Fair Visual Representations

May 8, 2020 Dr. Wei Wei, Prof. James Landay

CS 335: Fair, Accountable, and Transparent (FAccT) Deep Learning Stanford University

Recap

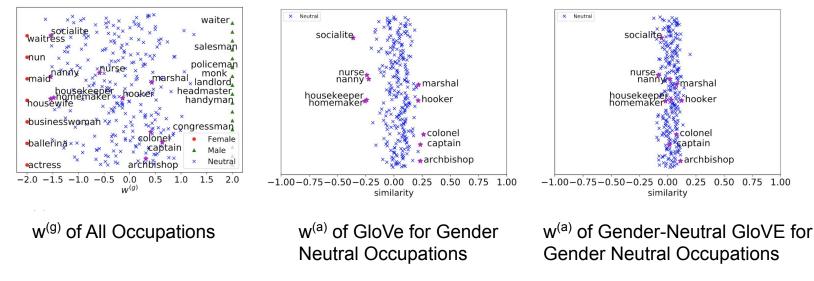
• Gender Swapping for Coreference Resolution

Original sample	Mention Coref
Gender swap	Mention Coref
Gender swap	Mention Mentio

Rudinger et al, 2018

Recap

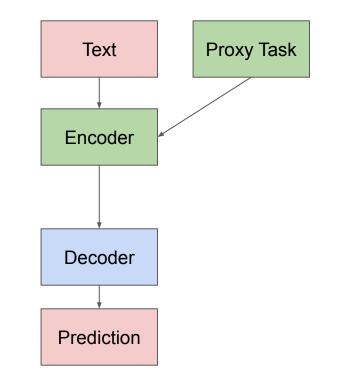
• Debiasing Word Embedding by Gender Attribute Separation



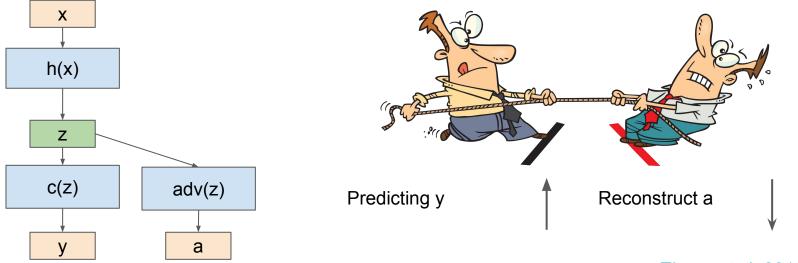
w^(g) - Gender-related Components w^(a) - Gender-neutral Components

The Use of Pre-trained NLP Encoders

- Pre-trained Encoders Are Widely Used in NLP
 - Transfer information from a related domain
 - Boost performance on a small data set
 - Trained through a proxy task
- Pre-trained NLP Encoders
 - ELMO (Peters et al 2018)
 - BERT (Devlin et al, 2018)
 - XLNet (Yang et al, 2019)
- Can Pre-trained Encoders Be Biased?



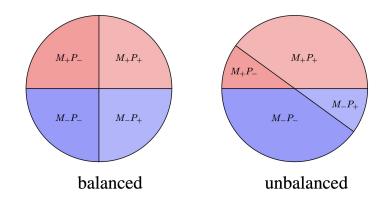
Adversarial Learning



Elazar et al, 2018

Twitter Prediction Problem

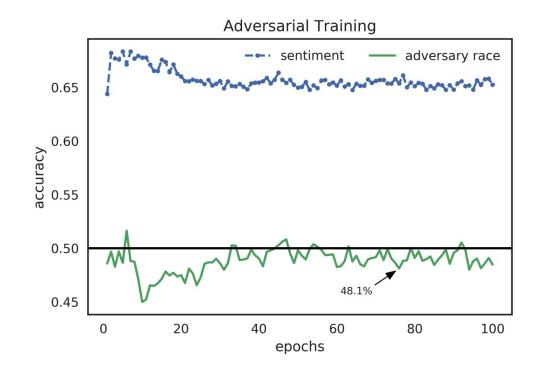
- Twitter Sentiment & Mention Detection
- Protected Attributes
 - Race
 - Gender
 - Age
- Leakage
 - Predict protected attributes



