Robustness and Evasion Attacks

May 15, 2020 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning Stanford University

Outline

- Optical Illusions
- Adversarial Attack
- White-box Evasion Attack
 - FGSM
 - **C&W**
 - Physical Attack
- Transferability of Attack
- Black-box Evasion Attack
 - Jacobian-based Data Augmentation

Optical Illusions

OO(11 Y 14

Optical Illusions

Optical Illusions

Robustness of ML Models

- Optical illusions trick human brains
- Can ML models be tricked?

Outline

- Optical Illusions
- Adversarial Attack
- White-box Evasion Attack
 - FGSM
 - **C&W**
 - Physical Attack
- Transferability of Attack
- Black-box Evasion Attack
 - Jacobian-based Data Augmentation

Adversarial Samples

Driverless Car

Sitawarin et al, 2018

classified as :

Speed Limit (30 mph)

Eykholt et al, 2018

classified as : Speed Limit (45 mph)

Stop

Facial Recognition

Dabouei et al, 2018

AI Chatbots

Input		
Adv agent	1xbook value 0 1xhat value 1 3xball value	3
RL agent	1xbook value 1 1xhat value 0 3xball value	3
Adv agent	i would like the balls and the hat	
RL agent	i need the balls and the book	
Adv agent	i need the balls and fine book	
RL agent	$\langle selection \rangle$	
Output	Rewar	ď
Adv agent	1xhat 1xbook 3xball 10/1	0
RL agent	0/1	0

Cheng et al, 2019

Spam Detections

Malware Detection

• Mislead 60% to 80% of the malicious application samples

Grosse et al. 2016

Newly discovered 42 malicious apps on Google Play store Rohit KVN, 2019

Speech Recognition

Universal Adversarial Patch

Thys et al, 2019

https://www.youtube.com/watch?v=MIbFvK2S9g8

- Data Poisoning Attack
 - Insert poisonous samples during training

- Evasion Attack
 - Generate malicious samples to fool ML models

- Exploratory Attack
 - Reverse engineer user data from a trained model

	Attack Phase	Goal
Evasion	Testing	Compromise Model Performance
Data Poisoning	Training	Compromise Model Performance
Exploratory	Testing	Explore Model Characteristics Reconstruct User Data

Outline

- Optical Illusions
- Adversarial Attack
- White-box Evasion Attack
 - FGSM
 - **C&**W
 - Physical Attack
- Transferability of Attack
- Black-box Evasion Attack
 - Jacobian-based Data Augmentation

Training ML Models

Fast Gradient Sign Method (FGSM)

Goodfellow et al, 2015

$$\theta' = \theta - \nabla_{\theta} \sum_{x,y} J(x, y_{true})$$

Untargeted Adversarial Examples

 $oldsymbol{x}$

"panda" 57.7% confidence

 $sign(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, y))$

"nematode" 8.2% confidence

 $m{x} + \epsilon \operatorname{sign}(
abla_{m{x}} J(m{ heta}, m{x}, y))$ "gibbon" 99.3 % confidence

Goodfellow et al, 2015

Targeted FGSM

Targeted Adversarial Examples

Younis et al, 2019

Basic Iterative Methods

• Untargeted Attack

$$\boldsymbol{X}_{N+1}^{adv} = Clip_{X,\epsilon} \Big\{ \boldsymbol{X}_{N}^{adv} + \alpha \operatorname{sign} \big(\nabla_{X} J(\boldsymbol{X}_{N}^{adv}, y_{true}) \big) \Big\}$$

• Targeted Attack

$$\boldsymbol{X}_{N+1}^{adv} = Clip_{X,\epsilon} \left\{ \boldsymbol{X}_{N}^{adv} - \alpha \operatorname{sign} \left(\nabla_{X} J(\boldsymbol{X}_{N}^{adv}, y_{target}) \right) \right\}$$

Error Rate and Perturbation Tolerance

iter 1.1 - iteration using least likely target $y_{LL} = \arg \min_{y} \{ p(y \mid X) \}$

fast - FGSM

Model Capacity and Attacks

- ρ the factor in the number for InceptionNet
- 1 unchanged
- 0.5 keep half of the filters

Kurakin et al, 2016

Outline

- Optical Illusions
- Adversarial Attack

• White-box Evasion Attack

- FGSM
- **C&W**
- Physical Attack
- Transferability of Attack
- Black-box Evasion Attack
 - Jacobian-based Data Augmentation

C&W Attack

- C&W attack
 - perturb the sample in the direction of the target class
 - minimizes the distance from the original sample x

minimize $\mathcal{D}(x, x + \delta)$ such that $C(x + \delta) = t$ $x + \delta \in [0, 1]^n$

