Auditing and ML Privacy

Jun 3, 2020 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning Stanford University

Outline

- ML Auditing
 - Distill-and-Compare
- Privacy in ML
 - Differential Privacy with Deep Learning
 - Model Inversion Attack and Differential Privacy
 - Local Differential Privacy
 - Federated Learning

ML Auditing Using Model Distillation

Tan et al, 2018

General Additive Model

 $g(y) = h_0 + \sum_{i=1}^{n} h_i(x_i) + \sum_{i=1}^{n} h_{ij}(x_i, x_j)$ i i≠j transformation e.g., logistic for classification weights

Chicago Police "Strategic Subject".

- A risk score for individuals being victims or offenders in a shooting incident
- 16 features
 - 8 reported being used by Chicago Police

Features Reported being Used

green - model being audited red - mimic model

Features Reported Not Being Used

green - model being audited red - mimic model

Auditing COMPAS

green - model being audited red - mimic model

Auditing Lending Club

Outline

- ML Auditing
 - Distill-and-Compare

• Privacy in ML

- Differential Privacy with Deep Learning
- Model Inversion Attack and Differential Privacy
- Local Differential Privacy
- Federated Learning

Privacy in ML

Inferring Sensitive Features from ML Models

Demographic Info Medical History – Genetic Markers

Inferring Training Data from Facial Recognition Models

Original Image

Inferred Image

Fredrikson et al, 2015

Centralized Setting

Outline

- ML Auditing
 - Distill-and-Compare
- Privacy in ML
 - Differential Privacy with Deep Learning
 - Model Inversion Attack and Differential Privacy
 - Local Differential Privacy
 - Federated Learning

Differential Privacy

Differential Privacy

 A randomized mechanism satisfies (ε, δ) - differential privacy for adjacent inputs d and d' if

Abadi et al, 2016

Differential Privacy with Deep Learning

Differential Privacy

$$\Pr[\mathcal{M}(d) \in S] \leq e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta$$
Solution to Differentially Private Deep Learning
$$\mathcal{M}(d) \stackrel{\Delta}{=} f(d) + \mathcal{N}(0, S_f^2 \cdot \sigma^2)$$
Gradients of Deep
Neural Networks
$$S_f = |f(d) - f(d')| \quad \delta \geq \frac{4}{5} \exp(-(\sigma \varepsilon)^2/2) \quad \varepsilon < 1$$
Abadi et al, 2016

Differentially Private SGD

Gradient Norm Bounds C

Step 1 Calculate Gradients

Step 2 Gradient Clipping

Step 3 Adding Noise

Step 4 Parameter Updating

dients $\mathbf{g}_t(x_i) \leftarrow \nabla_{\theta_t} \mathcal{L}(\theta_t, x_i)$ ping $\bar{\mathbf{g}}_t(x_i) \leftarrow \mathbf{g}_t(x_i) / \max\left(1, \frac{\|\mathbf{g}_t(x_i)\|_2}{C}\right)$ $\tilde{\mathbf{g}}_t \leftarrow \frac{1}{L}\left(\sum_i \bar{\mathbf{g}}_t(x_i) + \mathcal{N}(0, \sigma^2 C^2 \mathbf{I})\right)$ potating $\theta_{t+1} \leftarrow \theta_t - \eta_t \tilde{\mathbf{g}}_t$ One noise added to each **lot** (group of data) $\mathcal{M}(d) \stackrel{\Delta}{=} f(d) + \mathcal{N}(0, S_f^2 \cdot \sigma^2)$ Abadi et al, 2016

Differentially Private SGD

Abadi et al, 2016

Composition Theorem

• If f is (ϵ_1, δ_1) - DP (Differential Private) and g is (ϵ_2, δ_2) - DP, then

f(D), g(D) is
$$(\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)$$
 - DP

Budget Analysis for Differentially Private SGD

- Bounds the amount of privacy leakage (budget)
- Each lot (group of data) with L samples is (ϵ, δ) DP
- Using Composition theorem, our SGD is is (q ε, q δ) DP
 q = L/N samping ratio per lot