			Balanced		Unbalanced	
Data	Task	Protected Attribute	Task Acc	Leakage	Task Acc	Leakage
DIAL	Sentiment	Race	67.4	64.5	79.5	73.5
	Mention	Race	81.2	71.5	86.0	73.8
PAN16	Mention	Gender	77.5	60.1	76.8	64.0
		Age	74.7	59.4	77.5	59.7

Elazar et al. 2018

Main Task and Adversary Accuracies



Beefing Up the Adversary

- Increase the Capacity of the Adversary
 - Model Capacity
 - Weight on Loss
 - Ensemble

		L D	IAL				PAN	16		
Method	Parameter	Sentiment	Race	Δ	Mention	Gender	Δ	Mention	Age	Δ
No Adversary Baseline	-	67.4	14.5	-	77.5	10.1	-	74.7	9.4	-
Standard Adversary	(300/1.0/1)	64.7	6.0	5.0	75.6	8.5	8.0	72.5	7.3	6.9
Adv-Capacity	500	64.1	6.7	5.2	73.8	8.1	6.7	71.4	4.3	4.1
	1000	63.4	7.1	4.9	75.2	8.9	7.0	71.6	6.3	4.0
	2000	65.2	8.1	6.9	76.1	6.7	6.4	71.9	6.0	5.7
	5000	63.9	6.2	3.7	74.5	5.6	1.6	73.0	10.2	9.6
	8000	65.0	7.1	4.8	75.7	5.4	4.2	71.9	9.8	7.3
λ	0.5	63.9	6.8	6.2	75.6	7.8	6.8	73.1	4.8	3.4
	1.5	64.9	7.4	5.4	75.6	4.9	2.4	72.5	6.8	5.8
	2.0	64.2	7.3	5.9	76.0	-7.2	6.7	72.1	8.5	7.7
	3.0	65.8	10.2	10.1	73.7	6.4	6.1	72.5	-6.3	5.2
	5.0	50.0	-	-	73.6	6.5	5.7	69.0	3.2	2.9
Ensemble	2	62.4	7.4	5.4	74.8	6.4	5.0	72.8	8.8	8.3
	3	66.5	6.5	5.0	75.3	4.9	3.1	72.1	6.7	6.0
	5	63.8	4.8	2.6	74.3	4.1	3.0	70.1	5.7	5.4

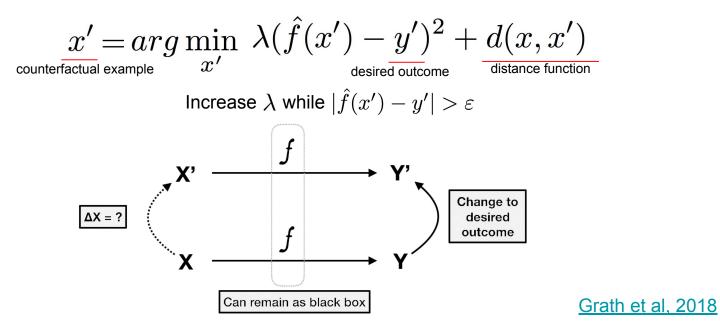
Elazar et al, 2018

 Δ - the difference between the attacker score and the corresponding adversary's accuracy

Outline

- Counterfactual Fairness
- Counterfactual Face Attribution
- Gender Equalized Image Captioning
- Adversarial Removal of Gender Features

Counterfactual Explanation



Counterfactual Explanations

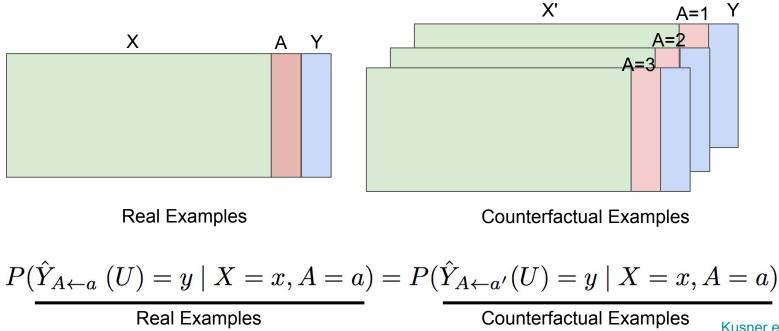
Sorry, your loan application has been rejected.

