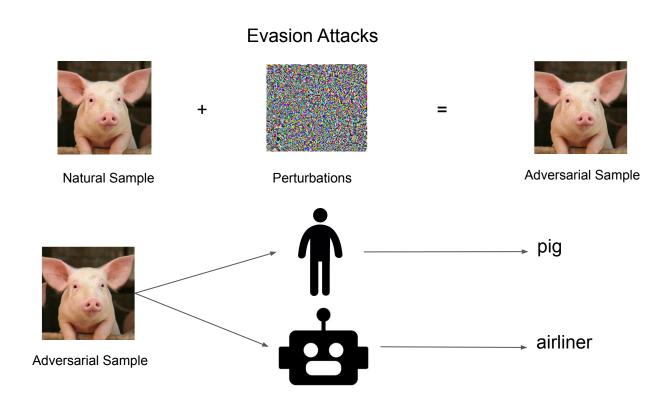
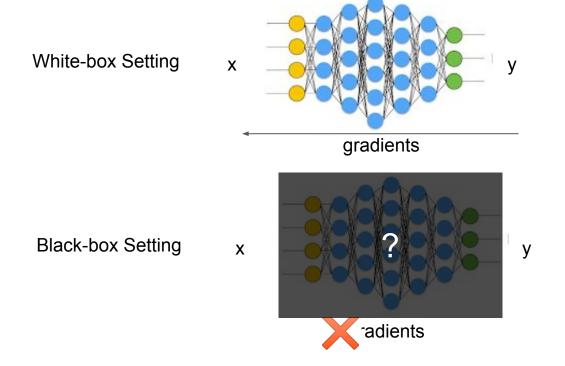
Adversarial Defense

May 20, 2020 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning
Stanford University





Untargeted Attack

x
"panda"
57.7% confidence

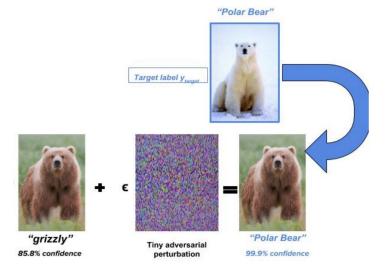


 $+.007 \times$

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $m{x} + \epsilon \mathrm{sign}(
abla_{m{x}} J(m{ heta}, m{x}, y))$ "gibbon" 99.3 % confidence llow et al. 2015

Targeted Attack

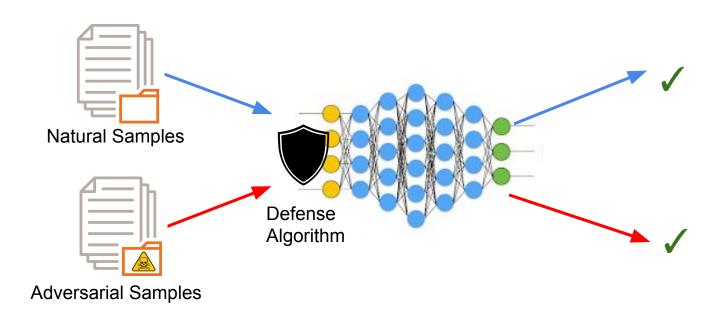


Younis et al, 2019

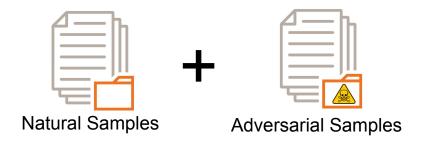
Outline

- Adversarial Defense
- Defense Strategies
 - Adversarial Training
 - Input Transformations
 - Stochastic Gradients
- Obfuscated Gradients and BPDA
- Robust Optimization
- Certified Defense

Adversarial Defense



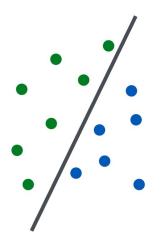
Adversarial Training



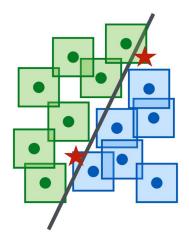
$$ilde{J}(\theta,x,y) = \alpha J(\theta,x,y) + (1-\alpha)J(\theta,x^{adv},y)$$
Loss Function Natural Samples Adversarial Samples