D - distance function

C - classifier

x - original natural sample

 δ - perturbations

t - target class

 $\mathsf{Targeted}\ \mathsf{FGSM}\ oldsymbol{X}^{adv} = oldsymbol{X} - \epsilon \operatorname{sign}ig(
abla_X J(oldsymbol{X}, y_{target})ig)$

C&W Attack

minimize $\mathcal{D}(x, x + \delta)$ such that $C(x + \delta) = t$ $x + \delta \in [0, 1]^n$

minimize $\mathcal{D}(x, x + \delta) + c \cdot f(x + \delta)$ such that $x + \delta \in [0, 1]^n$

$$C(x+\delta) = t$$
 $f(x+\delta) \le 0$

C&W Attack

minimize $\mathcal{D}(x, x + \delta) + c \cdot f(x + \delta)$ such that $x + \delta \in [0, 1]^n$

$$C(x+\delta) = t$$
 $f(x+\delta) \le 0$

$$f_1(x') = -\log_{F,t}(x') + 1$$

$$f_2(x') = (\max_{i \neq t} (F(x')_i) - F(x')_t)^+$$

$$f_3(x') = \text{softplus}(\max_{i \neq t} (F(x')_i) - F(x')_t) - \log(2)$$

$$f_4(x') = (0.5 - F(x')_t)^+$$

$$f_5(x') = -\log(2F(x')_t - 2)$$

$$f_6(x') = (\max_{i \neq t} (Z(x')_i) - Z(x')_t)^+$$

$$f_7(x') = \text{softplus}(\max_{i \neq t} (Z(x')_i) - Z(x')_t) - \log(2)$$

Comparisons of F

$$\begin{split} f_1(x') &= -\mathrm{loss}_{F,t}(x') + 1\\ f_2(x') &= (\max_{i \neq t} (F(x')_i) - F(x')_t)^+\\ f_3(x') &= \mathrm{softplus}(\max_{i \neq t} (F(x')_i) - F(x')_t) - \mathrm{log}(2)\\ f_4(x') &= (0.5 - F(x')_t)^+\\ f_5(x') &= -\mathrm{log}(2F(x')_t - 2)\\ f_6(x') &= (\max_{i \neq t} (Z(x')_i) - Z(x')_t)^+\\ f_7(x') &= \mathrm{softplus}(\max_{i \neq t} (Z(x')_i) - Z(x')_t) - \mathrm{log}(2) \end{split}$$

	Best Case								Ave	rage Ca	se		Worst Case					
	Char Var	ige of iable	Cl De	ipped escent	Pi I	rojected Descent	Cha Va	ange of riable	Cl De	ipped escent	Pi I	rojected Descent	Cha Va	ange of riable	Cl De	ipped escent	Pro De	jected scent
	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob
f_1	2.46	100%	2.93	100%	2.31	100%	4.35	100%	5.21	100%	4.11	100%	7.76	100%	9.48	100%	7.37	100%
f_3	4.54	77%	4.07	81%	3.76	82%	3.47	44%	9.55	63%	15.84	74%	3.09	17%	11.91	41%	24.01	59%
f_4	5.01	86%	6.52 2.20	100% 100%	7.53 1.94	100%	4.03	55% 100%	7.49	71%	7.60 3.47	71%	3.55	24% 100%	4.25 7.86	35% 100%	4.10	35% 100%
$f_6 f_7$	1.94 1.96	100% 100%	2.18 2.21	100% 100%	1.95 1.94	100% 100%	3.47 3.53	100% 100%	4.11 4.14	100% 100%	3.41 3.43	100% 100%	6.03 6.20	100% 100%	7.50 7.57	100% 100%	5.89 5.94	100% 100%

minimize $c \cdot f(x+\delta) + \|\delta\|_{\infty}$

FGSM $\boldsymbol{X}^{adv} = \boldsymbol{X} + \epsilon \operatorname{sign} \bigl(\nabla_X J(\boldsymbol{X}, y_{true}) \bigr)$

Results

	Best Case					Averag	ge Case		Worst Case			
	MNIST		CIFAR		MNIST		CIFAR		MNIST		CIFAR	
	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob	mean	prob
Our L_{∞}	0.13	100%	0.0092	2 100%	0.16	100%	0.013	100%	0.23	100%	0.019	100%
Fast Gradient Sign	0.22	100%	0.015	99%	0.26	42%	0.029	51%	_	0%	0.34	1%
Iterative Gradient Sign	0.14	100%	0.0078	3 100%	0.19	100%	0.014	100%	0.26	100%	0.023	100%

Best Case - select the least difficult class to attack among the incorrect ones Average Case- select the target class randomly among the incorrect ones Worst Case - select the most difficult class to attack among the incorrect ones

