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Abstract

Machine learning models that learn from biased datasets often display the same bias
in their results; this is particularly true for inherently unsupervised methods like
generative adversarial networks. However, designing and evaluating fair generative
model architectures is difficult due to the prohibitive computational requirements of
training such models. In this project, we explore methods for post-hoc modification
of generative models for producing fair dataset representations, with particular
emphasis given to approaches that can be performed without human supervision.

1 Introduction

As machine learning models have become more common in daily life, their decisions can have
significant implications for an individual’s life. Protected groups, or individuals with certain protected
or sensitive characteristics like race, gender, or religion [[1], have historically been subject to biased
treatment in machine learning models implemented in practice, including recidivism prediction [2],
gender stereotypes in word embeddings [3], and skin cancer prediction failures for dark-skinned
individuals [4]. As such, preventing discrimination, or non-favorable outcomes as a result of an
individual’s protected attributes [S]], has become increasingly important in machine learning models
in production.

Researchers have increasingly examined the data machine learning models are trained on as a source
of bias and unfairness that can be propagated through the model [6]. This is particularly pressing
for generative models, wherein its supervised learning process learns potentially sensitive attributes
latently. As a result, it is more difficult to control for existing bias in the dataset, and data sampled
from generative models will likely reflect existing biases from the dataset. This is problematic
for applications of generative models requiring data generation, which include text-to-speech [7],
pose-guided image generation [§]], and text-to-image synthesis [9].

Initial methods of learning generative models for fair data generation focused on creating fair tab-
ular datapoints through explicit supervision of protected attributes during training [10, [11]. Newer
approaches have used weak supervision with unlabelled image datasets with latent sensitive at-
tributes [[12]. However, both approaches require training generative models from scratch rather
than using pre-trained generative models trained on biased datasets, and [12] suffered reduction in
generated sample quality. Indeed, generative models that have performed demonstrated high-quality
image synthesis, like StyleGAN [13] or BigGAN [14]], take on the order of weeks for training for
high-resolution image generation, even when using up to 8 V100 Nvidia GPUs. Training generative
models can also be prohibitively unstable [15]], further increasing both the time and computational
power required to train a fully expressive GAN. More generally, many image synthesis models exist
that can produce high-quality but biased data.

In this work, used a neural network to adapt the prior of a generative model to generate fair data,
the first described use of a post-processing fairness method for generative models. We tested our
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approaches on the datasets MNIST [16] and the CelebA-HQ dataset [[17]. We first establish the
efficacy of our methods on a DCGAN [18] trained to produce 0 and 1 digits from the MNIST data set.
After demonstrating the success of our methodology on this test dataset, we implement our results in
generating digits from a DCGAN trained on all 10 digits of MNIST, achieving high quality generated
images. Finally, we implemented our results on a pretrained ProGAN model that generated CelebA
faces and demonstrated equality across gender.

2 Preliminaries

2.1 Fair ML

There has been a growth in the amount of work that address fairness in machine learning, with
particular focus given to statistical methods of enforcing different definitions of fairness [19]; these
different notions of fairness include demographic parity, equality of odds, and equality of opportunity.
Nonetheless, in the context of generative models and data generation, fairness can take on several
different forms. For example, in [[12]], they used the fairness discrepancy for their generative model
pp with respect to an unbiased distribution pynpiys and sensitive attributes u as

[ (Panbias; Po) = (B, [P(]2)] = By [p(u])]]

Alternatively, in [10], the authors aimed to enforce the fairness criterion P(y = lju = 1) = P(y =
1lu = 0) for a sensitive attribute w.

Notably, however, the fairness criteria used in these papers fall largely along the lines of one of the
main methods for enforcing fairness: imposing fairness constraints during the training of a model.
However, in our case, we aim to enforce some notion of post-processing fairness for our models; as a
result, we must more carefully investigate the precise definition of fairness we wish to enforce.

2.2 Generative Adversarial Networks

Generative adversarial networks (GANs) are generative models with two components: a generator and
discriminator. The generator G(z) samples a prior distribution that is usually uniform or Gaussian
noise to generate samples. The generator aims to learn a distribution py that matches the data
distribution pyqu, that is ideally representative of the population as a whole. The discriminator of the
GAN D(x) is a binary classifier that predicts whether its input z is generated from G(z) or real data.
Altogether, the value functions of a generative model can be summarized as a minimax game

minmax V(G, D) = By, [log D(@)] + E.vy. log(1 — D(G(2)))

When learning generative models, it is generally assumed that we have access to the requisite
amount of unbiased data that can be sampled independently from a target unbiased distribution.
However, in practice this is rarely the case, and the i.i.d. assumption rarely holds. Additionally,
for high-dimensional data like images, the required sample complexity for learning a truly faithful
representation can exceed practical capacity.

3 Methods

3.1 Investigating Bias

We begin by assessing the presence of bias in samples generated from generative models trained on
face image datasets. In particular, we used the generative adversarial networks StyleGANm trainied
on FFHQ, and ProGAN, trained on CelebA. We selected face generating models because of their
public availability as well as the variety of potentially sensitive characteristics present in face images.
We extracted binary features corresponding to the labels in the CelebA dataset (Young, Blond, Brown
Hair, etc.) via a pre-trained MobileNetV2 architecture [20]] fine-tuned on the CelebA dataset through
the methods used in [21]].