Goodfellow et al, 2014

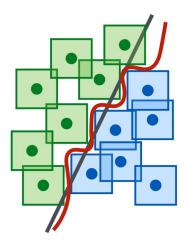
Adversarial Training



Natural Samples



Natural Samples with L_∞ Perturbation Space



Adversarial Training

Madry et al, 2017

Results on FGSM

Accuracy on Adversarial Examples

FGSM
$$m{X}^{adv} = m{X} + \epsilon \operatorname{sign}ig(
abla_X J(m{X}, y_{true})ig)$$

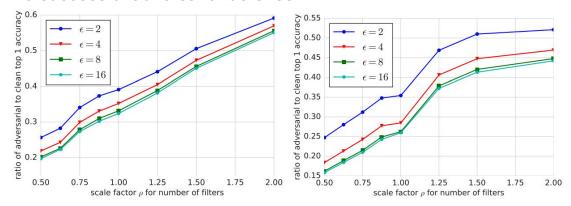
		Clean	$\epsilon = 2$	$\epsilon = 4$	$\epsilon = 8$	$\epsilon = 16$
Baseline	top 1	78.4%	30.8%	27.2%	27.2%	29.5%
(standard training)	top 5	94.0%	60.0%	55.6%	55.1%	57.2%
Adv. training	top 1	77.6%	73.5%	74.0%	74.5%	73.9%
	top 5	93.8%	91.7%	91.9%	92.0%	91.4%
Deeper model	top 1	78.7%	33.5%	30.0%	30.0%	31.6%
(standard training)	top 5	94.4%	63.3%	58.9%	58.1%	59.5%
Deeper model	top 1	78.1%	75.4%	75.7%	75.6%	74.4%
(Adv. training)	top 5	94.1%	92.6%	92.7%	92.5%	91.6%

Dataset: ImageNet

Kurakin et al, 2017

Results on FGSM

- Adversarial Accuracy / Clean Image Accuracy
 - Ratio -> 1 successful adversarial attack
 - Ratio -> 0 successful adversarial defense



No adversarial training, "basic iter." adv. examples

With adversarial training, "basic iter." adv. examples

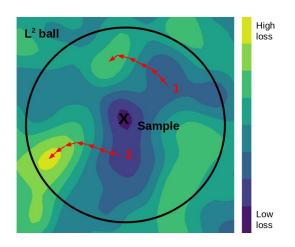
Flexibility

Plug-in any attack techniques

$$\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha)J(\theta, x^{adv}, y)$$

- Examples
 - o FGSM
 - Projected Gradient Descent (PGD) (<u>Madry</u> et al. 2017)

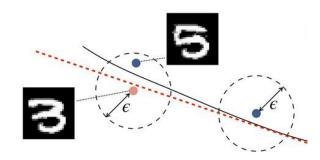
$$\max_{\mathbf{x}':||\mathbf{x}'-\mathbf{x}||_{\infty}<\alpha} \mathcal{L}(\mathbf{x}',y;\boldsymbol{\theta})$$



Computational Costs

Costs Associated with Generating Adversarial Samples

$$\boldsymbol{X}_{N+1}^{adv} = Clip_{X,\epsilon} \Big\{ \boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \big(\nabla_{X} J(\boldsymbol{X}_{N}^{adv}, y_{true}) \big) \Big\}$$

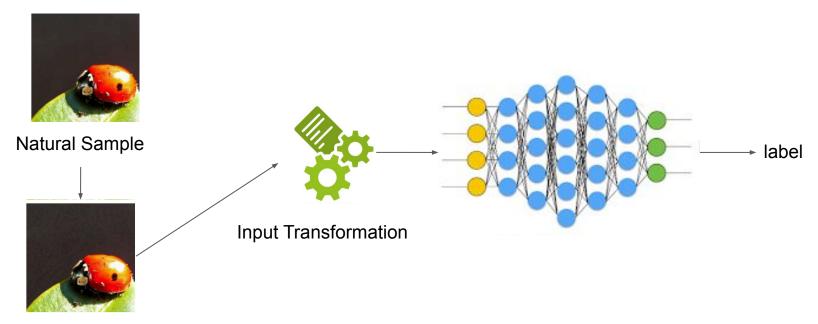


$$\tilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha)J(\theta, x^{adv}, y)$$

Outline

- Adversarial Defense
- Defense Strategies
 - Adversarial Training
 - Input Transformations
 - Stochastic Gradients
- Obfuscated Gradients and BPDA
- Robust Optimization
- Certified Defense