Moments Accountant

- Provides a tighter bounds for privacy leakage by considering the Gaussian distributed noise
- Under Moments Accountant, there exist c_1 and c_2 such that Differentially Private SGD is

$$(O(qarepsilon \sqrt{T}), \delta)$$
 - Differentially Private

$$\sigma \ge c_2 \frac{q\sqrt{T\log(1/\delta)}}{\varepsilon} \quad \varepsilon < c_1 q^2 T$$

- q = L/N sampling ratio per lot
- T number of time steps

ϵ As A Function of Epoch E

- E number of epochs
- q = 0.01
- $\sigma = 4$
- δ = 10⁻⁵

Performance and (ϵ, δ)

Abadi et al, 2016

Performance and Noise Levels

 ε

Outline

- ML Auditing
 - Distill-and-Compare
- Privacy in ML
 - Differential Privacy with Deep Learning
 - Model Inversion Attack and Differential Privacy
 - Local Differential Privacy
 - Federated Learning

Recap: Types of Adversarial Attack

	Attack Phase	Goal	
Evasion	Testing	Compromise Model Performance	
Data Poisoning	Training	Compromise Model Performance	
Exploratory	Testing	Explore Model Characteristics Reconstruct User Data	

Recap

- Exploratory Attack
 - Reverse engineer user data from a trained model

Model Inversion Attacks

Original Image

Reconstructed Image

$$x = \arg\max_{x} f_y(x)$$

Fredrikson et al, 2015

Model Inversion Attack to Evaluate Differential Privacy

Park et al, 2019

Results

Park et al, 2019

Outline

- ML Auditing
 - Distill-and-Compare
- Privacy in ML
 - Differential Privacy with Deep Learning
 - Model Inversion Attack and Differential Privacy
 - Local Differential Privacy
 - Federated Learning

Differential Privacy and Local Differential Privacy

$\Pr[\mathcal{M}(d) \in S] \le e^{\varepsilon} \Pr[\mathcal{M}(d') \in S] + \delta$

Differential Privacy

Local Differential Privacy

- d, d' are sets of data
- d and d' differ in one sample
- Centralized setting

- d and d' are single samples
- Distributed setting

Deployment of Local Differential Privacy

- RAPPOR by Google
 - Collect user data
 - <u>Randomized Aggregatable Privacy-Preserving Ordinal Response</u>
- Private Count Mean Sketch by Apple
 - Collect emoji usage data along with other information in iPhone
 - Learning with Privacy at Scale

Outline

- ML Auditing
 - Distill-and-Compare
- Privacy in ML
 - Differential Privacy with Deep Learning
 - Model Inversion Attack and Differential Privacy
 - Local Differential Privacy
 - Federated Learning

Distributed Optimization

Relies on distributed optimization

Federated Optimization

- Non-IID
 - User data is localized to their own usage
 - Hard to be a representative of the population
- Unbalanced Similarly
 - Some users will make much heavier on particular services than others
- Distributed Computing Capacity
 - Expect a large number of devices to be updated at the same time
- Limited communication
 - Mobile devices are frequently offline or on slow or expensive connections

FedSGD

McMahan et al, 2017

FedAvg

McMahan et al. 2017

Trade-offs Between Local and Global Iterations

 Number of rounds of communication necessary to achieve a test-set accuracy of 97% for the 2NN(MLP) and 99% for the CNN on MNIST

