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Robustness of ML Models
● Optical illusions trick human brains
● Can ML models be tricked?
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Driverless Car

classified as :    Speed Limit (45 mph)

classified as :      Stop           Speed Limit (30 mph)
Sitawarin et al, 2018

Eykholt et al, 2018

https://arxiv.org/pdf/1802.06430.pdf
https://arxiv.org/pdf/1707.08945.pdf


Facial Recognition

Dabouei et al, 2018

https://arxiv.org/pdf/1809.08999.pdf


AI Chatbots

Cheng et al, 2019

https://www.aclweb.org/anthology/N19-1336.pdf


Spam Detections



Malware Detection
● Mislead 60% to 80% of the 

malicious application samples

Newly discovered 42 malicious apps on Google Play store Rohit KVN, 2019Grosse et al, 2016

https://www.deccanherald.com/specials/google-drops-42-malicious-android-apps-from-play-store-771578.html
https://arxiv.org/pdf/1606.04435.pdf


Speech Recognition

Carlini et al, 2018

https://arxiv.org/pdf/1801.01944.pdf


Universal Adversarial Patch

Thys et al, 2019

https://www.youtube.com/watch?v=MIbFvK2S9g8

https://arxiv.org/pdf/1904.08653.pdf
https://www.youtube.com/watch?v=MIbFvK2S9g8


Types of Adversarial Attack
● Data Poisoning Attack

○ Insert poisonous samples during training

Training



Types of Adversarial Attack
● Evasion Attack

○ Generate malicious samples to fool ML models

Testing



Types of Adversarial Attack
● Exploratory Attack

○ Reverse engineer user data from a trained model

Reverse Engineering



Types of Adversarial Attack

Attack Phase Goal

Evasion Testing Compromise Model 
Performance

Data Poisoning Training Compromise Model 
Performance

Exploratory Testing Explore Model Characteristics
Reconstruct User Data
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Training ML Models

θ



Fast Gradient Sign Method (FGSM)

Goodfellow et al, 2015

x1 x2

FGSM

SGD

https://arxiv.org/pdf/1412.6572.pdf


Untargeted Adversarial Examples

Goodfellow et al, 2015

https://arxiv.org/pdf/1412.6572.pdf


x xx

Targeted FGSM

Kurakin et al, 2016

Targeted FGSM

Untargeted FGSM

YtargetYtrue

SGD:

https://arxiv.org/abs/1611.01236


Targeted Adversarial Examples

Younis et al, 2019

https://www.acns19.com/wp-content/uploads/2019/05/SiMLA19-2.pdf


Basic Iterative Methods
● Untargeted Attack

● Targeted Attack



Error Rate and Perturbation Tolerance

Kurakin et al, 2016

fast - FGSM
basic iter. - iterative untargeted FGSM
iter 1.1 - iteration using least likely target

https://arxiv.org/abs/1611.01236


Model Capacity and Attacks

Kurakin et al, 2016

Iterative MethodOne-step Targeted  

ρ - the factor in the number for InceptionNet
1 - unchanged
0.5 - keep half of the filters

https://arxiv.org/abs/1611.01236
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C&W Attack

Carlini et al, 2017

D - distance function
C - classifier
x - original natural sample
δ - perturbations
t - target class

● C&W attack
○ perturb the sample in the direction of the target class
○ minimizes the distance from the original sample x

Targeted FGSM

https://arxiv.org/pdf/1608.04644.pdf


C&W Attack

Carlini et al, 2016

https://arxiv.org/abs/1608.04644


C&W Attack

Carlini et al, 2016

https://arxiv.org/abs/1608.04644


Comparisons of F

Carlini et al, 2016

https://arxiv.org/abs/1608.04644


C&W L∞ Attack

FGSM

Carlini et al, 2016

https://arxiv.org/abs/1608.04644


Results

Carlini et al, 2016

Best Case - select the least difficult class to attack among the incorrect ones
Average Case- select the target class randomly among the incorrect ones
Worst Case - select the most difficult class to attack among the incorrect ones

https://arxiv.org/abs/1608.04644
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Physical Objects
● https://youtu.be/zQ_uMenoBCk

Kurakin et al, 2017

https://youtu.be/zQ_uMenoBCk
https://arxiv.org/pdf/1607.02533.pdf


Evasion Attacks on Physical 

Kurakin et al, 2017

https://arxiv.org/pdf/1607.02533.pdf


Comparisons

Kurakin et al, 2017
fast - FGSM
iter. basic - iterative FGSM
l.l. - iterative FGSM with least likely target 

https://arxiv.org/pdf/1607.02533.pdf


Comparisons (Filtered)

Kurakin et al, 2017
fast - FGSM
iter. basic - iterative FGSM
l.l. - iterative FGSM with least likely target 

https://arxiv.org/pdf/1607.02533.pdf
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Transferability of Attack

Network 1 Network 2

Transfer



Transferability of Attack

Kurakin et al, 2017
iter. basic - iterative FGSM
itera l.l. - iterative FGSM with least likely 
target 

A - Inception v3
B - Inception v3 with different initialization
C - Inception v3 with ELU activation
D - Inception v4

https://arxiv.org/pdf/1611.01236.pdf


Transferability of Attack

Kurakin et al, 2017
Targeted FGSM

https://arxiv.org/pdf/1611.01236.pdf
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White-box and Black-box Attack

x y

gradients

x y

White-box Setting

Black-box Setting

gradients✖

?



Substitute Model for Black-box Adversarial Attack

Papernot et al 2016

Substitute Model

prediction
ŷ

Training

?

Black-box Model

Adversarial 
Samples xData 

Augmentation

https://arxiv.org/abs/1602.02697


Data Augmentation for the Substitute Model

prediction
ŷ

?

Black-box Model

x

Expensive

● Data annotation using the black-box 
model is expensive

● It's difficult to find a good dataset x 
to probe the performance of the 
black-box model

decision boundary



Jacobian-based Data Augmentation

f: ℝ𝑛→ℝ
f: ℝ𝑛→ℝm

prediction of 
the black-box 
model

● Start with an initial dataset S0 = {xi}
● Expand it in the direction of the model prediction ŷi for each xi 



Jacobian-based Data Augmentation

f: ℝ𝑛→ℝm

prediction of 
the black-box 
model

● Start with an initial dataset S0 = {xi}
● Expand it in the direction of the model prediction ŷi for each xi 

xi, 1..n ŷi,1..m



Jacobian-based Data Augmentation
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Substitute Model for Black-box Adversarial Attack

Papernot et al 2016

Substitute Model

prediction
ŷ

Training

?

Black-box Model

Adversarial 
Samples xData 

Augmentation

https://arxiv.org/abs/1602.02697


Results on Attacking Amazon and Google Services

DNN - Deep Neural Networks
LG - Logistic Regression
* - reservoir sampling
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