Outline

- Optical Illusions
- Adversarial Attack

• White-box Evasion Attack

- FGSM
- **C&W**
- Physical Attack
- Transferability of Attack
- Black-box Evasion Attack
 - Jacobian-based Data Augmentation

Physical Objects

https://youtu.be/zQ_uMenoBCk

Kurakin et al, 2017

Evasion Attacks on Physical

Comparisons

		Pho	otos		Source images					
Adversarial	Clean	images	Adv. i	mages	Clean	images	Adv. images			
method	top-1	top-5	top-1	top-5	top-1	top-5	top-1	top-5		
fast $\epsilon = 16$	79.8%	91.9%	36.4%	67.7%	85.3%	94.1%	36.3%	58.8%		
fast $\epsilon = 8$	70.6%	93.1%	49.0%	73.5%	77.5%	97.1%	30.4%	57.8%		
fast $\epsilon = 4$	72.5%	90.2%	52.9%	79.4%	77.5%	94.1%	33.3%	51.0%		
fast $\epsilon = 2$	65.7%	85.9%	54.5%	78.8%	71.6%	93.1%	35.3%	53.9%		
iter. basic $\epsilon = 16$	72.9%	89.6%	49.0%	75.0%	81.4%	95.1%	28.4%	31.4%		
iter. basic $\epsilon = 8$	72.5%	93.1%	51.0%	87.3%	73.5%	93.1%	26.5%	31.4%		
iter. basic $\epsilon = 4$	63.7%	87.3%	48.0%	80.4%	74.5%	92.2%	12.7%	24.5%		
iter. basic $\epsilon = 2$	70.7%	87.9%	62.6%	86.9%	74.5%	96.1%	28.4%	41.2%		
1.1. class $\epsilon = 16$	71.1%	90.0%	60.0%	83.3%	79.4%	96.1%	1.0%	1.0%		
1.1. class $\epsilon = 8$	76.5%	94.1%	69.6%	92.2%	78.4%	98.0%	0.0%	6.9%		
1.1. class $\epsilon = 4$	76.8%	86.9%	75.8%	85.9%	80.4%	90.2%	9.8%	24.5%		
1.1. class $\epsilon = 2$	71.6%	87.3%	68.6%	89.2%	75.5%	92.2%	20.6%	44.1%		

fast - FGSM

iter. basic - iterative FGSM

I.I. - iterative FGSM with least likely target $y_{LL} = \arg \min_{y} \{ p(y \mid \boldsymbol{X}) \}$

Kurakin et al, 2017

Comparisons (Filtered)

		Pho	tos		Source images					
Adversarial	Clean	images	Adv. i	mages	Clean	images	Adv. images			
method	top-1	top-5	top-1	top-5	top-1	top-5	top-1	top-5		
fast $\epsilon = 16$	81.8%	97.0%	5.1%	39.4%	100.0%	100.0%	0.0%	0.0%		
fast $\epsilon = 8$	77.1%	95.8%	14.6%	70.8%	100.0%	100.0%	0.0%	0.0%		
fast $\epsilon = 4$	81.4%	100.0%	32.4%	91.2%	100.0%	100.0%	0.0%	0.0%		
fast $\epsilon = 2$	88.9%	99.0%	49.5%	91.9%	100.0%	100.0%	0.0%	0.0%		
iter. basic $\epsilon = 16$	93.3%	97.8%	60.0%	87.8%	100.0%	100.0%	0.0%	0.0%		
iter. basic $\epsilon = 8$	89.2%	98.0%	64.7%	91.2%	100.0%	100.0%	0.0%	0.0%		
iter. basic $\epsilon = 4$	92.2%	97.1%	77.5%	94.1%	100.0%	100.0%	0.0%	0.0%		
iter. basic $\epsilon = 2$	93.9%	97.0%	80.8%	97.0%	100.0%	100.0%	0.0%	1.0%		
1.1. class $\epsilon = 16$	95.8%	100.0%	87.5%	97.9%	100.0%	100.0%	0.0%	0.0%		
1.1. class $\epsilon = 8$	96.0%	100.0%	88.9%	97.0%	100.0%	100.0%	0.0%	0.0%		
1.1. class $\epsilon = 4$	93.9%	100.0%	91.9%	98.0%	100.0%	100.0%	0.0%	0.0%		
1.1. class $\epsilon = 2$	92.2%	99.0%	93.1%	98.0%	100.0%	100.0%	0.0%	0.0%		

fast - FGSM

iter. basic - iterative FGSM

I.I. - iterative FGSM with least likely target $y_{LL} = \arg \min_{y} \{ p(y \mid X) \}$

Kurakin et al, 2017

Outline

- Optical Illusions
- Adversarial Attack
- White-box Evasion Attack
 - FGSM
 - C&W
 - Physical Attack
- Transferability of Attack
- Black-box Evasion Attack
 - Jacobian-based Data Augmentation