If instead you had the following values, your application would have been approved:

- MSinceOldestTradeOpen: 161
- NumSatisfactoryTrades: 36
- NetFractionInstallBurden: 38
- NumRevolvingTradesWBalance: 4
- NumBank2NatlTradesWHighUtilization: 2

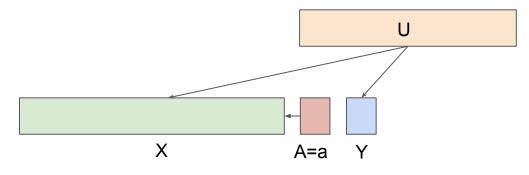
Grath et al, 2018

Counterfactual Fairness



Kusner et al, 2017

Causal View of Counterfactual Fairness



Real Examples

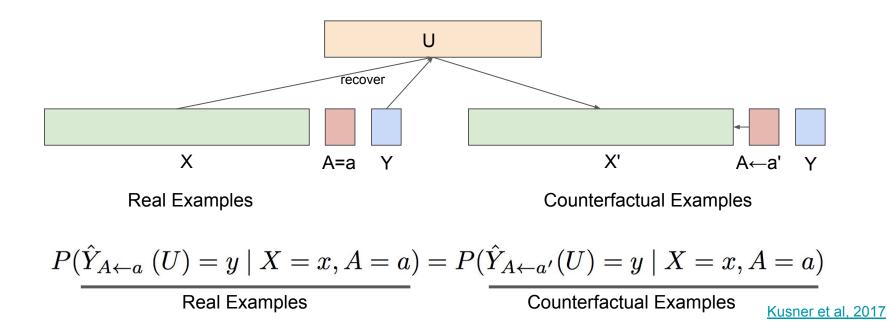
$$P(\hat{Y}_{A \leftarrow a} (U) = y \mid X = x, A = a) = P(\hat{Y}_{A \leftarrow a'}(U) = y \mid X = x, A = a)$$

Real Examples

Counterfactual Examples

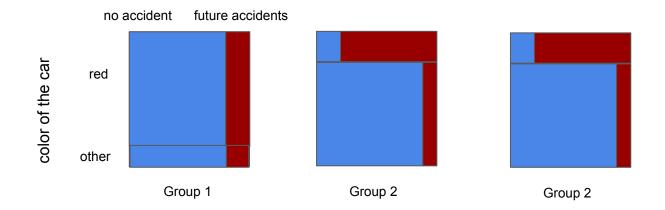
Kusner et al, 2017

Causal View of Counterfactual Fairness



Red Car Problem

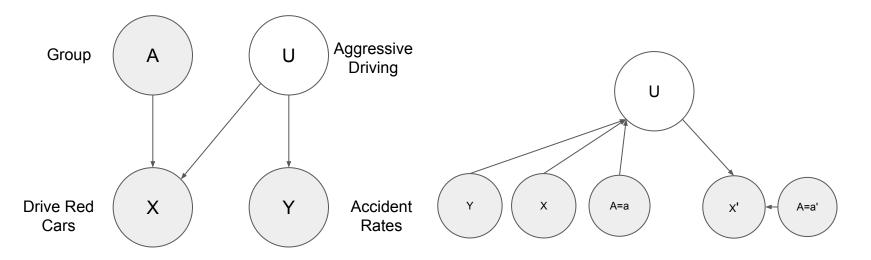
• Develop a Fair Algorithm to Determine Insurance Premium



P(y = acc | A = 1) = 0.2 P(y = acc | A = 2) = 0.2 P(y = acc | A = 3) = 0.2

Kusner et al, 2017

Causal Perspective of the Red Car Problem



Observed Variables
 Latent (Unobserved) Variables

$$P(\hat{Y}_{A \leftarrow a} (U) = y \mid X = x, A = a) = P(\hat{Y}_{A \leftarrow a'}(U) = y \mid X = x, A = a)$$

Kusner et al, 2017

Fairness Criteria

Individual Treatment	Group Treatment
Fairness Through Unawareness	Demographic Parity
Excludes Sensitive Information A from the predictor	$P(\hat{Y} = 1 A = 1) = P(\hat{Y} = 1 A = 0)$
Individual Fairness $M(x_i) \approx M(x_j) d(x_i, x_j) \approx 0$	Equal Opportunity/Odds $P(\hat{Y} = 1 A = 0, Y = 1) = P(\hat{Y} = 1 A = 1, Y = 1)$ $P(\hat{Y} = 1 A = 0, Y) = P(\hat{Y} = 1 A = 1, Y)$
Counterfactual Fairness $P(\hat{Y}_{A\leftarrow a}(U) = y \mid X = x, A = a) = P(\hat{Y}_{A\leftarrow a'}(U) = y \mid X = x, A = a)$	

