Fair Representation Learning

Apr 10, 2020 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning Stanford University

Updated Project Policies

- Maximum Number of Students For Course Projects
 - We now allow <u>up to 3 students</u> in a project
- Project Sharing
 - Project sharing between classes can be done under the permissions from the Instructors
- Reminder: Project Proposal Deadline
 - \circ Apr 22, before class
 - Less than two weeks from now

Recaps From the Previous Lecture

- Fairness Through Unawareness
 - Outcomes: Fair ML Model Indirect Discrimination
 - R Race Y - Years of Exp

S = Skills O = Often Goes to Mexico Market

Limitations

• Processing Sensitive Features

- Fairness through unawareness requires sensitive features to be masked out
- Not easy to do in real life
- Referred to as individual fairness criteria

Stereotypical dataset

The physician hired the secretary because he was overwhelmed with clients.

The physician hired the secretary because she was highly recommended.

Anti-stereotypical dataset

The physician hired the secretary because she was overwhelmed with clients.

The physician hired the secretary because he was highly recommended.

Outline

- Major Fairness Criteria
 - Demographic Parity
 - Equality of Odds/Opportunity
 - FICO Case Study
- Fair Representation Learning
 - Prejudice Removing Regularizer

Demographic Parity

- Demographic Parity Is Applied to a Group of Samples
 - Does not require features to be masked out
- A Predictor Ŷ Satisfies Demographic Parity If
 - The probabilities of positive predictions are the same regardless of whether the group is protected
 - Protected groups are identified as A = 1

$$P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$$

Group Treatment

Graphical Model Explanations

SAT Score Prediction

Issues With Demographic Parity

• Correlates Too Much With the Performance of the Predictor

Issues With Demographic Parity

• Correlates Too Much With the Performance of the Predictor

Equality of Odds (Hardt et al, 2016)

• Equal Probabilities for Both Qualified/Unqualified People Across Protected Groups

$$P(\hat{Y} = 1 | A = 0, Y) = P(\hat{Y} = 1 | A = 1, Y)$$

Equality of Opportunity (Hardt et al, 2016)

Equal Probabilities for Qualified People Across Protected Groups

$$P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$$

Case Study on FICO

- FICO Dataset
 - 301,536 TransUnion TransRisk scores from 2003
 - Scores ranges from 300 to 850
 - People were labeled as in default if they failed to pay a debt for at least 90 days
 - Protected attribute A is race, with four values: {Asian, white non-Hispanic, Hispanic, and black}

FICO Scores

• 18% Default Rate on Any Accounts Corresponds to a 2% Default Rate for New Loans

- Requirement: **Default Rate < 18%**, Simple Threshold Model
 - Max Profit No Fairness Constraints
 - Race Blind Using the same threshold for all race groups

- Requirement: **Default Rate < 18%**, Simple Threshold Model
 - Max Profit No Fairness Constraints
 - Race Blind Using the same threshold for all race groups
 - Demographic Parity
 - Fraction of the group members that qualify for the loan are the same

$$P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$$

- Requirement: **Default Rate < 18%**, **Simple Threshold Model**
 - Max Profit No Fairness Constraints
 - Race Blind Using the same threshold for all race groups
 - Demographic Parity
 - Fraction of the group members that qualify for the loan are the same

$$P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$$

- Equal Opportunity
 - Fraction of <u>non-defaulting</u> group members that <u>qualify</u> for the loan is the same

$$P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$$

- Requirement: **Default Rate < 18%**, Simple Threshold Model
 - Max Profit No Fairness Constraints
 - Race Blind Using the same threshold for all race groups
 - Demographic Parity
 - Fraction of the group members that qualify for the loan are the same

$$P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$$

- Equal Opportunity
 - Fraction of <u>non-defaulting</u> group members that <u>qualify</u> for the loan is the same

$$P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$$

- Equal Odds
 - Fraction of both <u>non-defaulting</u> and <u>defaulting</u> groups of members that <u>quality</u> for the loan is the same

$$P(\hat{Y} = 1 | A = 0, Y) = P(\hat{Y} = 1 | A = 1, Y)$$

Credit Modeling Using A Single Threshold

• Within-Group Percentile Differs Dramatically for Each Group

Found Thresholds for Each Fairness Definitions

Identifying Non-Defaulters

Non-Defaulters and Max Profits

Practice Question

- Find out the Fairness Criteria that Ŷ1, and Ŷ2 Satisfy
 - \circ A = {race}, Y = {Hiring Decision}