Transferability of Attack

Transferability of Attack

		FGSM					basic	iter.		iter 1.1.			
	source	80	target	model			target	model			target	model	
	model	A	В	C	D	A	B	C	D	Α	B	C	D
top 1	A (v3)	100	56	58	47	100	46	45	33	100	13	13	9
	B (v3)	58	100	59	51	41	100	40	30	15	100	13	10
	C (v3 ELU)	56	58	100	52	44	44	100	32	12	11	100	9
	D (v4)	50	54	52	100	35	39	37	100	12	13	13	100
top 5	A (v3)	100	50	50	36	100	15	17	11	100	8	7	5
	B (v3)	51	100	50	37	16	100	14	10	7	100	5	4
	C (v3 ELU)	44	45	100	37	16	18	100	13	6	6	100	4
	D (v4)	42	38	46	100	11	15	15	100	6	6	6	100

- A Inception v3
- B Inception v3 with different initialization
- C Inception v3 with ELU activation
- D Inception v4

iter. basic - iterative FGSM

itera I.I. - iterative FGSM with least like <u>Vurakin et al. 2017</u> target

Transferability of Attack

Outline

- Optical Illusions
- Adversarial Attack
- White-box Evasion Attack
 - FGSM
 - **C&W**
 - Physical Attack
- Transferability of Attack
- Black-box Evasion Attack
 - Jacobian-based Data Augmentation

White-box and Black-box Attack

Black-box Setting

Х

Substitute Model for Black-box Adversarial Attack

Data Augmentation for the Substitute Model

- Data annotation using the black-box model is expensive
- It's difficult to find a good dataset x to probe the performance of the black-box model

Black-box Model

Jacobian-based Data Augmentation

• Start with an initial dataset $S_0 = \{x_i\}$

• Expand it in the direction of the model prediction \hat{y}_i for each x_i

$$S_{\rho+1} = \{\vec{x} + \lambda \cdot \operatorname{sgn}(J_F[\tilde{O}(\vec{x})]) : \vec{x} \in S_{\rho}\} \cup S_{\rho}$$

$$\stackrel{\text{prediction of the black-box}}{\text{model}} \quad f: \mathbb{R}^n \to \mathbb{R}^m$$

$$\operatorname{grad}_x(f) := \left[\frac{\partial f}{\partial x_1} \frac{\partial f}{\partial x_2} \dots \frac{\partial f}{\partial x_n}\right]\Big|_x \quad \operatorname{Jac}_x(f) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \dots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}\Big|_x$$

Jacobian-based Data Augmentation

• Start with an initial dataset $S_0 = \{x_i\}$

• Expand it in the direction of the model prediction \hat{y}_i for each x_i

$$S_{\rho+1} = \{\vec{x} + \lambda \cdot \operatorname{sgn}(J_F[\tilde{O}(\vec{x})]) : \vec{x} \in S_{\rho}\} \cup S_{\rho}$$

$$\stackrel{\text{prediction of the black-box model}}{\operatorname{model}} \quad f: \mathbb{R}^n \to \mathbb{R}^m$$

$$x_{i, \ 1..n} \quad \hat{y}_{i, \ 1..m} \quad J_{\operatorname{ac}_{x}(f)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}_{x} \quad \tilde{O}(\vec{x})$$

Jacobian-based Data Augmentation

Substitute Model for Black-box Adversarial Attack

Results on Attacking Amazon and Google Services

		Ama	azon	Goo	ogle
Epochs	Queries	DNN	LR	DNN	LR
$\rho = 3$	800	87.44	96.19	84.50	88.94
$\rho = 6$	$6,\!400$	96.78	96.43	97.17	92.05
$\rho = 6^*$	2,000	95.68	95.83	91.57	97.72

DNN - Deep Neural Networks LG - Logistic Regression

* - reservoir sampling

$$ec{x} + \lambda \cdot ext{sgn}(J_F[ilde{O}(ec{x})]) \ _{\lambda_
ho \,=\, \lambda \,\cdot\, (-1)^{\left\lfloor rac{
ho}{ au}
ight
floor}}$$

Reading Assignments

- Sitawarin, Chawin, Arjun Nitin Bhagoji, Arsalan Mosenia, Mung Chiang, and Prateek Mittal. Darts: Deceiving autonomous cars with toxic signs. arXiv 2018
- Ilyas, Andrew, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander Madry. Adversarial examples are not bugs, they are features, NeurIPS 2019
- Athalye, Anish, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial examples, ICML 2018
- Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal adversarial perturbations, CVPR 2017
- Moosavi-Dezfooli, Seyed-Mohsen, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and accurate method to fool deep neural networks, CVPR 2016