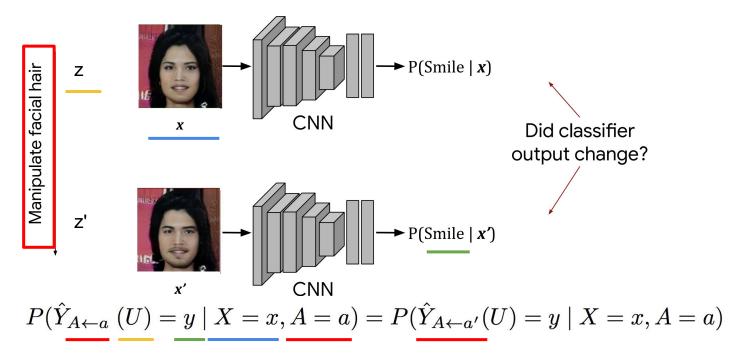
 $P(\hat{Y}_{A \leftarrow a} (U) = y \mid X = x, A = a) = P(\hat{Y}_{A \leftarrow a'}(U) = y \mid X = x, A = a)$

Outline

- Counterfactual Fairness
- Counterfactual Face Attribution
- Gender Equalized Image Captioning
- Adversarial Removal of Gender Features

Counterfactual Face Attribution

• Evaluate the Counterfactual Fairness of Face Recognition Systems



CelebA Dataset

Eyeglasses

Bangs

Wearing Hat

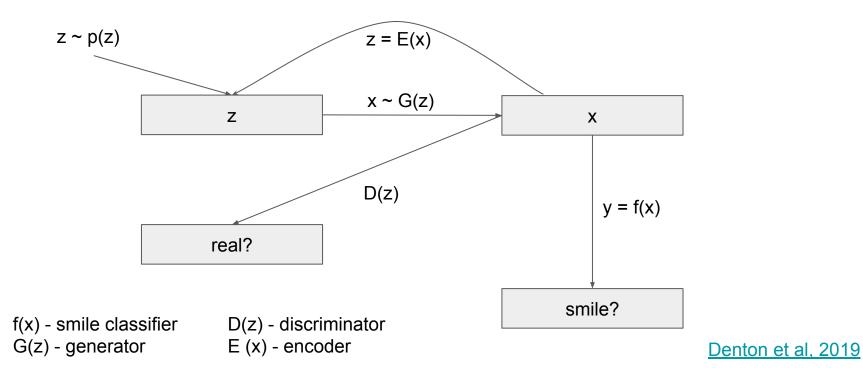
Smiling

Liu et al, 2015

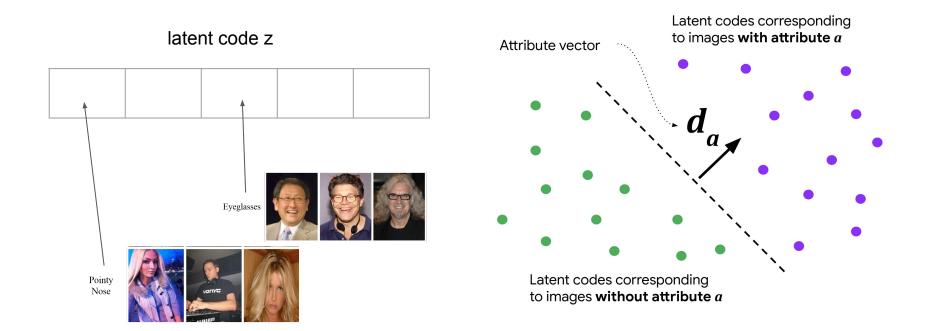
Pointy Nose

Oval Face

Model Architecture



Latent Code Attribution

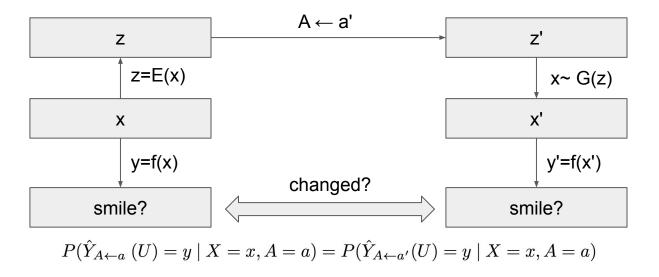


Latent Code Manipulation

lakeup d_{Heavy}

Denton et al, 2019

Counterfactual Fairness Assessment



Denton et al, 2019

Sensitivity

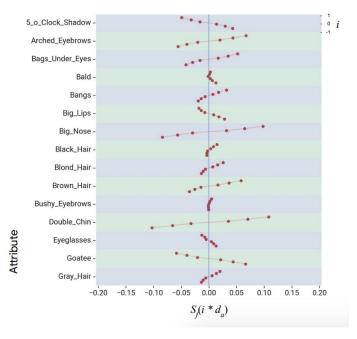
$$S_f(d) = \mathbb{E}_{z \sim p(z)} [f(G(z+\underline{d})) - f(G(z))]$$

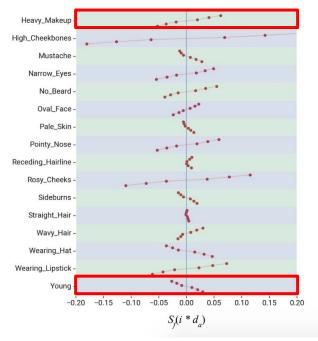
f(x) - smile classifier G(z) - generator D(z) - discriminator

$$P(\hat{Y}_{A \leftarrow a}(U) = y \mid X = x, A = a) = P(\hat{Y}_{A \leftarrow a'}(U) = y \mid X = x, A = a)$$

Sensitivity Results

 $S_f(d) = \mathbb{E}_{z \sim p(z)}[f(G(z+d)) - f(G(z))]$





Heavy Makeup

Heavy_Makeup -

.....

