Fair Causal Reasoning

May 22, 2020 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning Stanford University

• Counterfactual Explanations

Sorry, your loan application has been rejected.

If instead you had the following values, your application would have been approved:

- MSinceOldestTradeOpen: 161
- NumSatisfactoryTrades: 36
- NetFractionInstallBurden: 38
- NumRevolvingTradesWBalance: 4
- NumBank2NatlTradesWHighUtilization: 2

• Counterfactual Fairness

Real Examples

Counterfactual Examples

Kusner et al, 2017

Counterfactual Face Attribution

 $S_f(d) = \mathbb{E}_{z \sim p(z)}[f(G(z+d)) - f(G(z))]$

Outline

- Fair Causal Reasoning
- Counterfactual Fairness
 - Formal Methods
 - Law School
 - Crime Rates in NYC
- Equalized Counterfactual Odds
- Multiple Causal Worlds

Fair Causal Reasoning

- Observed Data
- Latent Data
- Relations

Observed Data

Observational Fairness Criteria

- Fairness Through Unawareness
- Demographic Parity
- Equalized Odds/Opp

Causal Graph

Why Do We Need Causal Fairness?

• Recover Latent Variables

Kusner et al, 2018

Why Do We Need Causal Fairness?

Recover Latent Variables

Why Do We Need Causal Fairness?

• Dealing with Inherent bias

Inherent Biases

Sampling Biases

Inherent bias

- Race groups live in certain regions due to socioeconomic status
- Latent Socioeconomic factors
 - More police resources in regions with low economic status
 - Results in more arrests

Kusner et al, 2018

Inherent bias

- Observational Fairness Criteria Won't work
 - Dataset (observed variables) contains inherent selection biases
 - Concentration of police resources resulted in high arrests
 - Attributing regions (and eventual race) unfairly to arrests in the dataset

Inherent bias

- Causal Fairness
 - Intervene variables in a causal graph
 - Generating samples with races that live in neighborhood that have high police resources

Intervention on Causal Graphs

Causal Graph with A, Z, Y

Intervene on A

Intervene on Y

Outline

- Fair Causal Reasoning
- Counterfactual Fairness
 - Formal Methods
 - Law School
 - Crime Rates in NYC
- Equalized Counterfactual Odds
- Multiple Causal Worlds

Counterfactual Fairness Revisited

Counterfactual Fairness

- Level 1
 - Build predictors using only the observable non-descendants of A

Counterfactual Fairness

- Level 2
 - Build Predictors using the parents of the observable variables

Counterfactual Fairness

- Level 3
 - Build Predictors by adding independent error terms

Outline

- Fair Causal Reasoning
- Counterfactual Fairness
 - Formal Methods
 - Law School
 - Crime Rates in NYC
- Equalized Counterfactual Odds
- Multiple Causal Worlds

Law School Success Dataset

- Conducted by Law School Admission Council in US
 - 21,790 law students
 - Entrance exam scores (LSAT)
 - Grade-point average (GPA) collected prior to law school
 - Prediction Y = first year average grade (FYA)
 - Protected features = {Gender, Race}

Level 2 Counterfactual Fairness

• Build Predictors using the parents of the observable variables

$$\begin{array}{c} \text{FYA} \sim \mathcal{N}(w_F^KK + w_F^RR + w_F^SS, 1) \quad \text{GPA} \sim \mathcal{N}(b_G + w_G^KK + w_G^RR + w_G^SS, \sigma_G) \\ \text{Gaussian Dist.} \quad \swarrow \quad \swarrow \quad \textbf{LSAT} \sim \text{Poisson}(\exp(b_L + w_L^KK + w_L^RR + w_L^SS)) \\ \text{Parameters} \quad \qquad \textbf{Kusner et al, 2018} \end{array}$$

Level 3 Counterfactual Fairness

• Build Predictors by adding independent error terms

$$GPA = b_G + w_G^R R + w_G^S S + \epsilon_G, \quad \epsilon_G \sim p(\epsilon_G)$$

$$LSAT = b_L + w_L^R R + w_L^S S + \epsilon_L, \quad \epsilon_L \sim p(\epsilon_L)$$

$$FYA = b_F + w_F^R R + w_F^S S + \epsilon_F, \quad \epsilon_F \sim p(\epsilon_F)$$

Kusner et al, 2018

Baselines

full - using all features unaware - fairness through unawareness

Kusner et al. 2018

Results

	Baseline	Baseline	Level 2	Level 3
	Full	Unaware	Fair K	Fair Add
RMSE	0.873	0.894	0.929	0.918

