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1 Introduction

When machine learning methods in the real world make predictions, it is often required that
they offer some explanation for those predictions. This is especially the case in medical fields,
where doctors need to have high degrees of confidence in predictions if they are to be used
in clinical decision making. Additionally, if models discover patterns previously unknown to
medical science, it is hugely beneficial for models to be able to reveal that knowledge to physicians [6].

Applications of deep learning to video data have recently shown results similarly impressive to those
in 2D vision, both in general and on medical problems [3, 5]. However, there has been surprisingly
little work in applying explainability methods to video models. While many vision explainability
models can be easily ported to video models, there is no review in the literature of how these methods
work on video data, nor any consideration of how they should be updated for video. One particular
area where we expect it will be possible to improve over single frame methods is in directly using
optical flow information, which often may be the primary reason for a classification.

2 Methods

Previous applications of gradient-based attribution methods on images have treated individual pixels
as features of the image, placing an importance score on each pixel. This makes sense, as the only
prior on the correlation structure of these features is that adjacent features are likely to be similar.
Video data, on the other hand, has the additional structure that pixels in different frames will depict
the same object. While the positional relationship between objects in a single image may occasionally
be important in classifying an image, the relationship between the location of an object in multiple
frames of a video may be much more important. In fact, intuitively it seems there are two types of
information that might be used to classify a video: the objects contained in the frames (along with
their shapes, textures, etc.), and the motion connecting the frames. In light of this observation, we
propose to decompose a video into features not based purely on pixels, but rather on a combination
of pixel and movement information, in the form of approximate optical flow.

2.1 Optical Flow Decomposition

The optical flow between two frames is the apparent movement of the pixels in the two frames,
determined by the intensity of each pixel. That is, for two images I0(x, y), I1(x, y) it is a vector field
(dx, dy) such that

I0(x, y) ≈ I1(x+ dx, y + dy)
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This problem is clearly under-specified, and a number of regularized and learned methods have
been developed to approximate flow. In this work we use Farneback’s method [2] to estimate flow,
but any other method could easily be substituted. Additionally, previous work has considered
how to differentiate through a vector field deformation of an image with respect to both the base
image and the vector field [4], and their method is implemented in the grid_sample method in pytorch.

Our main contribution is to decompose a video [I0, . . . , IT ] into three elements:

• The starting frame I0, containing a large portion of the texture and object information in the
video.

• The estimated optical flow fi between each adjacent pair of frames Ii−1, Ii, containing the
motion information in the video.

• The error Ei satisfying Ii = g(Ii−1, fi) +Ei, where g(I, f) is the application of the vector
field f to the image I , containing additional pixel information obscured by the imperfect
approximation of the optical flow, and the introduction of new objects into the frame.

and we re-parameterize the video as

Î0 = I0

Îi = g(Îi−1, fi) + Ei

Note that indeed Ii = Îi, but ∂Îi
∂fi

is a meaningful expression, whereas ∂Ii
∂fi

= 0.

Frames [I0, I1, . . . , IT ]
Optical flows fi = flow(Ii−1, Ii)

Errors Ei = Ii − g(Ii−1, fi)

2.2 Gradient-based attribution

Now consider a video classification model ŷ = f(I), where I is a sequence of frames. Clearly we
can compute ∂ŷ

∂I , as in a typical naive gradient attribution method. Additionally, we can compute
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The gradients ∂ŷ
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can be visualized as any typical gradient map would be. Visualizing impor-
tance in a vector field is more complicated; one option is two plot the top n vectors with highest
gradient over the video.

2.3 Trajectory-based explanations

Additionally, we consider optical flow-based trajectorys through space and the saliency along these
trajectories. It is largely straight-forward to determine point trajectories from optical flow data, and
these trajectories have been considered as features for video classification in the past [8]. In the
simplest terms, a trajectory P starting at time t might be defined

Pt = (i, j)

Pt+1 = Pt + ft+1(Pt)

Pt+2 = Pt+1 + ft+2(Pt+1)

. . .
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Figure 1: We developed the moving shapes dataset. For each video, the model must predict the
number of sides and the angle of movement of the colored shape, in the presence of Gaussian noise
and distractor shapes.

that is, starting from some point (i, j) at time t the appropriate optical flows are applied to “push" the
point such that it follows a point of intensity in the video. Hopefully this trajectory will thus follow a
moving point or object in the video. We can then choose subtrajectories along this trajectory such
that the saliency along the trajectory is highest, and select the most salient sub-trajectories accross all
sub-trajectories. The saliency of a sub-trajectory might be written:

S(P, k) =
∑

k≤t≤k+10

∂ŷ

∂xt,Pt

This method could also be jointly applied with the optical flow decomposition, giving a breakdown
of whether the trajectory contains important motion or pixel information.