Directional Sensitivity

$$S_{y}^{0 \to 1}(d) = \mathbb{E}_{z \sim p(z)|y(G(z))=0} \mathbb{I}[y(G(z+d))! = y(G(z))]$$

from "not smiling" to "smiling"
$$S_{y}^{1 \to 0}(d) = \mathbb{E}_{z \sim p(z)|y(G(z))=1} \mathbb{I}[y(G(z+d))! = y(G(z))]$$

from "smiling" to "not smiling"

$$S_f(d) = \mathbb{E}_{z \sim p(z)}[f(G(z+d)) - f(G(z))]$$

Sensitivity Results

CelebA attribute defining d_a	$\mid S_y^{1 o 0}(d_a)$	$\mid S_y^{0 ightarrow 1}(d_a)$
Young	7.0%	2.6%
5_o_Clock_Shadow	11.8%	2.2%
Goatee	12.4%	0.9%
No_Beard	0.8%	11.8%
Heavy_Makeup	1.6%	12.4%
Wearing_Lipstick	1.7%	16.3%

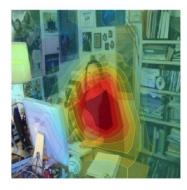
Outline

- Counterfactual Fairness
- Counterfactual Face Attribution
- Gender Equalized Image Captioning
- Adversarial Removal of Gender Features

The Equalizer Model

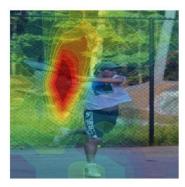
Wrong

Baseline: A **man** sitting at a desk with a laptop computer. Right for the Right Reasons

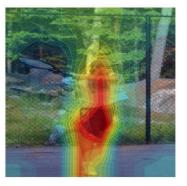


Our Model: A **woman** sitting in front of a laptop computer.

Right for the Wrong Reasons

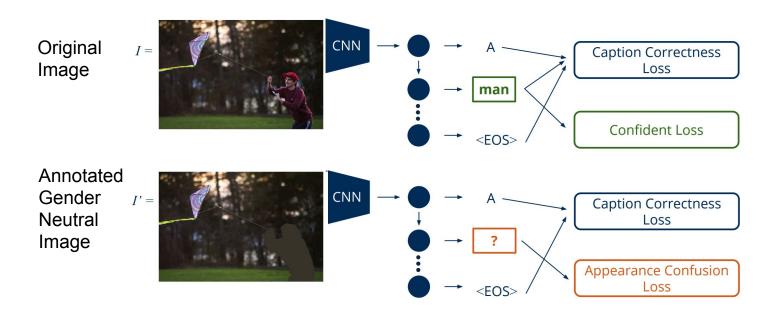


Right for the Right Reasons



Baseline: A **man** holding a tennis racquet on a tennis court. Our Model: A **man** holding a tennis racquet on a tennis court.