Outline

- Fair Causal Reasoning
- Counterfactual Fairness
 - Formal Methods
 - Law School
 - Crime Rates in NYC
- Equalized Counterfactual Odds
- Multiple Causal Worlds

Causal Graph

- Assess the fairness of the NYC arrest dataset
 - o 38,609 records
 - White individuals (4492)
 - Black Hispanic individuals (2414)

Assessment Results

Kusner et al, 2018

Outline

- Fair Causal Reasoning
- Counterfactual Fairness
 - Formal Methods
 - Law School
 - Crime Rates in NYC
- Equalized Counterfactual Odds
- Multiple Causal Worlds

Equalized Counterfactual Odds

Equality of Odds $P(\hat{Y}=1|A=0,Y)=P(\hat{Y}=1|A=1,Y)$

Counterfactual Fairness

$$P(\hat{Y}_{A \leftarrow a}(U) = y \mid X = x, A = a) = P(\hat{Y}_{A \leftarrow a'}(U) = y \mid X = x, A = a)$$

Equalized Counterfactual Odds

$$p(\hat{Y}_{A\leftarrow a}(U) \mid X = x, Y_{A\leftarrow a} = y, A = a) = p(\hat{Y}_{A\leftarrow a'}(U) \mid X = x, Y_{A\leftarrow a'} = y, A = a)$$

Healthcare Equality

- Protected Features A = {Gender}
- Features X, vector representation of coded diagnoses, procedures, medication orders, lab results, and clinical notes
- Prediction Y, a binary indicator of the occurrence of a clinically relevant outcome

$$\begin{aligned} u &\sim p(U) = \operatorname{Normal}(0, I) \\ a &\sim p(A) = \operatorname{Categorical}(A \mid \pi) \\ x, y &\sim p(X, Y \mid U, A) = p(X \mid U, A) p(Y \mid U, A) \end{aligned}$$

Training Objective

- σ sigmoid function
- h predictor
- J cross entropy loss

$$\mathcal{L} = J(h_{\theta}(x, a), y) + \lambda_{\mathrm{CF}} \sum_{a_k \in \mathcal{A}} \mathbb{1}[a \neq a_k] J(h_{\theta}(\underline{x_{A \leftarrow a_k}}, a_k), \underline{y_{A \leftarrow a_k}}) + \lambda_{\mathrm{CLP}} \sum_{a_k \in \mathcal{A}} \mathbb{1}[a \neq a_k] \mathbb{1}[y = \underline{y_{A \leftarrow a_k}}] \left(\sigma^{-1}(h_{\theta}(\underline{x_{A \leftarrow a_k}}, a_k)) - \sigma^{-1}(h_{\theta}(x, a)) \right)^2$$

Dataset Overview

Group	Count	Length of Stay ≥ 7 Days	Inpatient Mortality
Asian	$17,\!465$	0.187	0.025
Black	$5,\!202$	0.239	0.020
Hispanic	$21,\!978$	0.196	0.019
Other	$11,\!004$	0.200	0.022
Unknown	$3,\!593$	0.201	0.072
White	$70,\!391$	0.204	0.021
Female	$72,\!556$	0.167	0.018
Male	$57,\!076$	0.245	0.029
[18, 30)	$15,\!291$	0.180	0.007
[30, 45)	$27,\!155$	0.140	0.007
[45,65)	$43,\!529$	0.222	0.025
[65, 89)	$43,\!658$	0.226	0.036
All	129,633	0.201	0.023

Results

		$\lambda_{ ext{CLP}}$					
Group	Metric	N/A	0.0	0.01	0.1	1.0	10.0
Asian	AUC-PRC	0.605	0.563	0.555	0.561	0.56	0.562
	AUC-ROC	0.86	0.853	0.853	0.854	0.849	0.851
	Brier	0.106	0.11	0.109	0.109	0.11	0.112
Black	AUC-PRC	0.579	0.548	0.55	0.545	0.563	0.573
	AUC-ROC	0.838	0.825	0.82	0.825	0.823	0.823
	Brier	0.124	0.135	0.129	0.128	0.127	0.129
Hispanic	AUC-PRC	0.592	0.558	0.565	0.57	0.564	0.56
	AUC-ROC	0.862	0.855	0.856	0.861	0.853	0.854
	Brier	0.113	0.117	0.115	0.114	0.117	0.118
Other	AUC-PRC	0.549	0.557	0.557	0.563	0.553	0.561
	AUC-ROC	0.824	0.827	0.819	0.824	0.819	0.827
	Brier	0.122	0.124	0.121	0.121	0.122	0.124
Unknown	AUC-PRC	0.675	0.616	0.616	0.606	0.614	0.633
	AUC-ROC	0.9	0.891	0.888	0.893	0.891	0.887
	Brier	0.104	0.106	0.103	0.103	0.105	0.111
White	AUC-PRC	0.575	0.568	0.564	0.559	0.562	0.563
	AUC-ROC	0.847	0.84	0.839	0.838	0.838	0.837
	Brier	0.118	0.12	0.118	0.12	0.12	0.121