Input Transformations



Adversarial Sample <u>Guo et al. 2018</u>

Input Transformations

- Goal: Disrupt Adversarial Perturbations
- Image cropping/re-scaling
- Bit-depth reduction

16.7 Million

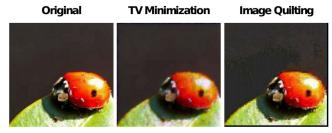
256 Colors

16 Colors

Guo et al, 2018

Input Transformations

- Goal: Disrupt Adversarial Perturbations
- Image cropping/re-scaling
- Bit-depth reduction
- JPEG compression
- Total variation minimization
- Image quilting



Total Variation Minimization

Generate a denoised image z by minimizing TV

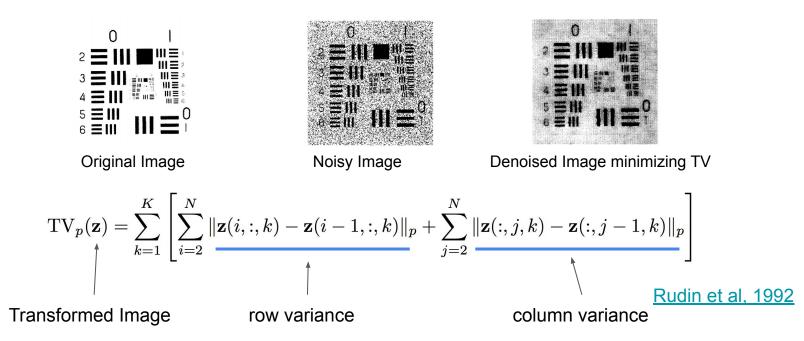
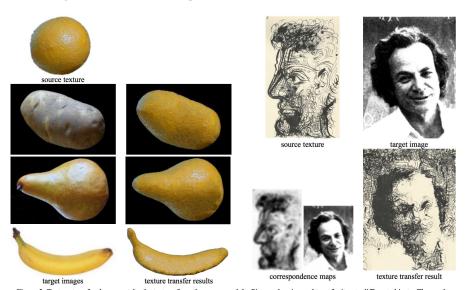


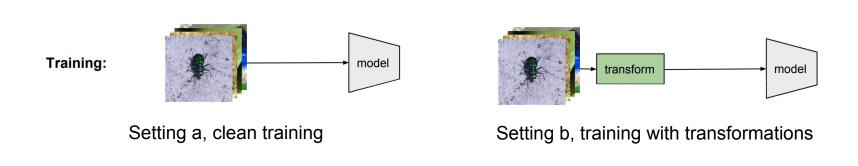
Image Quilting

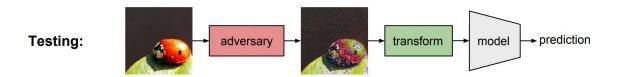
- Synthesizes images by piecing together small patches taken from a database of image patches
- Database contains only clean images



Efros et al, 2001

Input Transformation Defense

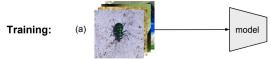


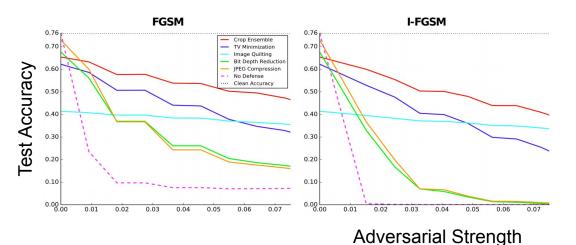


Guo et al, 2018

Results with Clean Image Training

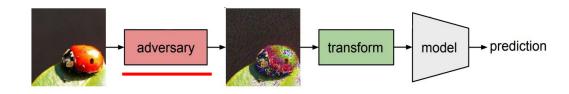
ResNet on ImageNet





Gradient Shattering

- Can we design specialized attacks that target input transformations?
 - We show previously the results using FGSM and C&W
- Input Transformations belongs to a family of defense methods that causes Gradient Shattering

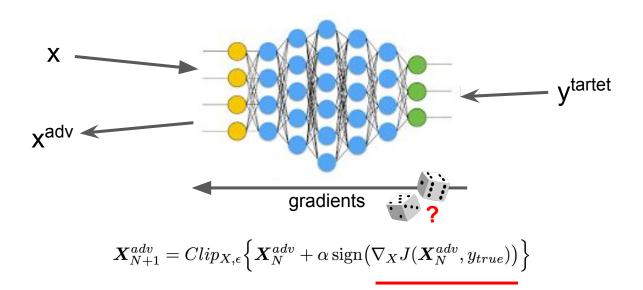


Train our own adversary that targets input transformations?