The Basic Idea



The Equalizer Model

 \mathcal{L}^{CE}

$$\mathcal{L} = \alpha \mathcal{L}^{CE} + \beta \mathcal{L}^{AC} + \mu \mathcal{L}^{Con}$$
Cross Entropy Loss
$$= -\frac{1}{N} \sum_{n=0}^{N} \sum_{t=0}^{T} \log(p(w_t | w_{0:t-1}, I))$$
Appearance Confusing
Loss on the gender
neutral image
Confidence Loss on
the original image

Appearance Confusing Objective

 \mathcal{G}_m - set of words for man

$$\mathcal{L}^{AC} = rac{1}{N}\sum_{n=0}^{N}\sum_{t=0}^{T}\mathbb{1}(w_t\in\mathcal{G}_w\cup\mathcal{G}_m)\mathcal{C}(ilde{w}_t,I')$$

$$\mathcal{C}(\tilde{w}_t, I') = |\sum_{g_w \in \mathcal{G}_w} p(\tilde{w}_t = g_w | w_{0:t-1}, I') - \sum_{g_m \in \mathcal{G}_m} p(\tilde{w}_t = g_m | w_{0:t-1}, I')|$$

Push Toward Extremes $p(ilde{w}_t = g_w | w_{0:t-1}, I')$ $p(ilde{w}_t = g_m | w_{0:t-1}, I')$ \mathcal{G}_w - set of words for woman

Confidence Objective

$$\mathcal{L}^{Con} = \frac{1}{N} \sum_{n=0}^{N} \sum_{t=0}^{T} (\mathbb{1}(w_t \in \mathcal{G}_w) \mathcal{F}^W(\tilde{w_t}, I) + \mathbb{1}(w_t \in \mathcal{G}_m) \mathcal{F}^M(\tilde{w_t}, I))$$

$$\mathcal{F}^{W}(\tilde{w}_{t}, I) = \frac{\sum_{g_{m} \in \mathcal{G}_{m}} p(\tilde{w}_{t} = g_{m} | w_{0:t-1}, I)}{\left(\sum_{g_{w} \in \mathcal{G}_{w}} p(\tilde{w}_{t} = g_{w} | w_{0:t-1}, I)\right) + \epsilon}$$

 \mathcal{G}_w - set of words for woman \mathcal{G}_m - set of words for man

Results

	MSCOCO-Bias		MSCOCO-Balanced	
Model	Error	Ratio Δ	Error	Ratio Δ
Baseline-FT	12.83	0.15	19.30	0.51
Balanced	12.85	0.14	18.30	0.47
UpWeight	13.56	0.08	16.30	0.35
Equalizer w/o ACL	7.57	0.04	10.10	0.26
Equalizer w/o Conf	9.62	0.09	13.90	0.40
Equalizer	7.02	-0.03	8.10	0.13

Baseline-FT - basic LSTM attention model (Xu et al. 2015) Balanced - resampled dataset to have balanced gender ratio UpWeight - reweighting

 \varDelta - change to the gender ratio compared to the dataset

Burns et al, 2019

Results

Baseline-FT

A man walking a dog on a

A man and a dog are in the

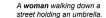
UpWeight

Equalizer w/o ACL

Equalizer

a leash.

A person walking a dog on



leash.

A woman walking down a street holding an umbrella.

snow.

A man walking down a street holding an umbrella.

A man walking down a

street holding an umbrella.

A man standing in a kitchen preparing food.

A man standing in a kitchen preparing food.

A man standing in a kitchen preparing food.

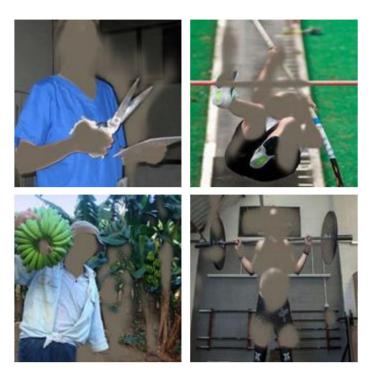
A man standing in a kitchen preparing food.

A man riding a snowboard down a snow covered slope.

