Fair Representation Learning

Apr 10, 2020
 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning Stanford University

Updated Project Policies

- Maximum Number of Students For Course Projects
- We now allow up to 3 students in a project
- Project Sharing
- Project sharing between classes can be done under the permissions from the Instructors
- Reminder: Project Proposal Deadline
- Apr 22, before class
- Less than two weeks from now

Recaps From the Previous Lecture

- Fairness Through Unawareness

Outcomes: Fair ML Model
Indirect Discrimination

R-Race
S = Skills
Y - Years of Exp
O = Often Goes to Mexico Market

Limitations

- Processing Sensitive Features
- Fairness through unawareness requires sensitive features to be masked out
- Not easy to do in real life
- Referred to as individual fairness criteria

* Stereotypical dataset

The physician hired the secretary because he was overwhelmed with clients.
The physician hired the secretary because she was highly recommended.

* Anti-stereotypical dataset

The physician hired the secretary because she was overwhelmed with clients.

The physician hired the secretary because he was highly recommended.

Outline

- Major Fairness Criteria
- Demographic Parity
- Equality of Odds/Opportunity
- FICO Case Study
- Fair Representation Learning
- Prejudice Removing Regularizer

Demographic Parity

- Demographic Parity Is Applied to a Group of Samples
- Does not require features to be masked out
- A Predictor Y Satisfies Demographic Parity If
- The probabilities of positive predictions are the same regardless of whether the group is protected
- Protected groups are identified as $\mathrm{A}=1$

$$
P(\hat{Y}=1 \mid A=1)=P(\hat{Y}=1 \mid A=0)
$$

Comparisons

Individual Treatment

Fairness Through Unawareness
$P(\hat{Y} \mid X)$

Group Treatment

Protected Features = 1

Demographic Parity

$$
P(\hat{Y}=1 \mid A=1)
$$

Protected
Features $=0$

Demographic Parity

$$
P(\hat{Y}=1 \mid A=0)
$$

Graphical Model Explanations

Individual Treatment
Group Treatment

$P(H \mid O, Y, S)$

$P(H=1 \mid R=1)$

$=\quad P(H=1 \mid R=0)$

SAT Score Prediction

Issues With Demographic Parity

- Correlates Too Much With the Performance of the Predictor

$$
P(\hat{Y}=1 \mid A=1)=P(\hat{Y}=1 \mid A=0)
$$

Issues With Demographic Parity

- Correlates Too Much With the Performance of the Predictor

Equality of Odds (Hardt et al, 2016)

- Equal Probabilities for Both Qualified/Unqualified People Across Protected Groups

$$
P(\hat{Y}=1 \mid A=0, Y)=P(\hat{Y}=1 \mid A=1, Y)
$$

Equality of Opportunity (Hardt et al, 2016)

- Equal Probabilities for Qualified People Across Protected Groups

$$
P(\hat{Y}=1 \mid A=0, Y=1)=P(\hat{Y}=1 \mid A=1, Y=1)
$$

Case Study on FICO

- FICO Dataset
- 301,536 TransUnion TransRisk scores from 2003
- Scores ranges from 300 to 850
- People were labeled as in default if they failed to pay a debt for at least 90 days
- Protected attribute A is race, with four values: \{Asian, white non-Hispanic, Hispanic, and black\}

FICO Scores

- 18\% Default Rate on Any Accounts Corresponds to a 2\% Default Rate for New Loans

Non-default rate by FICO score

CDF of FICO score by group

Making Lending Decisions Without Discriminating

- Requirement: Default Rate < 18\%, Simple Threshold Model
- Max Profit - No Fairness Constraints
- Race Blind - Using the same threshold for all race groups

Making Lending Decisions Without Discriminating

- Requirement: Default Rate < 18\%, Simple Threshold Model
- Max Profit - No Fairness Constraints
- Race Blind - Using the same threshold for all race groups
- Demographic Parity
- Fraction of the group members that qualify for the loan are the same

$$
P(\hat{Y}=1 \mid A=1)=P(\hat{Y}=1 \quad A=0)
$$

Making Lending Decisions Without Discriminating

- Requirement: Default Rate $<\mathbf{1 8 \%}$, Simple Threshold Model
- Max Profit - No Fairness Constraints
- Race Blind - Using the same threshold for all race groups
- Demographic Parity
- Fraction of the group members that qualify for the loan are the same

$$
P(\hat{Y}=1 \mid \underline{A=1})=P(\hat{Y}=1 \mid A=0)
$$

- Equal Opportunity
- Fraction of non-defaulting group members that qualify for the loan is the same