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\textbf{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- $P(\hat{Y}1 = 1 | R = H) = 2/3$
- P(Ŷ1 = 1 | R = W) =

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- $P(\hat{Y}1 = 1 | R = H) = 2/3$
- P(Ŷ1 = 1 | R = W) = 2/3

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H) = 2/3
 P(Ŷ1 = 1 | R = W) = 2/3

Demographics Parity
$$P(\hat{Y}=1|A=1)=P(\hat{Y}=1|A=0)$$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1
- P(Ŷ1 = 1 | R = W, Y = yes) =
- P(Ŷ1 = 1 | R = H, Y = no) =
- P(Ŷ1 = 1 | R = W, Y = no) =

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\text{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1
- P(Ŷ1 = 1 | R = W, Y = yes) = 0.5
- P(Ŷ1 = 1 | R = H, Y = no) =
- P(Ŷ1 = 1 | R = W, Y = no) =

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\text{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1
- P(Ŷ1 = 1 | R = W, Y = yes) = 0.5
- P(Ŷ1 = 1 | R = H, Y = no) = 0
- P(Ŷ1 = 1 | R = W, Y = no) =

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\text{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1
- P(Ŷ1 = 1 | R = W, Y = yes) = 0.5
- P(Ŷ1 = 1 | R = H, Y = no) = 0
- P(Ŷ1 = 1 | R = W, Y = no) = 1

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\text{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1
- P(Ŷ1 = 1 | R = W, Y = yes) = 0.5
- P(Ŷ1 = 1 | R = H, Y = no) = 0
- P(Ŷ1 = 1 | R = W, Y = no) = 1

Let \hat{Y} quality of Opportunity $P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$

> Equality of Odds $P(\hat{Y} = 1 | A = 0, Y) = P(\hat{Y} = 1 | A = 1, Y)$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_1 \end{array}$	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- $P(\hat{Y}1 = 1 | R = H) = 2/3$
- P(Ŷ1 = 1 | R = W) =

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- $P(\hat{Y}1 = 1 | R = H) = 2/3$
- P(Ŷ1 = 1 | R = W) = 1/3

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H) = 2/3
 P(Ŷ1 = 1 | R = W) = 1/3

Demographics Parity $P(\hat{Y} = 1 | A = 1) = P(\hat{Y} = 1 | A = 0)$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\text{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1/2
- P(Ŷ1 = 1 | R = W, Y = yes) =
- P(Ŷ1 = 1 | R = H, Y = no) =
- P(Ŷ1 = 1 | R = W, Y = no) =

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\text{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1/2
- P(Ŷ1 = 1 | R = W, Y = yes) = 1/2
- P(Ŷ1 = 1 | R = H, Y = no) =
- P(Ŷ1 = 1 | R = W, Y = no) =

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1/2
- P(Ŷ1 = 1 | R = W, Y = yes) = 1/2
- P(Ŷ1 = 1 | R = H, Y = no) = 1
- P(Ŷ1 = 1 | R = W, Y = no) =

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\text{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

- P(Ŷ1 = 1 | R = H, Y = yes) = 1/2
- P(Ŷ1 = 1 | R = W, Y = yes) = 1/2
- P(Ŷ1 = 1 | R = H, Y = no) = 1
- P(Ŷ1 = 1 | R = W, Y = no) = 0

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_1	$\begin{array}{c} \text{Predictor} \\ \hat{\text{Y}}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

 \mathbf{X}

- $P(\hat{Y}1 = 1 | R = H, Y = yes) = 1/2$
- P(Ŷ1 = 1 | R = W, Y = yes) = 1/2
- P(Ŷ1 = 1 | R = H, Y = no) = 1
- P(Ŷ1 = 1 | R = W, Y = no) = 0