Outline

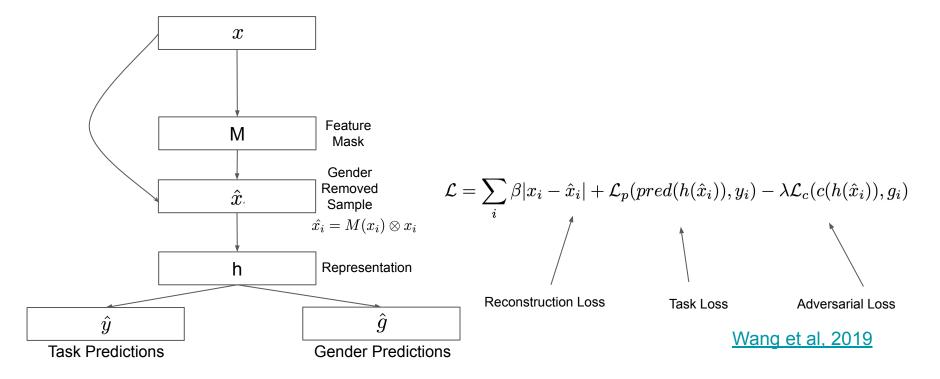
- Counterfactual Fairness
- Counterfactual Face Attribution
- Gender Equalized Image Captioning
- Adversarial Removal of Gender Features

Adversarial Removal of Gender Features



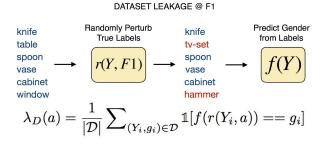
Wang et al, 2019

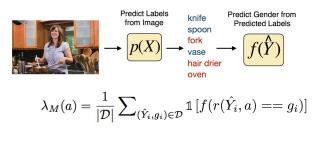
Model Architecture



Evaluate Sensitive Information Leakage

• Train an attacker f(y) that reverse engineer the gender information



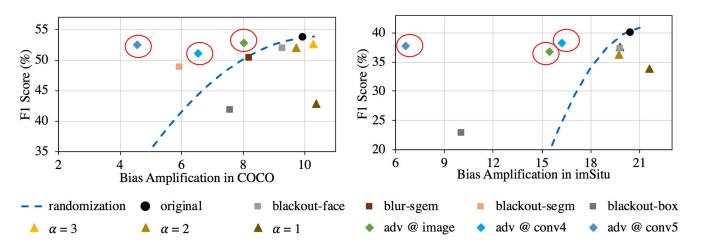


 $\begin{aligned} & \text{Data Resampling} \\ \forall y: 1/\alpha < \#(m,y)/\#(w,y) < \alpha \end{aligned}$

Bias Amplification $\Delta = \lambda_M(a) - \lambda_D(a)$

Wang et al, 2019

Accuracy and Bias Results



original - no debiasing mask random - adding random noise

blackout-face - black out using a face detector blur-sgem - black out using ground truth segmentation blackout-box - blackout using bounding boxes

Wang et al, 2019

Qualitative Results

COCO Results

Summary

- Fair Machine Learning
 - Prevents ML models from biasing toward specific groups when allocating favorable outcomes
- Group Treatments of Fairness
 - Demographic Parity
 - Equalized Odds/Opportunity
- Individual Treatments of Fairness
 - Fairness Through Awareness Individual Fairness
 - Individual Fairness
 - Counterfactual Fairness
- Fair ML Techniques
 - Pre-processing Methods: Resampling, Reweighting, Optimized-preprocessing
 - In-processing Methods: Regularization, Adversarial Learning
 - Post-processing Methods: Learning to Defer

Summary

- Fair NLP Methods
 - Debiasing Word Embeddings
 - Data Augmentation
 - Gender Swapping
 - Fair Representation for Pre-trained Encoders
- Fair Visual Representations
 - Counterfactual Face Attribution
 - Gender Equalized Image Captioning
 - Adversarial Removal of Gender Features

Reading Assignments

- Kusner, Matt J., Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness, NeurIPS 2017
- Zhao, Jieyu, Tianlu Wang, Mark Yatskar, Vicente Ordonez, and Kai-Wei Chang. Men also like shopping: Reducing gender bias amplification using corpus-level constraints, EMNLP 2017
- Yin, Xi, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Manmohan Chandraker. Feature transfer learning for face recognition with under-represented data, CVPR 2019
- Singh, Ashudeep, and Thorsten Joachims. Fairness of exposure in rankings, KDD 2017
- Buolamwini, Joy, and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification, FAccT 2018

Next Lecture

Mit-term Project Presentations