Outline

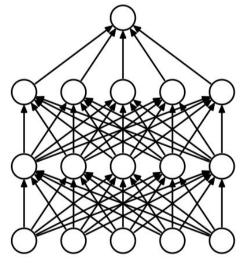
- Adversarial Defense
- Defense Strategies
 - Adversarial Training
 - Input Transformations
 - Stochastic Gradients
- Obfuscated Gradients and BPDA
- Robust Optimization
- Certified Defense

Stochastic Gradients

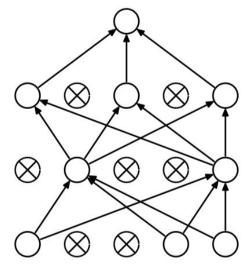


Dropout

- Dropout randomly turns off activations by a fixed probability r
- Originally introduced to prevent overfitting



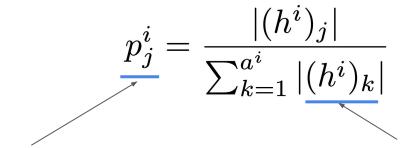
(a) Standard Neural Net



(b) After applying dropout.

Stochastic Activation Pruning (SAP)

- Stochastic Activation Pruning turns off activations based on a learned probability
- Draw with replacement for each activation

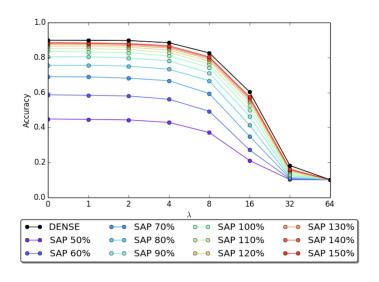


probability of turning on the jth activation on the ith layer

embeddings of the jth activation on the kth layer

Dhillon et al, 2018

Defense Results



1.0 0.2 8 16 32 → DENSE SAP 70% SAP 100% ● SAP 130% ● SAP 50% **SAP 80%** SAP 140% SAP 110% ● SAP 60% SAP 90% SAP 120% SAP 150%

Random Attack

FGSM Attack

SAP % - the percentages of samples drawn for each layer λ - perturbation strength

Summary of Defense Strategies

Defense Methods	General Idea
Adversarial Training	Mixing adversarial samples with natural samples during training
Input Transformation	Adding transformation to make defense non-differentiable
Stochastic Gradients	Causing gradients to be randomized

Outline

- Adversarial Defense
- Defense Strategies
 - Adversarial Training
 - Input Transformations
 - Stochastic Gradients
- Obfuscated Gradients and BPDA
- Robust Optimization
- Certified Defense

Obfuscated Gradients

- A defense method is said to achieve Obfuscated Gradients if
 - o It prevents the attack methods from utilizing useful gradient information

Shattered Gradients

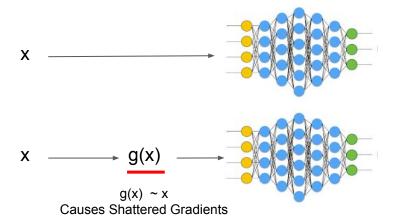
- Present a defense method that is non-differentiable or numerically unstable
- o e.g., Input Transformations

Stochastic Gradients

- Present a defense method that is randomized, causing single samples to incorrectly estimate the true gradients.
- e.g., Stochastic Activation Pruning

Backward Pass Differentiable Approximation (BPDA)

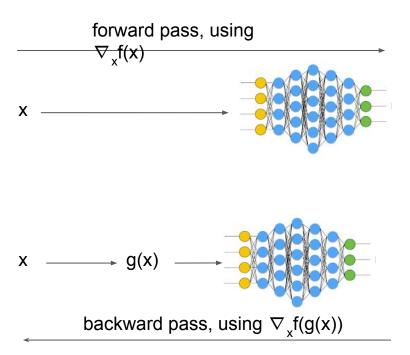
Bypass Shattered Gradients by its differnetable approximations.