Equality of Opportunity $P(\hat{Y} = 1 | A = 0, Y = 1) = P(\hat{Y} = 1 | A = 1, Y = 1)$

> Equality of Odds $P(\hat{Y} = 1 | A = 0, Y) = P(\hat{Y} = 1 | A = 1, Y)$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_1 \end{array}$	$\begin{array}{c} \text{Predictor} \\ \hat{Y}_2 \end{array}$
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Summary of Fairness Criteria

Fairness Criteria	Criteria	Group	Individual
Unawareness	Excludes A in Predictions		✓
Demographic Parity	$P(\hat{Y} = 1 A = 0) = P(\hat{Y} = 1 A = 1)$		
Equalized Odds	$P(\hat{Y} = 1 A = 0, Y) = P(\hat{Y} = 1 A = 1, Y)$	1	
Equalized Opportunity	$P(\hat{Y} = 1 A = 0, Y = 1) = P(\hat{Y} = 1 A = 1, Y = 1)$	1	

Outline

- Major Fairness Criteria
 - Demographic Parity
 - Equality of Odds/Opportunity
 - FICO Case Study
- Fair Representation Learning
 - Prejudice Removing Regularizer

Fair Representation Learning

- Make Representations Fair
 - Ensure fairness up to a certain level

Prejudice Remover Regularizer (Kamishima et al, 2012)

- Quantified Causes of Unfairness
 - Prejudice
 - Unfairness rooted in the dataset
 - Underestimation
 - Model unfairness because the model is not fully converged
 - Negative Legacy
 - Unfairness due to sampling biases
- Training Objective

$$-\mathcal{L}(\mathcal{D};\boldsymbol{\Theta}) + \eta R(\mathcal{D},\boldsymbol{\Theta}) + \frac{\lambda}{2} \|\boldsymbol{\Theta}\|_{2}^{2}$$
Loss of the Model Fairness Regularizer L2 Regularizer

Prejudice Index (PI)

- Recall that Indirect Discrimination Happens When
 - Prediction is not directly conditioned on sensitive variables S
 - Prediction is indirectly conditioned on S by a variable O that is dependent on S
 - $\circ \quad \mathsf{P}(\hat{Y} \mid \mathsf{O}) \text{, and } \mathsf{O} \sim \mathsf{P}(\mathsf{O} \mid \mathsf{S})$
- Prejudice Index (PI)
 - Measures the degree of indirect discrimination based on mutual information

$$PI = \sum_{\substack{(y,s) \in \mathcal{D} \\ \text{prediction model}}} \hat{\Pr[y,s]} \ln \frac{\hat{\Pr[y,s]}}{\hat{\Pr[y]}\hat{\Pr[s]}}$$

Normalized Prejudice Index (NPI)

- Prejudice Index (PI)
 - Measures the degree of indirect discrimination based on mutual information
 - Ranges in [0, +∞)

$$\mathbf{PI} = \sum_{(y,s)\in\mathcal{D}} \hat{\Pr[y,s]} \ln \frac{\hat{\Pr[y,s]}}{\hat{\Pr[y]}\hat{\Pr[s]}}$$

- Normalized Prejudice Index (NPI)
 - Normalize PI by the entropy of Y and S
 - Ranges in [0, 1]

$$NPI = PI/(\sqrt{H(Y)H(S)})$$

• Learning PI

$$\mathbf{PI} = \sum_{Y,S} \hat{\mathbf{Pr}}[Y,S] \ln \frac{\hat{\mathbf{Pr}}[Y,S]}{\hat{\mathbf{Pr}}[S]\hat{\mathbf{Pr}}[Y]}$$

Using Logistic Regression Model as the Prediction Model

$$\mathcal{M}[y|\mathbf{x}, s; \boldsymbol{\Theta}] = y\sigma(\mathbf{x}^{\top}\mathbf{w}_s) + (1-y)(1-\sigma(\mathbf{x}^{\top}\mathbf{w}_s))$$

