

$$\mathcal{L} = \frac{1}{|\mathcal{D}|} \sum_{x \in \mathcal{D}} W(x) \cdot \mathcal{L}(\hat{Y}, x_Y)$$

Can we achieve data pre-processing for fairness without changing the training objective? $A = \{Sex\}, Y = \{Class\}$

Sex	Highest degree	Job type	Class
M	H. school	Board	+
Μ	Univ.	Board	+
Μ	H. school	Board	+
Μ	H. school	Healthcare	+
Μ	Univ.	Healthcare	_
F	Univ.	Education	_
F	H. school	Education	_
F	None	Healthcare	+
F	Univ.	Education	_
F	H. school	Board	+

Outline

• Basic Data Manipulation Techniques

- Reweighing
- Practice question
- Universal Sampling
- Preferential Sampling
- Individual Fairness
- Optimized Pre-processing
- Learning to Defer

Resampling

• Resample the Dataset Based on the Expected Joint Probability

Kamiran et al, 2012

Expected Number of Samples

• Expected Number of Samples for the Category (y, a)

$$N_{exp}(y,a) = P_{exp}(y,a) \cdot |\mathcal{D}|$$

Also Note

$$\sum_{y,a} N_{exp} = \sum_{y,a} P_{exp}(y,a) \cdot |\mathcal{D}| = |\mathcal{D}|$$

Universal Resampling (US)

- Resampling Based on the Expected Probabilities to Meet Demographic Parity
 - DP (Deprived community with Positive class labels)
 - draw N_{exp}(D, P) samples uniformly from DP
 - DN (Deprived community with Negative class labels)
 - draw N_{exp}(D, N) samples uniformly from DN
 - FP (Favored community with Positive class labels)
 - draw N_{exp}(F, P) samples uniformly from FP
 - FN (Favored community with Negative class labels)
 - draw N_{exp}(F, N) samples uniformly from FN

Outline

• Basic Data Manipulation Techniques

- Reweighing
- Practice question
- Universal Sampling
- Preferential Sampling
- Individual Fairness
- Optimized Pre-processing
- Learning to Defer

Preferential Sampling (PS)

• Sample More Data When Confidence of the Predictor Is Low

Decision Boundary

Kamiran et al. 2012

Bias Measures

• Measure prediction biases by comparing the favorable outcomes given to group 1 with that to group 0

$$Bias(\hat{Y}) = P(\hat{Y} = 1 | A = 1) - P(\hat{Y} = 1 | A = 0)$$

Demographic Parity
$$P(\hat{Y}=1|A=1)=P(\hat{Y}=1|A=0)$$

Kamiran et al, 2012

Adult Income Dataset

No - No pre-processing, No-SA - No Sex Attribute, RW - Reweighting US - Universal Sampling, PS - Preferential Sampling

J48 - decision tree NBS - Naive Bayes IBK1- 1 nearest neighbor IBK7 -7 nearest neighbor

<u>Kamiran et al, 2012</u>

Continuous Data?

$$N_{exp}(y, a) = P_{exp}(y, a) \cdot |\mathcal{D}|$$
$$W(x) = \frac{P_{exp}(Y = x_y, A = x_a)}{P_{obs}(Y = x_y, A = x_a)}$$

Outline

- Basic Data Manipulation Techniques
 - Reweighing
 - Practice question
 - Universal Sampling
 - Preferential Sampling

Reading Assignments

- Zafar, M. B., Valera, I., Rodriguez, M., Gummadi, K., & Weller, A. From parity to preference-based notions of fairness in classification, NeurIPS 2017
- A. Agarwal, A. Beygelzimer, M. Dud´ık, J. Langford, and H. Wallach, A reductions approach to fair classification, ICML 2018
- Pleiss, G., Raghavan, M., Wu, F., Kleinberg, J., & Weinberger, K. Q. On fairness and calibration, NeurIPS 2017
- Madras, David, Toni Pitassi, and Richard Zemel. Predict responsibly: improving fairness and accuracy by learning to defer, NeurIPS 2018
- S. Sharma, J. Henderson, and J. Ghosh, Certifai: A common framework to provide explanations and analyse the fairness and robustness of black-box models, AIES 2020

Next Lecture

Fair NLP