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ML Auditing Using Model Distillation

Tan et al, 2018

https://arxiv.org/pdf/1710.06169.pdf


General Additive Model

transformation
e.g., logistic for classification

weights



Chicago Police “Strategic Subject”.
● A risk score for individuals being victims or offenders in a shooting incident
● 16 features

○ 8 reported being used by Chicago Police



Features Reported being Used

green - model being audited
red - mimic model



Features Reported Not Being Used

green - model being audited
red - mimic model



Auditing COMPAS

green - model being audited
red - mimic model



Auditing Lending Club

green - model being audited
red - mimic model
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Privacy in ML

Training Data

Malicious Users

Deep Learning Models



Inferring Sensitive Features from ML Models

Fredrikson et al, 2014

Demographic Info
Medical History
Genetic Markers

Dose of Warfarin 

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew


Inferring Training Data from Facial Recognition Models

Fredrikson et al, 2015

Original Image Inferred Image

https://rist.tech.cornell.edu/papers/mi-ccs.pdf


Centralized Setting

Compromised App

Healthy Apps Data
Model



Distributed Setting

Data
Model
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Differential Privacy

Dataset D Dataset D'

+

M

M(D')

M

M(D)

Adjacent Inputs

Compare



Differential Privacy
● A randomized mechanism satisfies (ε, δ) - differential privacy for adjacent 

inputs d and d' if 

Abadi et al, 2016

Dataset d Adjacent dataset d'

A small probability of 
failure

Amount of Information
 Leakage

https://arxiv.org/pdf/1607.00133.pdf


Differential Privacy with Deep Learning

Differential Privacy

Gradients of Deep 
Neural Networks

Solution to Differentially Private Deep Learning

Abadi et al, 2016

https://arxiv.org/pdf/1607.00133.pdf


Differentially Private SGD 

Step 1 Calculate Gradients

Step 3 Adding Noise

Step 4 Parameter Updating

Step 2 Gradient Clipping

Gradient Norm Bounds C

One noise added to each lot 
(group of data)

Abadi et al, 2016

https://arxiv.org/pdf/1607.00133.pdf


Differentially Private SGD 

Abadi et al, 2016

https://arxiv.org/pdf/1607.00133.pdf


Composition Theorem

● If f is (ε1, δ1) - DP (Differential Private) and g is (ε2, δ2) - DP, then 

f(D), g(D) is (ε1+ ε2, δ1 + δ2) - DP

Abadi et al, 2016

https://arxiv.org/pdf/1607.00133.pdf


Budget Analysis for Differentially Private SGD

● Bounds the amount of privacy leakage (budget)

● Each lot (group of data) with L samples is (ε, δ) - DP

● Using Composition theorem, our SGD is is (q • ε, q • δ) - DP
○ q = L/N  - samping ratio per lot

Abadi et al, 2016

https://arxiv.org/pdf/1607.00133.pdf


Moments Accountant

● q = L/N - sampling ratio per lot
● T - number of time steps

- Differentially Private

● Provides a tighter bounds for privacy leakage by considering the Gaussian 
distributed noise

● Under Moments Accountant, there exist c1 and c2 such that Differentially 
Private SGD is 

Abadi et al, 2016

https://arxiv.org/pdf/1607.00133.pdf


ε As A Function of Epoch E
● E - number of epochs
● q = 0.01
● σ = 4
● δ = 10−5

Abadi et al, 2016

https://arxiv.org/pdf/1607.00133.pdf


Performance and (ε, δ)

Abadi et al, 2016

https://arxiv.org/pdf/1607.00133.pdf


Performance and Noise Levels

Abadi et al, 2016

σ=8                                                      σ= 4                                                      σ=2

- Differentially Private

https://arxiv.org/pdf/1607.00133.pdf
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Recap: Types of Adversarial Attack

Attack Phase Goal

Evasion Testing Compromise Model 
Performance

Data Poisoning Training Compromise Model 
Performance

Exploratory Testing Explore Model Characteristics
Reconstruct User Data



Recap
● Exploratory Attack

○ Reverse engineer user data from a trained model

Reverse Engineering



Model Inversion Attacks

Fredrikson et al, 2015

Original Image               Reconstructed Image

https://rist.tech.cornell.edu/papers/mi-ccs.pdf


Model Inversion Attack to Evaluate Differential Privacy

Park et al, 2019

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8822435


Results

Park et al, 2019

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8822435
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Differential Privacy and Local Differential Privacy

● d, d' are sets of data
● d and d' differ in one sample

Differential Privacy

● Centralized setting

Local Differential Privacy

● d and d' are single samples

● Distributed setting



Deployment of Local Differential Privacy
● RAPPOR by Google

○ Collect user data
○ Randomized Aggregatable Privacy-Preserving Ordinal Response

● Private Count Mean Sketch by Apple
○ Collect emoji usage data along with other information in iPhone
○ Learning with Privacy at Scale

https://research.google/pubs/pub42852/
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
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Distributed Optimization

Centralized Setting Distributed Setting

Relies on distributed optimization



Federated Optimization 
● Non-IID

○ User data is localized to their own usage
○ Hard to be a representative of the population

● Unbalanced Similarly
○ Some users will make much heavier on particular services than others

● Distributed Computing Capacity
○ Expect a large number of devices to be updated at the same time

● Limited communication
○ Mobile devices are frequently offline or on slow or expensive connections

McMahan et al, 2017

https://arxiv.org/pdf/1602.05629.pdf


FedSGD

McMahan et al, 2017

Gradient
Model

https://arxiv.org/pdf/1602.05629.pdf


FedAvg

McMahan et al, 2017

Gradient
Model

https://arxiv.org/pdf/1602.05629.pdf


Trade-offs Between Local and Global Iterations
● Number of rounds of communication necessary to achieve a test-set accuracy 

of 97% for the 2NN(MLP) and 99% for the CNN on MNIST

McMahan et al, 2017C - ratio of clients updated to the server
B - batch size of clients
E - number of epochs client makes over its local dataset on each round

https://arxiv.org/pdf/1602.05629.pdf


Comparisons Between FedSGD and FedAvg

McMahan et al, 2017K - number of clients
B - batch size

E - number of epochs
u -  

https://arxiv.org/pdf/1602.05629.pdf


Effects of Number of Local Epoches

McMahan et al, 2017

https://arxiv.org/pdf/1602.05629.pdf


Effects on η

McMahan et al, 2017

https://arxiv.org/pdf/1602.05629.pdf
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