2NN —— IID ——		——Non-IID ——					
C	$B = \infty$	B = 10	$B = \infty$	B = 10			
0.0	1455	316	4278	3275			
0.1	1474 (1.0×)	$87(3.6\times)$	1796 (2.4×)	664 (4.9×)			
0.2	1658 (0.9×)	77 (4.1×)	$1528(2.8\times)$	619 (5.3×)			
0.5	— ` (—́)	75 (4.2×́)	— ` (—́)	443 (7.4×)			
1.0	— (—)	70 (4.5×)	— (—)	380 (8.6×)			
$\mathbf{CNN}, E = 5$							
0.0	387	50	1181	956			
0.1	339 (1.1×)	$18(2.8\times)$	$1100(1.1\times)$	206 (4.6×)			
0.2	337 (1.1×)	$18(2.8\times)$	978 (1.2×)	$200(4.8\times)$			
0.5	$164(2.4\times)$	$18(2.8\times)$	1067 (1.1×́)	261 (3.7×)			
1.0	246 (1.6×́)	16 (3.1×́)	— ` (—́)	97 (9.9×́)			

C - ratio of clients updated to the server

B - batch size of clients

E - number of epochs client makes over its local dataset on each round

McMahan et al, 2017

Comparisons Between FedSGD and FedAvg

MNIST CNN, 99% ACCURACY							
CNN	E	B	${u}$	IID	Non-IID		
FEDSGD	1	∞	1	626	483		
FEDAVG	5	∞	5	$179(3.5 \times)$	$1000 (0.5 \times)$		
FEDAVG	1	50	12	65 $(9.6 \times)$	$600 (0.8 \times)$		
FEDAVG	20	∞	20	234 $(2.7\times)$	672 $(0.7\times)$		
FEDAVG	1	10	60	$34(18.4 \times)$	$350 (1.4 \times)$		
FEDAVG	5	50	60	$29~(21.6 \times)$	$334 (1.4 \times)$		
FEDAVG	20	50	240	$32(19.6 \times)$	426 (1.1×)		
FEDAVG	5	10	300	$20(31.3 \times)$	229 $(2.1 \times)$		
FEDAVG	20	10	1200	$18(34.8 \times)$	$173 (2.8 \times)$		
SHAKESPEARE LSTM, 54% ACCURACY							
LSTM	E	B	u	IID	Non-IID		
FEDSGD	1	∞	1.0	2488	3906		
FEDAVG	1	50	1.5	$1635 (1.5 \times)$	549 $(7.1\times)$		
FEDAVG	5	∞	5.0	613 (4.1×)	597 (6.5×)		
FEDAVG	1	10	7.4	$460 (5.4 \times)$	$164(23.8\times)$		
FEDAVG	5	50	7.4	401 (6.2×)	152 (25.7×)		
FedAvg	5	10	37.1	192 (13.0×)	41 (95.3×)		

K - number of clients

E - number of epochs

B - batch size

u - $(\mathbb{E}[n_k]/B)E$

McMahan et al, 2017

Effects of Number of Local Epoches

Effects on η

McMahan et al, 2017

Reading Assignments (ML Auditing)

- Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Concrete problems in Al safety, arXiv 2016
- Kleinberg, Jon, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determination of risk scores, arXiv 2016
- Malgieri, Gianclaudio. The concept of fairness in the GDPR: a linguistic and contextual interpretation, FAccT 2020
- Goodman, Bryce, and Seth Flaxman. European Union regulations on algorithmic decision-making and a "right to explanation", AI magazine 2017
- Bellamy, Rachel KE, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie Houde, Kalapriya Kannan, Pranay Lohia et al. Al Fairness 360: An extensible toolkit for detecting, understanding, and mitigating unwanted algorithmic bias, arXiv 2018

Reading Assignments (Privacy)

- Bonawitz, Keith, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning, ACM SIGSAC Conference on Computer and Communications Security, 2017
- Konečný, Jakub, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies for improving communication efficiency, arXiv 2016
- Bonawitz, Keith, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloe Kiddon et al. Towards federated learning at scale: System design, SysML 2019
- Smith, Virginia, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S. Talwalkar. Federated multi-task learning, NeurIPS 2017
- Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. "Calibrating noise to sensitivity in private data analysis, Theory of cryptography conference 2006