$$|\nabla_x f(g(x))|_{x=\hat{x}} \approx |\nabla_x f(x)|_{x=g(\hat{x})}$$

Athalye et al, 2018

BPDA In Neural Networks



Athalye et al, 2018

Handling Stochastic Gradients

Applying the expectations of multiple Stochastic Gradients

$$\nabla \mathbb{E}_{t \sim T} f(t(x)) = \mathbb{E}_{t \sim T} \nabla f(t(x))$$

Results

Defense	Dataset	Distance	Accuracy on Adversarial Samples
Adversarial Training (Madry et al, 2018)	CIFAR	0.031(I _∞)	47%
Input Transformations (Guo et al, 2018)	ImageNet	0.005(I ₂)	0%
Stochastic Gradients (Dhillon et al, 2018)	CIFAR	0.031 (I _∞)	0%

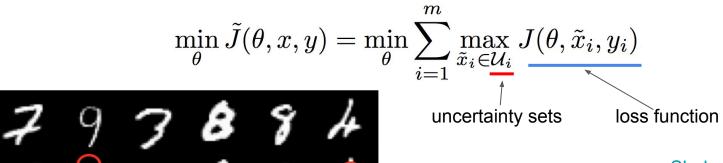
But Why is Adversarial Training More Robust?

Outline

- Adversarial Defense
- Defense Strategies
 - Adversarial Training
 - Input Transformations
 - Stochastic Gradients
- Obfuscated Gradients and BPDA
- Robust Optimization
- Certified Defense

Robust Optimization

- Train a robust model
 - In the neighborhood of x
 - Under the worst case scenario in terms of the loss function.



Shaham et al, 2016

Linear Regression As A Robust Optimization

We can write Linear Regression in the form of Robust Optimization

$$\min_{x} \|Ax - b\| + \lambda \|x\|_{1}$$

$$\lim_{x} \max_{\|\Delta A\|_{\infty, 2} < \rho} \|(A + \Delta A)x - b\|$$

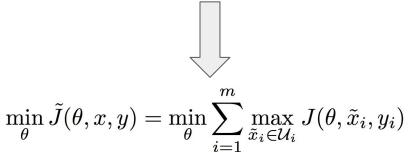
Robust Optimization

Shaham et al, 2016

Adversarial Training As A Robust Optimization

 We can also write Adversarial Training in the form of Robust Optimization

$$\widetilde{J}(\theta, x, y) = \alpha J(\theta, x, y) + (1 - \alpha)J(\theta, x^{adv}, y)$$



$$\Delta_{x_i} = \arg \max_{\Delta: x_i + \Delta \in \mathcal{U}_i} J_{\theta, y_i}(x_i + \Delta)$$

Shaham et al, 2016

Outline

- Adversarial Defense
- Defense Strategies
 - Adversarial Training
 - Input Transformations
 - Stochastic Gradients
- Obfuscated Gradients and BPDA
- Robust Optimization
- Certified Defense

Certified Defense

- Guarantee the performance against Adversarial Attack
- Guaranteed for a family of networks

$$f^i(x) = V_i^\top \sigma(Wx)$$

Two-layer Neural Network

Bounded Performance

Error Margin
$$f(x) = f^1(x) - f^2(x)$$
 incorrect class correct class

$$\frac{f(A(x)) \leq f(A_{\mathrm{opt}}(x))}{\int} \leq \frac{f(x) + \epsilon \max_{\tilde{x} \in B_{\epsilon}(x)} \|\nabla f(\tilde{x})\|_{1}}{\int} \leq f_{\mathrm{QP}}(x) \leq f_{\mathrm{SDP}}(x)$$
 Error of any attack Error of optimal attack Bounds

Feasible Bounds

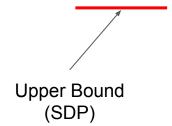
Bounded Performance

Error Margin
$$f(x) = f^1(x) - f^2(x)$$
 incorrect class correct class

$$f(A(x)) \le f(A_{\text{opt}}(x)) \le f(x) + \epsilon \max_{\tilde{x} \in B_{\epsilon}(x)} \|\nabla f(\tilde{x})\|_{1} \le f_{\text{QP}}(x) \le f_{\text{SDP}}(x)$$

$$f_{\text{SDP}}(x) \stackrel{\text{def}}{=} f(x) + \frac{\epsilon}{4} \max_{P \succeq 0, \operatorname{diag}(P) \leq 1} \langle M(v, W), P \rangle$$
 solution to semidefinite program

$$M^{(v,W)} \stackrel{\mathrm{def}}{=} \left[egin{array}{ccc} 0 & 0 & \mathbf{1}^{\mathsf{T}} W^{\mathsf{T}} \operatorname{diag}(v) \ 0 & 0 & W^{\mathsf{T}} \operatorname{diag}(v) \ \operatorname{diag}(v)^{\mathsf{T}} W & 0 \end{array}
ight] \quad v \stackrel{\mathrm{def}}{=} V_1 - V_2$$



