Welcome to CS335
Outline

● Course Overview
 ○ Logistics
 ○ Project & Reading Assignments

● Fairness
 ○ Sources of Biases
 ○ Real World Examples
 ○ Sensitive Features

● Major Fairness Criteria
 ○ Fairness Through Unawareness
Course Overview

- Fairness
- Accountability
- Transparency
- Privacy
- Robustness
Fairness

- What to do to ensure gender and ethnic fairness in ML models?
Accountability

- Who takes the responsibilities for failed ML models?
Transparency

- What to do to make ML models transparent and comply with regulations?
Privacy

- How to protect user privacies when exposing data to ML models?
Robustness

- How do we defend ML models against data poisoning?
Course Overview

- Fairness
- Accountability
- Transparency
- Privacy
- Robustness

Psychology and Social Science
Statistics
Deep Learning
Course Overview

- Fairness
- Accountability
- Transparency
- Privacy
- Robustness

Psychology
Social Science
Public Policy

Machine Learning
Deep Learning

Statistics
Theory

Psychology
Social Science
Public Policy
Course Overview

- Fairness
- Accountability
- Transparency
- Privacy
- Robustness

Deep Learning
Psychology
Social Science
Public Policy
Statistics
Theory
Course Overview

- Fairness
- Accountability
- Transparency
- Privacy
- Robustness
- Psychology
- Social Science
- Public Policy
- Statistics
- Theory
- Machine Learning
- Deep Learning
Course Overview
Logistics

● Class Meet on WF 1:30-2:50 pm
 ○ Apr 4 - Jun 3, 2020
 ○ Offered online on Zoom

● Instructors' Office Hours
 ○ Dr. Wei Wei, weiwei@cs.stanford.edu
 ■ Fridays 3:30-4:30 PM, Zoom
 ○ Prof. James Landay, landay@cs.stanford.edu
 ■ Mondays 10:00-10:30 AM and Wednesday 10:00-11:00 AM, Zoom

● TA Office Hours
 ○ Josh Payne, joshp007@stanford.edu
 ■ Fridays 10:00-11:00 AM, Zoom
Attendence Policy

● Call in for Video Lectures
● Turn on Your Camera
● Interactions Are Encouraged
Grading

- **25% Reading Assignments**
 - Read one of the suggested articles for each class
 - Due 1 week after each class

- **75% Project**
 - Project Proposal (10%), Apr 22 before class
 - Mid-term Check
 - Milestone presentation (5%), May 1
 - Milestone report (10%), May 13 before class
 - Final Project
 - Final Presentations (30%), May 29/Jun 3
 - Final Reports (45%), Jun 3 before class
Required Readings

- We post required readings for each class
 - No need to read them ahead of time
 - Will usually contain technical details not covered in class
Reading Assignments

● Read one paper from the suggested reading list
 ○ Submit one assignment for each class
 ○ Assignments are due one week after
 ○ Late submissions will receive a 10% penalty/week. Submit by Jun 3 to receive grades.
 ○ 1/2 - 1 pages
 ○ The goal of these assignments is not about summarizing the paper

● Encourage Research Thinking in FAccT
 ○ How this paper changes the vision of FAccT research
 ○ What future directions that this paper inspired you
 ○ Why the paper does/doesn't seem important
 ○ Observations of novel methodology or methodology that seems suspect
 ○ Why the paper is/isn't effective at getting its message across
 ○ How the paper has changed your opinion or outlook on a topic
Course Project

● Complete A Deep Learning Project in FAccT
 ○ Innovations on algorithms are strongly encouraged
 ■ solve existing problems and compare performance with baselines
 ■ or propose new problem setting

● Project Resources
 ○ Guidelines
 ○ Datasets and Ideas
Course Projects

- **3 Project Stages**
 - **Project Proposal**
 - Problem that you are solving
 - Datasets
 - Evaluation metrics
 - Baselines
 - **Mid-term**
 - Project Report - Report preliminary results
 - Presentation - Quickly present problem setting and datasets
 - **Final Project**
 - Project Report - A complete write up of your methods and results
 - Final Presentation - A detailed presentation of your methods and results
Course Projects

● Project Grouping
 ○ Consists of up to two students, divide work equally
 ○ No double dipping

● Bi-weekly Project Checks with TA
 ○ Josh will schedule bi-weekly progress checks with each of the groups

● Start Your Project NOW
 ○ The Spring quarter this year is one week shorter
 ○ Will cover two lectures of Fairness and Interpretability before proposal deadline

● Google Cloud Credit
 ○ Support projects that require additional computational resources
Slack Channels

- Ask questions about the class
- Find partners for course project
Outline

● Course Overview
 ○ Logistics
 ○ Project & Reading Assignments

● Fairness
 ○ Sources of Biases
 ○ Real World Examples
 ○ Sensitive Features

● Major Fairness Criteria
 ○ Fairness Through Unawareness
ML Fairness

● What is Fairness?
 ○ The absence of bias towards an individual or a group (Mehrabi et al, 2019)

● Can ML Models Discriminate?
 ○ Aren't machines just follow human's instructions?
 ○ ML models approximate patterns in the data
 ○ Learns/Amplifies biases at the same time
Sources of Biases

red - biased regression
dashed green - regression for each subgroup
solid green - unbiased regression
Geographical Representation of ImageNet and Open Images

Mehrabi et al, 2019
Geographical Representation of Open Images

- One third of the data was collected in US
- 60% of the data was from the six most represented countries.