3 Datasets

We evaluate our methods on a toy dataset, an action recognition dataset, and on a specific medical task.

First, we designed the Moving Shapes dataset motivated by the desire to disentangle spatial and
temporal information in videos. We generate 32 frame, 112 by 112 videos of a single shape
of random color with 3, 4, or 5 sides moving at a random angle between 0 and 270 degrees
across the frame. Optionally, we also add Gaussian noise, non-moving or white distractor shapes,
and/or a pause in the shape’s movement. There are two tasks on this dataset: to classify the
number of sides the shape has, and to regress the angle the shape is moving at. This dataset is
potentially useful for two reasons. First, we have some degree of “ground truth": while there are
still many acceptable explanations, we can compare explanations in optical flow space against
the correct angle, and in pixel space against the true location of the shape. Second, the sides
task can be completed based solely on the first frame, while the angle task can be completed
solely based on the optical flow. Thus we might expect that a good explanation method makes
use of mainly the important part of the data for each task, and assigns little importance to the other part.

Second, we evaluated our method on Kinetics, the most popular large video action recognition
dataset, sometimes referred to as the “Imagenet of video." This dataset is a good candidate for two
reasons: first, there are many models developed specifically with the dataset in mind, and second, it
is easy for someone with no training to determine if an explanation “makes sense" or not. It’s also a
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relatively noisy dataset with some classes which one might expect to be heavily motion-based, while
other classes should be mostly classifiable based on a single frame.

Third, we will apply our method to an extended version of the EchoNet-Dynamic dataset [5], similar
to the published dataset but with more videos and importantly many more classification labels.
Important candidate tasks currently being explored include classifying heart attacks, heart failure,
and diabetes, and regressing various clinically relevant pressure values. In this setting, explanations
are important to increase physician confidence in models and explain new underlying mechanisms
potentially discovered by the model (as would be the case in the diabetes classification problem).

4 Evaluation

Evaluation of explainability systems is challenging, since there are no metrics for the quality of an
explanation outside of specific clinical workflows where physician improvement can be measured.
Many explanation frameworks are presented without any quantitative evaluation, including highly
cited works like SmoothGrad [7].

We’ve completed one set of quantitative experiments, and plan several more. First we evaluated
various methods on our Moving Shapes dataset under different conditions, and consider how accurate
the highest importance locations are with respect to the true location of the shape, as well as how
accurate the most important angles are with respect to the true angle of the moving shape. Robustness
to noise and distractors will be important comparisons. We also evaluated the methods using sanity
checks for both data and model dependency. We compare both our own decomposition as well as
explanations in pixel space.

Second, we plan to attempt to quantify the importance of flow versus pixel data in different classes in
action recognition. For instance, in the UCF101 dataset there are distinct classes of “Handstand" and
“Handstand pushup" which require flow information to distinguish between, while others like “Playing
guitar" and “Playing sitar" have similar motion but different mostly static objects. An explanation
system which disentangles motion and pixel information should be able to quantify this tradeoff.
Additionally, if an explanation method gives importance to different frames, we can ablate the input
and see if the important frames really are the most important in making a prediction.

5 Results

We evaluate our decomposition method on our toy dataset using both plain gradients and smoothgrad,
and compare to plain gradients (See figure 2). First, we compute saliency maps for 100 examples,
using the base model, a model with randomized logits, and a completely randomized model. We
then perform “sanity checks," calculating the average Spearman correlation between the maps using
the complete model and the two randomized models, as in [1]. We find that all considered methods
have low Spearman correlations, indicating that they are heavily dependent on model parameters.
Then, we calculate the average rank of points in and around target shape, as well as the points in
all shapes (target and distractors) and of all points. We report the average target rank over average
shape rank, and average target rank over average overall rank. We repeat the process for the fully
randomized model, to ensure success here is model dependent. We find that the error saliency maps
produced by our method are much more accurate than the baseline, and that the accuracy is lost when
the model parameters are randomized. Thus, this method improves the quality of pixel-wise saliency
maps. Confusingly, both optical flow explanations place more importance on the distractor shapes
than the target shape. One hypothesis for why this might be the case is that because of the color of
the distractor shapes, their optical flow is easier to predict, which biases the method. Although this
would be easy to superficially fix, it seems to point to a larger issue with the method that should be
addressed.
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Figure 2: Results.

Figure 3: Two frames from a Kinetics explanation for “brushing hair". From left to right, the original
video with optical flow superimposed, the importance of the first frame, and the importance of the
error correction. For now, the left part looks good, while the other two can still use some work.
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Figure 4: Two frames from a Kinetics explanation for “country line dancing".

Figure 5: Two frames from a trajectory explanation for ejection fraction. Red points indicate current
positions, green points indicate history
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