$$
P(\underline{Y}=1 \mid A=0, \underline{Y=1)}=P(\hat{Y}=1 \mid A=1, Y=1)
$$

Making Lending Decisions Without Discriminating

- Requirement: Default Rate < 18\%, Simple Threshold Model
- Max Profit - No Fairness Constraints
- Race Blind - Using the same threshold for all race groups
- Demographic Parity
- Fraction of the group members that qualify for the loan are the same

$$
P(\hat{Y}=1 \mid A=1)=P(\hat{Y}=1 \quad A=0)
$$

- Equal Opportunity
- Fraction of non-defaulting group members that qualify for the loan is the same
- Equal Odds

$$
P(\underline{Y}=1 \mid A=0, \underline{Y=1})=P(\hat{Y}=1 \mid A=1, \underline{Y=1)}
$$

- Fraction of both non-defaulting and defaulting groups of members that quality for the loan is the same

$$
P(\underline{Y}=1 \mid A=0, \underline{Y})=P(\hat{Y}=1 \mid A=1, \underline{Y})
$$

Credit Modeling Using A Single Threshold

- Within-Group Percentile Differs Dramatically for Each Group

Found Thresholds for Each Fairness Definitions

Identifying Non-Defaulters

Per-group ROC curve

Non-Defaulters and Max Profits

Practice Question

- Find out the Fairness Criteria that $\hat{Y} 1$, and $\hat{Y} 2$ Satisfy
- $A=\{r a c e\}, Y=\{$ Hiring Decision $\}$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Demographic Parity for Predictor $\hat{Y} 1$

- $P(\hat{Y} 1=1 \mid R=H)=2 / 3$
- $P(\hat{Y} 1=1 \mid R=W)=$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Demographic Parity for Predictor $\hat{Y} 1$

- $P(\hat{Y} 1=1 \mid R=H)=2 / 3$
- $P(\hat{Y} 1=1 \mid R=W)=2 / 3$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Demographic Parity for Predictor $\hat{Y} 1$

- $P(\hat{Y} 1=1 \mid R=H)=2 / 3$
- $P(\hat{Y} 1=1 \mid R=W)=2 / 3$

$$
\begin{gathered}
\text { Vemographics Parity } \\
P(\hat{Y}=1 \mid A=1)=P(\hat{Y}=1 \mid A=0)
\end{gathered}
$$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 1$

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=$
- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 1$

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=0.5$
- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 1$

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=0.5$
- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=0$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 1$

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=0.5$
- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=0$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=1$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 1$

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=0.5$

准quality of Opportunity

$$
P(\hat{Y}=1 \mid A=0, Y=1)=P(\hat{Y}=1 \mid A=1, Y=1)
$$

- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=0$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=1$

XEquality of Odds

$$
P(\hat{Y}=1 \mid A=0, Y)=P(\hat{Y}=1 \mid A=1, Y)
$$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Demographic Parity for Predictor $\hat{Y} 2$

- $P(\hat{Y} 1=1 \mid R=H)=2 / 3$
- $P(\hat{Y} 1=1 \mid R=W)=$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Demographic Parity for Predictor $\hat{Y} 2$

- $P(\hat{Y} 1=1 \mid R=H)=2 / 3$
- $P(\hat{Y} 1=1 \mid R=W)=1 / 3$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Demographic Parity for Predictor $\hat{Y} 2$

- $P(\hat{Y} 1=1 \mid R=H)=2 / 3$
- $P(\hat{Y} 1=1 \mid R=W)=1 / 3$

$$
\begin{gathered}
\text { XDemographics Parity } \\
P(\hat{Y}=1 \mid A=1)=P(\hat{Y}=1 \mid A=0)
\end{gathered}
$$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 2$

- $P(\hat{Y} 1=1 \mid R=H, Y=y e s)=1 / 2$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=$
- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 2$

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1 / 2$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=1 / 2$
- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 2$

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1 / 2$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=1 / 2$
- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=1$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor $\hat{Y} 2$

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1 / 2$
- $P(\hat{Y} 1=1 \mid R=W, Y=$ yes $)=1 / 2$
- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=1$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=0$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Equality of Opportunity/Odds for Predictor Y2

- $P(\hat{Y} 1=1 \mid R=H, Y=$ yes $)=1 / 2$
- $P(\hat{Y} 1=1 \mid R=W, Y=y e s)=1 / 2$