Mehrabi et al, 2019
Graduate School Admissions to UC Berkeley, 1973

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applicants</td>
<td>Admitted</td>
</tr>
<tr>
<td>Total</td>
<td>8442</td>
<td>44%</td>
</tr>
</tbody>
</table>

https://en.wikipedia.org/wiki/Simpson%27s_paradox
Graduate School Admissions to UC Berkeley, 1973

<table>
<thead>
<tr>
<th>Department</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Applicants</td>
<td>Admitted</td>
</tr>
<tr>
<td>A</td>
<td>825</td>
<td>62%</td>
</tr>
<tr>
<td>B</td>
<td>560</td>
<td>63%</td>
</tr>
<tr>
<td>C</td>
<td>325</td>
<td>37%</td>
</tr>
<tr>
<td>D</td>
<td>417</td>
<td>33%</td>
</tr>
<tr>
<td>E</td>
<td>191</td>
<td>28%</td>
</tr>
<tr>
<td>F</td>
<td>373</td>
<td>6%</td>
</tr>
</tbody>
</table>

https://en.wikipedia.org/wiki/Simpson%27s_paradox
real world example of fairness

HP looking into claim webcams can't see black people

By Mallory Simon, CNN
December 23, 2009 7:25 p.m. EST

(CNN) -- Can Hewlett-Packard's motion-tracking webcams see black people? It's a question posed on a now-viral YouTube video and the company says it's looking into it.

In the video, two co-workers take turns in front of the camera -- the webcam appears to follow Wanda Zamen as she sways in front of the screen and stays still as Desi Cryer moves about.

HP acknowledged in a statement e-mailed to CNN that the cameras may have issues with contrast recognition in certain lighting situations. The webcams, built into HP's new computers, are supposed to keep people's faces and bodies in proportion and centered on the screen as they move.

The video went viral over the weekend, garnering more than 400,000 YouTube page views and a slew of comments on Twitter.
New Zealand passport robot thinks this Asian man's eyes are closed

By James Griffiths, CNN

Updated 1:46 AM ET, Fri December 9, 2016

The photo you want to upload does not meet our criteria because:

- Subject eyes are closed

Please refer to the technical requirements. You have 9 attempts left.

Check the photo requirements.

Read more about common photo problems and how to resolve them.

After your tenth attempt you will need to start again and re-enter the CAPTCHA security check.

Reference number: 20161206-81
Filename: Untitled.jpg

If you wish to contact us about the photo, you must provide us with the reference number given above.

New Zealand's online passport application system couldn't recognize Richard Lee's open eyes.
Amazon's Secret AI Hiring Tool Reportedly 'Penalized' Resumes With the Word 'Women's'
Criminal Justice (Dressel et al, 2018)

- Commercial risk assessment software known as COMPAS
 - assess more than 1 million offenders since 2000
 - predicts a defendant’s risk of committing a misdemeanor or felony

137 features
Biases in Word Embedding (Gard et al, 2018)

He is... She is...
Gender Biases and Occupation
Average Biases Over Time for Woman
Average Biases Over Time for Asian
<table>
<thead>
<tr>
<th>Hispanic</th>
<th>Asian</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housekeeper</td>
<td>Professor</td>
<td>Smith</td>
</tr>
<tr>
<td>Mason</td>
<td>Official</td>
<td>Blacksmith</td>
</tr>
<tr>
<td>Artist</td>
<td>Secretary</td>
<td>Surveyor</td>
</tr>
<tr>
<td>Janitor</td>
<td>Conductor</td>
<td>Sheriff</td>
</tr>
<tr>
<td>Dancer</td>
<td>Physicist</td>
<td>Weaver</td>
</tr>
<tr>
<td>Mechanic</td>
<td>Scientist</td>
<td>Administrator</td>
</tr>
<tr>
<td>Photographer</td>
<td>Chemist</td>
<td>Mason</td>
</tr>
<tr>
<td>Baker</td>
<td>Tailor</td>
<td>Statistician</td>
</tr>
<tr>
<td>Cashier</td>
<td>Accountant</td>
<td>Clergy</td>
</tr>
<tr>
<td>Driver</td>
<td>Engineer</td>
<td>Photographer</td>
</tr>
</tbody>
</table>
Religious Bias Related to Terrorism
Words Projected into Gender Axes (Bolukbasi et al, 2016)
Coreference Resolution (Zhao et al, 2018)

his ⇒ her
- **Stereotypical dataset**

 The physician hired the secretary because he was overwhelmed with clients.

 The physician hired the secretary because she was highly recommended.

- **Anti-stereotypical dataset**

 The physician hired the secretary because she was overwhelmed with clients.