Results

• Difference in the counterfactual versus factual predicted probability

Outline

- Fair Causal Reasoning
- Counterfactual Fairness
 - Formal Methods
 - Law School
 - Crime Rates in NYC
- Equalized Counterfactual Odds
- Multiple Causal Worlds

Multiple Causal Graphs

• Whether a student can graduate on time

Alternative Definitions of Counterfactual Fairness

Exact Formulation

$$P(\hat{Y}_{A \leftarrow a} (U) = y \mid X = x, A = a) = P(\hat{Y}_{A \leftarrow a'}(U) = y \mid X = x, A = a)$$

$$\epsilon$$
 - Approximate Formulation $\left|f(\mathbf{x}_{A\leftarrow a},a) - f(\mathbf{x}_{A\leftarrow a'},a')\right| \leq \epsilon$

 (δ, ϵ) - Approximate Formulation

$$\mathbb{P}(\left|f(\mathcal{X}_{A\leftarrow a}, a) - f(\mathcal{X}_{A\leftarrow a'}, a')\right| \le \epsilon \mid \mathcal{X} = \mathbf{x}, A = a) \ge 1 - \delta$$

Multi-world Counterfactual Fairness

$$\min_{f} \frac{1}{n} \sum_{i=1}^{n} \frac{\ell(f(\mathbf{x}_{i}, a_{i}), y_{i})}{|\text{oss of the data}} + \lambda \sum_{j=1}^{m} \frac{1}{n} \sum_{i=1}^{n} \sum_{\substack{a' \neq a_{i} \\ \text{world j}}} \mu_{j}(f, \mathbf{x}_{i}, a_{i}, a') \\ \underset{\text{examples}}{\text{counterfactual}}$$

Law Graduate School

$$G = b_G + w_G^A A + \epsilon_G$$
$$L = b_L + w_L^A A + \epsilon_L$$
$$Y = b_Y + w_Y^A A + \epsilon_Y$$
$$\epsilon_G, \epsilon_L, \epsilon_Y \sim \mathcal{N}(0, 1)$$
L3 Method

 $\begin{aligned} G &\sim \mathcal{N}(b_G + w_G^A A + w_G^U U, \sigma_G) \\ L &\sim \text{Poisson}(\exp(b_L + w_L^A A + w_L^U U)) \\ Y &\sim \mathcal{N}(w_Y^A A + w_Y^U U, 1) \\ U &\sim \mathcal{N}(0, 1) \end{aligned}$ Russell et al. 2017

Results

Russell et al, 2017

COMPAS

$$T \sim \text{Bernoulli}(\phi(b_T + w_C^{U_D}U_D + w_C^E E + w_C^A A)$$

$$C \sim \mathcal{N}(b_C + w_C^{U_D}U_D + w_C^E E + w_C^A A + w_C^T T + w_C^P P + w_C^{J_F}J_F + w_C^{J_M}J_M, \sigma_C)$$

$$P \sim \text{Poisson}(\exp(b_P + w_P^{U_D}U_D + w_P^E E + w_P^A A))$$

$$J_F \sim \text{Poisson}(\exp(b_{J_F} + w_{J_F}^U + w_{J_F}^E E + w_{J_F}^A A))$$

$$J_M \sim \text{Poisson}(\exp(b_{J_M} + w_{J_M}^{U_J} + w_{J_M}^E E + w_{J_M}^A A))$$

$$[U_J, U_D] \sim \mathcal{N}(0, \Sigma)$$

$$Russell et al. 2017$$

Results

Reading Assignments

- Wu, Yongkai, Lu Zhang, Xintao Wu, and Hanghang Tong. PC-Fairness: A Unified Framework for Measuring Causality-based Fairness, NeurIPS 2019
- Chiappa, Silvia. Path-specific counterfactual fairness, AAAI 2019
- Balcan, Maria-Florina F., Travis Dick, Ritesh Noothigattu, and Ariel D. Procaccia. Envy-free classification, NeurIPS 2019
- Qureshi, Bilal, Faisal Kamiran, Asim Karim, Salvatore Ruggieri, and Dino Pedreschi. Causal inference for social discrimination reasoning, Journal of Intelligent Information Systems 2019
- Zhang, Junzhe, and Elias Bareinboim. Equality of opportunity in classification: A causal approach, NeurIPS 2018