Equality of Opportunity

$$
P(\hat{Y}=1 \mid A=0, Y=1)=P(\hat{Y}=1 \mid A=1, Y=1)
$$

- $P(\hat{Y} 1=1 \mid R=H, Y=n o)=1$
- $P(\hat{Y} 1=1 \mid R=W, Y=n o)=0$

XEquality of Odds
$P(\hat{Y}=1 \mid A=0, Y)=P(\hat{Y}=1 \mid A=1, Y)$

Race and Ethnicity	Skill	Years of Exp	Goes to Mexican Markets?	Hiring Decision Y	Predictor \hat{Y}_{1}	Predictor \hat{Y}_{2}
Hispanic	Javascript	1	yes	no	0	1
Hispanic	C++	5	yes	yes	1	1
Hispanic	Python	1	no	yes	1	0
White	Java	2	no	yes	0	0
White	C++	3	no	yes	1	1
White	C++	0	no	no	1	0

Summary of Fairness Criteria

Fairness Criteria	Criteria	Group	Individual
Unawareness	Excludes A in Predictions		\checkmark
Demographic Parity	$P(\hat{Y}=1 \mid A=0)=P(\hat{Y}=1 \mid A=1)$		
Equalized Odds	$P(\hat{Y}=1 \mid A=0, Y)=P(\hat{Y}=1 \mid A=1, Y)$	\checkmark	
Equalized Opportunity	$P(\hat{Y}=1 \mid A=0, Y=1)=P(\hat{Y}=1 \mid A=1, Y=1)$	\checkmark	

Outline

- Major Fairness Criteria
- Demographic Parity
- Equality of Odds/Opportunity

FICO Case Study

- Fair Representation Learning
- Prejudice Removing Regularizer

Fair Representation Learning

- Make Representations Fair
- Ensure fairness up to a certain level

Prejudice Remover Regularizer (Kamishima et al, 2012)

- Quantified Causes of Unfairness
- Prejudice
- Unfairness rooted in the dataset
- Underestimation
- Model unfairness because the model is not fully converged
- Negative Legacy
- Unfairness due to sampling biases
- Training Objective

$$
-\mathcal{L}(\mathcal{D} ; \boldsymbol{\Theta})+\eta \mathrm{R}(\mathcal{D}, \boldsymbol{\Theta})+\frac{\lambda}{2}\|\boldsymbol{\Theta}\|_{2}^{2}
$$

Loss of the Model
Fairness Regularizer
L2 Regularizer

Prejudice Index (PI)

- Recall that Indirect Discrimination Happens When
- Prediction is not directly conditioned on sensitive variables S
- Prediction is indirectly conditioned on S by a variable O that is dependent on S
- $P(\hat{Y} \mid O)$, and $O \sim P(O \mid S)$
- Prejudice Index (PI)
- Measures the degree of indirect discrimination based on mutual information

$$
\begin{aligned}
& 0.70 \\
& 0.00 \\
& \mathrm{PI}=\sum_{(y, s) \in \mathcal{D}} \hat{\operatorname{Pr}}[y, s] \ln \frac{\hat{\operatorname{Pr}}[y, s]}{\hat{\operatorname{Pr}}[y] \hat{\operatorname{Pr}}[s]}
\end{aligned}
$$

Normalized Prejudice Index (NPI)

- Prejudice Index (PI)
- Measures the degree of indirect discrimination based on mutual information
- Ranges in $[0,+\infty)$

$$
\mathrm{PI}=\sum_{(y, s) \in \mathcal{D}} \hat{\operatorname{Pr}}[y, s] \ln \frac{\hat{\operatorname{Pr}}[y, s]}{\hat{\operatorname{Pr}}[y] \hat{\operatorname{Pr}}[s]}
$$

- Normalized Prejudice Index (NPI)
- Normalize PI by the entropy of Y and S
- Ranges in [0, 1]

$$
\mathrm{NPI}=\mathrm{PI} /(\sqrt{\mathrm{H}(Y) \mathrm{H}(S)})
$$

Optimizing PI

- Learning PI

$$
\mathrm{PI}=\sum_{Y, S} \hat{\operatorname{Pr}}[Y, S] \ln \frac{\hat{\operatorname{Pr}}[Y, S]}{\hat{\operatorname{Pr}}[S] \hat{\operatorname{Pr}}[Y]}
$$

Optimizing PI

- Learning PI

Expands $\operatorname{Pr}(\mathrm{Y}, \mathrm{S})$ into $\Sigma_{\mathrm{x}} \operatorname{Pr}(\mathrm{X}, \mathrm{Y}, \mathrm{S})$