• Learning PI

$$PI = \sum_{Y,S} \hat{\Pr}[Y,S] \ln \frac{\hat{\Pr}[Y,S]}{\hat{\Pr}[S]\hat{\Pr}[Y]} = \sum_{X,S} \tilde{\Pr}[X,S] \sum_{Y} \mathcal{M}[Y|X,S;\boldsymbol{\Theta}] \ln \frac{\hat{\Pr}[Y,S]}{\hat{\Pr}[S]\hat{\Pr}[Y]}$$
$$= \sum_{\mathbf{x}_{i},s_{i})\in\mathcal{D}} \sum_{y\in\{0,1\}} \mathcal{M}[y|\mathbf{x}_{i},s_{i};\boldsymbol{\Theta}] \ln \frac{\hat{\Pr}[y|s_{i}]}{\hat{\Pr}[y]}.$$

Using Logistic Regression Model as the Prediction Model

difficult to evaluate

$$\mathcal{M}[y|\mathbf{x}, s; \boldsymbol{\Theta}] = y\sigma(\mathbf{x}^{\top}\mathbf{w}_s) + (1-y)(1-\sigma(\mathbf{x}^{\top}\mathbf{w}_s))$$

$$\mathrm{PI} = \sum_{(\mathbf{x}_i, s_i) \in \mathcal{D}} \sum_{y \in \{0, 1\}} \mathcal{M}[y | \mathbf{x}_i, s_i; \boldsymbol{\Theta}] \ln \frac{\hat{\mathrm{Pr}}[y | s_i]}{\hat{\mathrm{Pr}}[y]}$$

$$\mathrm{PI} = \sum_{(\mathbf{x}_i, s_i) \in \mathcal{D}} \sum_{y \in \{0, 1\}} \mathcal{M}[y | \mathbf{x}_i, s_i; \boldsymbol{\Theta}] \ln \frac{\hat{\mathrm{Pr}}[y | s_i]}{\hat{\mathrm{Pr}}[y]}$$

$$\hat{\Pr}[y|s] = \int_{\operatorname{dom}(X)} \Pr^*[X|s] \mathcal{M}[y|X,s;\boldsymbol{\Theta}] dX$$

Integrals Are Difficult to Evaluate

$$\mathrm{PI} = \sum_{(\mathbf{x}_i, s_i) \in \mathcal{D}} \sum_{y \in \{0, 1\}} \mathcal{M}[y | \mathbf{x}_i, s_i; \boldsymbol{\Theta}] \ln \frac{\hat{\mathrm{Pr}}[y | s_i]}{\hat{\mathrm{Pr}}[y]}$$

$$\hat{\Pr}[y|s] = \int_{\operatorname{dom}(X)} \Pr^*[X|s] \mathcal{M}[y|X,s;\boldsymbol{\Theta}] dX$$
$$\approx \frac{\sum_{(\mathbf{x}_i,s_i)\in\mathcal{D} \text{ s.t. } s_i=s} \mathcal{M}[y|\mathbf{x}_i,s;\boldsymbol{\Theta}]}{|\{(\mathbf{x}_i,s_i)\in\mathcal{D} \text{ s.t. } s_i=s\}|}$$

Approximating integrals by sample means

$$\mathrm{PI} = \sum_{(\mathbf{x}_i, s_i) \in \mathcal{D}} \sum_{y \in \{0, 1\}} \mathcal{M}[y | \mathbf{x}_i, s_i; \boldsymbol{\Theta}] \ln \frac{\hat{\mathrm{Pr}}[y | s_i]}{\hat{\mathrm{Pr}}[y]}$$

$$\begin{split} \hat{\Pr}[y|s] &= \int_{\operatorname{dom}(X)} \Pr^*[X|s] \mathcal{M}[y|X,s;\boldsymbol{\Theta}] dX \\ &\approx \frac{\sum_{(\mathbf{x}_i,s_i) \in \mathcal{D} \text{ s.t. } s_i = s} \mathcal{M}[y|\mathbf{x}_i,s;\boldsymbol{\Theta}]}{|\{(\mathbf{x}_i,s_i) \in \mathcal{D} \text{ s.t. } s_i = s\}|} \\ & \text{Approximating integrals by sample means} \end{split} \quad \hat{\Pr}[y] \approx \frac{\sum_{(\mathbf{x}_i,s_i) \in \mathcal{D}} \mathcal{M}[y|\mathbf{x}_i,s_i;\boldsymbol{\Theta}]}{|\mathcal{D}|} \end{split}$$