 The physician hired the secretary because he was highly recommended.
Removing Gender Information (Wang et al, 2019)
Sensitive (Protected) Features

- **Sensitive Features**
 - Identify a group
 - e.g., gender, ethincs

- **Discrimination Occurs**
 - When Sensitive Features Are Used Improperly
 - May lead to ML Discrimination
List of Protected Attributes Specified in US Fair Lending Laws

- Fair Housing Acts (FHA)
- Equal Credit Opportunity Acts (ECOA)

<table>
<thead>
<tr>
<th>Attribute</th>
<th>FHA</th>
<th>ECOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Color</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>National origin</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Religion</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Sex</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Familial status</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Disability</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Exercised rights under CCPA</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Recipient of public assistance</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Outline

● Course Overview
 ○ Logistics
 ○ Project & Reading Assignments

● Fairness
 ○ Sources of Biases
 ○ Real World Examples
 ○ Sensitive Features

● Major Fairness Criteria
 ○ Fairness Through Unawareness
Fairness Through Unawareness

- A ML Algorithm Achieves Fair Through Unawareness If
 - None of the sensitive features are directly used in the model

<table>
<thead>
<tr>
<th>Race</th>
<th>Skills</th>
<th>Years of Exp</th>
<th>Hired?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic</td>
<td>Javascript</td>
<td>1</td>
<td>no</td>
</tr>
<tr>
<td>Hispanic</td>
<td>C++</td>
<td>5</td>
<td>yes</td>
</tr>
<tr>
<td>White</td>
<td>Java</td>
<td>2</td>
<td>yes</td>
</tr>
<tr>
<td>White</td>
<td>C++</td>
<td>3</td>
<td>yes</td>
</tr>
</tbody>
</table>

Protected
Issues With Fairness Through Unawareness

- **Sensitive Features May Still Be Used**
 - Inferred from indirect evidence

<table>
<thead>
<tr>
<th>Race</th>
<th>Skills</th>
<th>Years of Exp</th>
<th>Often Goes to Mexican Markets</th>
<th>Hiring Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic</td>
<td>Javascript</td>
<td>1</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Hispanic</td>
<td>C++</td>
<td>5</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>White</td>
<td>Java</td>
<td>2</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>White</td>
<td>C++</td>
<td>3</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>

Protected

Inferred

Discriminatory ML Model Training
Types of Discriminations

- **Fair ML Model**
- **Direct Discrimination**
- **Indirect Discrimination**

- **R** - Race
- **Y** - Years of Exp
- **S** - Skills
- **O** - Often Goes to Mexico Market

R - Race
Y - Years of Exp
S = Skills
O = Often Goes to Mexico Market
Conditions for Direct Discrimination

- A - set of protected features
- X - set of features other than protected features

A predictor \hat{Y} is direct discrimination if

- $P(\hat{Y} \mid X, A) \neq P(\hat{Y} \mid X)$
- i.e., $\hat{Y} \not\perp A \mid X$
Conditional Independence

- Common Conditions for Conditional Independence

Head to Tail

\[A \perp\!\!\!\!\!\!\!\!\perp B \mid C \]

Tail to Tail

\[A \perp\!\!\!\!\!\!\!\!\perp B \mid C \]

Head to Head (collider)

\[A \perp\!\!\!\!\!\!\!\!\!\perp B \mid C \]

More Sophisticated Cases

D-Separator
Types of Discriminations

Fair ML Model

Direct Discrimination

Indirect Discrimination

- **Fair ML Model**: $H \perp \!\!\!\!\perp R \mid \{Y, S\}$ (not connected)
- **Direct Discrimination**: $H \perp \!\!\!\!\perp R \mid \{Y, S\}$ (head to head)
- **Indirect Discrimination**: $H \perp \!\!\!\!\perp R \mid \{Y, S, O\}$ (head to tail)
Conditions for Indirect Discrimination

- **Mutual Information**
 - A measure of the mutual dependence between A and \hat{Y}
 - $I(A, \hat{Y}) = H(A) - H(A | \hat{Y}) = H(\hat{Y}) - H(\hat{Y} | A)$
 - $I(A, \hat{Y}) = 0$ if $P(\hat{Y} | A) = P(\hat{Y})$, or $A \perp \hat{Y}$
Correlation Coefficient and Mutual Information

- Correlation Coefficient (left) and Mutual Information (right)

Ince et al, 2016
Limitations

- Processing Sensitive Features
 - Fairness through unawareness requires sensitive features to be masked out
 - Not easy to do in real life
 - Referred to as individual fairness criteria

- Stereotypical dataset
 - The physician hired the secretary because he was overwhelmed with clients.
 - The physician hired the secretary because she was highly recommended.

- Anti-stereotypical dataset
 - The physician hired the secretary because she was overwhelmed with clients.
 - The physician hired the secretary because he was highly recommended.
Required Reading

- Barocas: Ch 2
- Bishop: Ch 8.2

Reading Assignments (Pick One)

- Luong, Binh Thanh, Salvatore Ruggieri, and Franco Turini. k-NN as an implementation of situation testing for discrimination discovery and prevention. SIGKDD 2011
- Pedreshi, Dino, Salvatore Ruggieri, and Franco Turini. Discrimination-aware data mining. SIGKDD 2008
Next Lecture

Fair Representation Learning