- Using Logistic Regression Model as the Prediction Model

$$
\mathcal{M}[y \mid \mathbf{x}, s ; \boldsymbol{\Theta}]=y \sigma\left(\mathbf{x}^{\top} \mathbf{w}_{s}\right)+(1-y)\left(1-\sigma\left(\mathbf{x}^{\top} \mathbf{w}_{s}\right)\right)
$$

Optimizing PI

- Learning PI

$$
\begin{aligned}
\mathrm{PI}=\sum_{Y, S} \hat{\operatorname{Pr}}[Y, S] \ln \frac{\hat{\operatorname{Pr}}[Y, S]}{\hat{\operatorname{Pr}}[S] \hat{\operatorname{Pr}}[Y]} & =\sum_{X, S} \tilde{\operatorname{Pr}}[X, S] \sum_{Y} \mathcal{M}[Y \mid X, S ; \boldsymbol{\Theta}] \ln \frac{\hat{\operatorname{Pr}}[Y, S]}{\hat{\operatorname{Pr}}[S] \hat{\operatorname{Pr}}[Y]} . \\
& =\sum_{\left.\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D}} \sum_{y \in\{0,1\}} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s_{i} ; \boldsymbol{\Theta}\right] \ln \frac{\hat{\operatorname{Pr}}\left[y \mid s_{i}\right]}{\hat{\operatorname{Pr}}[y]} .
\end{aligned}
$$

- Using Logistic Regression Model as the Prediction Model

$$
\mathcal{M}[y \mid \mathbf{x}, s ; \boldsymbol{\Theta}]=y \sigma\left(\mathbf{x}^{\top} \mathbf{w}_{s}\right)+(1-y)\left(1-\sigma\left(\mathbf{x}^{\top} \mathbf{w}_{s}\right)\right)
$$

Optimizing PI

$$
\mathrm{PI}=\sum_{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D}} \sum_{y \in\{0,1\}} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s_{i} ; \boldsymbol{\Theta}\right] \ln \frac{\hat{\operatorname{Pr}}\left[y \mid s_{i}\right]}{\hat{\operatorname{Pr}}[y]}
$$

Optimizing PI

$$
\begin{gathered}
\mathrm{PI}=\sum_{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D}} \sum_{y \in\{0,1\}} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s_{i} ; \boldsymbol{\Theta}\right] \ln \frac{\hat{\operatorname{Pr}\left[y \mid s_{i}\right]}}{\hat{\operatorname{Pr}[y]}} \\
\hat{\operatorname{Pr}[y \mid s]=\int_{\text {dom }(X)} \operatorname{Pr}^{*}[X \mid s] \mathcal{M}[y \mid X, s ; \boldsymbol{\Theta}] d X} \begin{array}{l}
\text { Integrals Are Difficult to Evaluate }
\end{array} \text { }
\end{gathered}
$$

Optimizing PI

$$
\begin{gathered}
\operatorname{PI}=\sum_{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D}} \sum_{y \in\{0,1\}} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s_{i} ; \boldsymbol{\Theta}\right] \ln \frac{\hat{\operatorname{Pr}\left[y \mid s_{i}\right]}}{\hat{\operatorname{Pr}[y]}} \\
\hat{\operatorname{Pr}[y \mid s]}=\int_{\operatorname{dom}(X)} \operatorname{Pr}^{*}[X \mid s] \mathcal{M}[y \mid X, s ; \boldsymbol{\Theta}] d X \\
\approx \frac{\sum_{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D} \text { s.t. } s_{i}=s} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s ; \boldsymbol{\Theta}\right]}{\mid\left\{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D} \text { s.t. } s_{i}=s\right\} \mid} \\
\text { Approximating integrals by sample means }
\end{gathered}
$$

Optimizing PI

$$
\begin{aligned}
& \operatorname{PI}=\sum_{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D}} \sum_{y \in\{0,1\}} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s_{i} ; \boldsymbol{\Theta}\right] \ln \frac{\hat{\operatorname{Pr}}\left[y \mid s_{i}\right]}{\hat{\operatorname{Pr}[y]}} \\
& \hat{\operatorname{Pr}}[y \mid s]=\int_{\operatorname{dom}(X)} \operatorname{Pr}^{*}[X \mid s] \mathcal{M}[y \mid X, s ; \boldsymbol{\Theta}] d X \quad \hat{\operatorname{Pr}}[y] \approx \frac{\sum_{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D}} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s_{i} ; \boldsymbol{\Theta}\right]}{|\mathcal{D}|} \\
& \approx \frac{\sum_{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D} \text { s.t. } s_{i}=s} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s ; \boldsymbol{\Theta}\right]}{\left.\mid\left\{\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D} \text { s.t. } s_{i}=s\right\} \mid} \\
& \text { Approximating integrals by sample means }
\end{aligned}
$$