Putting Things Together

• Optimization Target

$$-\mathcal{L}(\mathcal{D}; oldsymbol{\Theta}) + \eta \mathrm{R}(\mathcal{D}, oldsymbol{\Theta}) + rac{\lambda}{2} \|oldsymbol{\Theta}\|_2^2$$

Loss of the Model Fairness Regularizer L2 Regularizer

• Fairness Regularizer

$$\mathrm{PI} = \sum_{(\mathbf{x}_i, s_i) \in \mathcal{D}} \sum_{y \in \{0, 1\}} \mathcal{M}[y | \mathbf{x}_i, s_i; \boldsymbol{\Theta}] \ln \frac{\hat{\mathrm{Pr}}[y | s_i]}{\hat{\mathrm{Pr}}[y]}$$

Adult Income Dataset (Kohavi 1996)

Adult Income Dataset (Kohavi 1996)

Results

- Changes of Performance With η
 - Model performance decreases (Acc)
 - Discrimination Decreases (NPI)
 - "Fairness Efficiency" (PI/MI) Increases

Adult Income Dataset (Kohavi 1996)

• Predict Whether Income Exceeds \$50K/yr Based on Census Data

Adult Income Dataset (Kohavi 1996)

Results

- Prejudice Prior Sacrifices Model Performance
 - PR has lower Acc (Accuracy)
 - PR has lower NMI (normalized mutual information between labels and predictions)
- Prejudice Prior Makes Model Fair
 - PR has lower NPI

	method	Acc	NMI	NPI	PI/MI
Logistic Regression	→LR	0.851	0.267	5.21E-02	2.10E-01
Logistic Regression — no sensitive fet.	−−−→LRns	0.850	0.266	4.91E-02	1.99E-01
	$_{\nearrow}$ PR $\eta{=}5$	0.842	0.240	4.24E-02	1.91E-01
Logistic Regression +	\rightarrow PR η =15	0.801	0.158	2.38E-02	1.62E-01
Prejudice Regularizer	PR η=30	0.769	0.046	1.68E-02	3.94E-01

η is the weight we put on prejudice regularizers Kamishima et al. 2012

Results

• PI/MI

- Prejudice Index / Mutual Information
- Demonstrates a trade-offs between model fairness and performance
- Measures the amount of discrimination we eliminate with one unit of performance gain (measured by MI)

	method	Acc	NMI	NPI	PI/MI
Logistic Regression	→LR	0.851	0.267	5.21E-02	2.10E-01
Logistic Regression	−−→LRns	0.850	0.266	4.91E-02	1.99E-01
no sensitive fet.	$_{\scriptstyle \swarrow}$ PR $\eta{=}5$	0.842	0.240	4.24E-02	1.91E-01
Logistic Regression +	\rightarrow PR η =15	0.801	0.158	2.38E-02	1.62E-01
Prejudice Regularizer	→ PR η=30	0.769	0.046	1.68E-02	3.94E-01

 η - weight put on the prejudice regularizer

Reading Assignments (Pick One)

- A. Beutel, J. Chen, Z. Zhao, and E. H. Chi, Data decisions and theoretical implications when adversarially learning fair representations, FAT 2017
- Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determination of risk scores, ArXiv, 2016
- Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Fairgan: Fairness-aware generative adversarial networks. IEEE International Conference on Big Data (Big Data), 2018
- Creager, E., Madras, D., Jacobsen, J. H., Weis, M. A., Swersky, K., Pitassi, T., & Zemel, R. Flexibly fair representation learning by disentanglement, ICML 2019
- Jiang, R., Pacchiano, A., Stepleton, T., Jiang, H., & Chiappa, S. Wasserstein Fair Classification. UAI, 2019

Next Lecture

Interpretability and Transparency

Questions?