Training Certified Defense

$$f(A(x)) \leq f(A_{\text{opt}}(x)) \leq f(x) + \epsilon \max_{\tilde{x} \in B_{\epsilon}(x)} \|\nabla f(\tilde{x})\|_{1} \leq f_{\text{QP}}(x) \leq \underline{f_{\text{SDP}}(x)}$$
$$f_{\text{SDP}}(x) \stackrel{\text{def}}{=} f(x) + \frac{\epsilon}{4} \max_{P \succeq 0, \text{diag}(P) \leq 1} \langle M(v, W), P \rangle$$

$$(W^{\star}, V^{\star}) = \underset{W,V}{\operatorname{arg\,min}} \sum_{n} \ell_{\operatorname{cls}}(V, W; x_n, y_n) + \sum_{i \neq j} \lambda^{ij} \underset{P \succeq 0, \operatorname{diag}(P) \leq 1}{\operatorname{max}} \left\langle M^{ij}(V, W), P \right\rangle$$

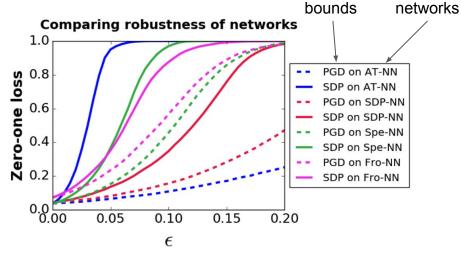
parameters to the two-layer neural network

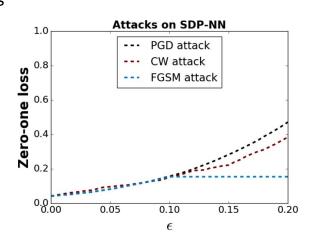
loss function

hyper-parameter

Defense Certification

Results





AT-NN - Adversarial training using PGD (Madry et al, 2018)

SDP-NN - Proposed training objective

Spe-NN - Spectral norm regularization i.e., $\lambda(||W||_2 + ||v||_2)$

Fro-NN - Frobenius norm regularization i.e., $\lambda(||W||_F + ||v||_2)$

$$\|A\|_{ ext{F}} = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$
 :

PGD - lower bound SDP - upper bound

$$\frac{f(A(x)) \leq f(A_{\mathrm{opt}}(x))}{FGD |_{\mathrm{lower \, bound}}} \leq |f(x) + \epsilon \max_{\tilde{x} \in B_{\epsilon}(x)} \|\nabla f(\tilde{x})\|_{1} \leq |f_{\mathrm{QP}}(x)| \leq \frac{f_{\mathrm{SDP}}(x)}{|_{\mathrm{lower \, bound}}}$$

Raghunathan et al, 2018

Results

 No attack that perturbs each pixel by at most = 0.1 can cause more than 35% test error.

Network	PGD error	SDP bound
SDP-NN	15%	35%

SDP-NN - Proposed training objective PGD - upper bound SDP - lower bound $\epsilon = 0.1$

Summary

- Robustness of ML Models
 - Preventing models from being abused by malicious attack
- Adversarial Attack
 - Confuses models by manipulating input data
 - Evasion attack
 - Poisoning attack
 - Exploratory attack
- Attack Strategies
 - FGSM white-box
 - C&W -white-box
 - Jacobian-based Data Augmentation black-box

Summary

- Adversarial Defense
 - Equip models with the ability to defend adversarial attacks
- Defense Strategies
 - Adversarial Training
 - Robust Optimization
 - Gradient Shattering
 - Stochastic Gradients
- BPDA
 - Attack all defense models utilizing Obfuscated Gradients
- Certified Defense
 - Provable performance for certain types of networks

Reading Assignments

- Metzen, Jan Hendrik, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting adversarial perturbations, ICLR 2017
- Raghunathan, Aditi, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial examples, ICLR 2018
- Cohen, Jeremy M., Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized smoothing, ICML 2019
- Samangouei, Pouya, Maya Kabkab, and Rama Chellappa. Defense-gan:
 Protecting classifiers against adversarial attacks using generative models, ICLR 2018
- Tramèr, Florian, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and defenses, ICLR 2018