Putting Things Together

- Optimization Target

$$
-\mathcal{L}(\mathcal{D} ; \boldsymbol{\Theta})+\eta \mathrm{R}(\mathcal{D}, \boldsymbol{\Theta})+\frac{\lambda}{2}\|\boldsymbol{\Theta}\|_{2}^{2}
$$

Loss of the Model Fairness Regularizer L2 Regularizer

- Fairness Regularizer

$$
\mathrm{PI}=\sum_{\left(\mathbf{x}_{i}, s_{i}\right) \in \mathcal{D}} \sum_{y \in\{0,1\}} \mathcal{M}\left[y \mid \mathbf{x}_{i}, s_{i} ; \boldsymbol{\Theta}\right] \ln \frac{\hat{\operatorname{Pr}}\left[y \mid s_{i}\right]}{\hat{\operatorname{Pr}}[y]}
$$

Adult Income Dataset (Kohavi 1996)

Adult Income Dataset (Kohavi 1996)

Results

- Changes of Performance With η
- Model performance decreases (Acc)
- Discrimination Decreases (NPI)
- "Fairness Efficiency" (PI/MI) Increases

Adult Income Dataset (Kohavi 1996)

- Predict Whether Income Exceeds \$50K/yr Based on Census Data

Adult Income Dataset (Kohavi 1996)

Results

- Prejudice Prior Sacrifices Model Performance
- PR has lower Acc (Accuracy)
- PR has lower NMI (normalized mutual information between labels and predictions)
- Prejudice Prior Makes Model Fair
- PR has lower NPI

	method	Acc	NMI	NPI	PI/MI
Logistic Regression fulf fet. Logistic Regression no sensitive fet.\longrightarrow LR	0.851	0.267	$5.21 \mathrm{E}-02$	$2.10 \mathrm{E}-01$	
Logisitic Regression + Prejudice Regularizer\longrightarrow PRns	0.850	0.266	$4.91 \mathrm{E}-02$	$1.99 \mathrm{E}-01$	
	PR $\eta=5$	0.842	0.240	$4.24 \mathrm{E}-02$	$1.91 \mathrm{E}-01$
PR $\eta=15$	0.801	0.158	$2.38 \mathrm{E}-02$	$1.62 \mathrm{E}-01$	
PR $\eta=30$	0.769	0.046	$1.68 \mathrm{E}-02$	$3.94 \mathrm{E}-01$	

η is the weight we put on prejudice regularizers ${ }_{\text {Kamishima et al, } 2012}$

Results

- $\mathrm{Pl} / \mathrm{MI}$
- Prejudice Index / Mutual Information
- Demonstrates a trade-offs between model fairness and performance
- Measures the amount of discrimination we eliminate with one unit of performance gain (measured by MI)

	method	Acc	NMI	NPI	PI/MI
full fet. Logistic Regression no sensitive fet.	LR	0.851	0.267	$5.21 \mathrm{E}-02$	$2.10 \mathrm{E}-01$
	LRns	0.850	0.266	$4.91 \mathrm{E}-02$	$1.99 \mathrm{E}-01$
	PR $\eta=5$	0.842	0.240	$4.24 \mathrm{E}-02$	$1.91 \mathrm{E}-01$
Logistic Regression + Prejudice Regularizer	PR $\eta=15$	0.801	0.158	$2.38 \mathrm{E}-02$	$1.62 \mathrm{E}-01$
	PR $\eta=30$	0.769	0.046	$1.68 \mathrm{E}-02$	$3.94 \mathrm{E}-01$

Reading Assignments (Pick One)

- A. Beutel, J. Chen, Z. Zhao, and E. H. Chi, Data decisions and theoretical implications when adversarially learning fair representations, FAT 2017
- Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determination of risk scores, ArXiv, 2016
- Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Fairgan: Fairness-aware generative adversarial networks. IEEE International Conference on Big Data (Big Data), 2018
- Creager, E., Madras, D., Jacobsen, J. H., Weis, M. A., Swersky, K., Pitassi, T., \& Zemel, R. Flexibly fair representation learning by disentanglement, ICML 2019
- Jiang, R., Pacchiano, A., Stepleton, T., Jiang, H., \& Chiappa, S. Wasserstein Fair Classification. UAI, 2019

Next Lecture

Interpretability and Transparency

Questions?