The different features present in the CelebA dataset occur with distinct frequencies, with “no beard”
being the most common feature and “bald” being the least common feature. This disparity in feature
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Figure 1: Frequencies of features identified using a trained MoblieNetV2 model. The frequencies of
these features in samples generated from StyleGAN and ProGAN are similar to that of the original
CelebA dataset, demonstrating the propagation of bias from the dataset to the output of the trained
generative models.

H All' Chubby Young Blond Black Hair Brown Hair Double Chin H
Male | 0.448  0.096 0.767  0.004 0.284 0.074 0.087
Female | 0.552  0.027 0.952 0.128 0.212 0.260 0.017

Figure 2: Gender differences in features from images generated according to the standard distribution
X in StyleGAN. There are clear gender disparities in StyleGAN; for example, men are much more
likely to be *Chubby’, while women are much more likely to be blonde.

frequency is best seen in Figure[T} Some features occur with high frequency, while others are almost
never seen.

In addition to varying feature frequencies overall, these models also demonstrate different feature
frequencies across sensitive classes, and in particular across the example of male and female gender
classes. To show this, we use the standard Gaussian prior X ~ N(0, 1) to generate 2500 images
using StyleGAN. These generated images are passed through our feature recognition network to get
feature frequencies. We can use the results to get preliminary information on biases present within
StyleGAN, or rather the data set used to train it. As an example of this bias, we observe in Table
[2|how features differ greatly in likelihood across male and female generated faces. For example,
female faces are much more likely to be identified as “blond*, while male faces are much more likely
to be identified as “Chubby®. While many of these relationships might make sense, some of the
relationships result in undesirable biases that we would like to mitigate.

The frequency of generated features is also affected by the prior distribution used to generated
images. To show this, we demonstrate that changing the prior distribution drastically affect class
representation in generated images. We now sample our latent vectors from a second distribution
Y ~ N(—2, 1) which has the same standard deviation as the original distribution X but with a
different mean. Comparing images generated from X and Y show a remarkable difference, as
demonstrated in[3] To visualize this difference, 4] shows images generated from both distributions.
Samples generated according to Y tend to overwhelmingly be female and blonde compared to samples
generated according to X.

By changing the prior distribution, we are able to change feature frequencies. This result suggests an
important finding that it is possible to change the prior to affect feature frequencies. In particular,



| Feature | Bald  Black Hair Blond  Brown Hair Male  Smiling Young ||

Prior X 0.009 0.245 0.073 0.177 0.448 0.753 0.869
Prior Y 0.0 0.011 0.314 0.188 0.13 0.791 0.864
% Change | -100.0% -95.6 % +331.9 % +6.3% -711.0% +5.0%  -0.6%

Figure 3: A table showing frequencies of various features in face images generated by prior distribu-
tions X and Y as well as the percentage change in feature frequency from X to Y.

Figure 4: Gallery of 25 images generated by X ~ N (0, 1) (left) and Y ~ N'(—2, 1) (right). Note
the remarkable difference in the kinds of faces each distribution generates.

it may be possible to change the prior distribution to meet a fairness criteria or generate images
according to an arbitrarily desired distribution.

3.2 Fairness via Latent Perturbation

Traditionally, when learning generative models, the priors that are chosen tend to be simple, whether
for tractability or ease of use[22]. However, both and propose learning complex priors at
during training as to ensure better stability of learning generative models and greater expressivity
of the underlying distribution. While we won’t emulate the adaption of the prior at train time, we
will similarly want to learn non-trivial (i.e. uniform or Gaussian) representations of the prior for fair
generation.

We propose the use of a small neural network to implicitly learn the prior distribution to slightly
perturb latent variables drawn from the prior distribution to a modified distribution. This network L
accepts a latent variable z from the prior distribution and slightly perturbs it to L(z) = 2/, following
a modified distribution under which the desired fairness is achieved from the generative model. This
approach eliminates the need for any further work once the latent network is properly trained: once
this network is "attached" in front of a generator to form a combined network, the modified generator
operates identically to the original, except with different outputs. Latent codes used to generate data
may still be drawn from the same original distribution, since the latent perturbation network modifies
these priors.

In addition to modifying the latent variables for fair generation, it is also important to preserve
quality and variability in the final model so that the new prior is useful. To that end, we propose a
three-headed training network combining three losses: L fqirness measuring fairness in the current
model using a feature recognition network, £¢ ¢y penalizing modified priors far from the original
prior, and £ gyq1i¢y Which uses the existing discriminator to ensure quality in the generated data. For
clarity, we denote the latent network L, feature recognizer R, generator G, and discriminator D.

The fairness 10ss L 4irness measures the mean-squared error between the features generated by
the batch and the desired, fair feature vector f. For instance, the feature vector for a fair binary
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Figure 5: Our proposed architecture uses three heads to ensure fairness, quality, and variability.

classification would be [0.5, 0.5].

1
‘Cfairness = ﬁ Z ||f - R(G(L(zl»)ng (1)
i=1

The perturbation 10sS Ly,crt.rp €nsures variability in the final output. Since the prior distribution used
to train a generative model necessarily expresses the highest variability in generated data [source
needed?], it suffices to penalize perturbed latent variables distant from the original latent variable.
This loss is thus defined as the L, error between the original and perturbed latent variables.

perturb Z ||L - Z” 1 (2)

Finally, we take advantage of the existing discriminator model to penalize images of low quality, and
thus likely low discriminator scores. Since we want all examples to fool the discriminator, binary
cross-entropy loss reduces to

Lquatity = Z log(D (2i)))) (3)

Our final loss is then a weighted sum of these losses, expressed as

L= Efairness + Alﬁperturb + /\2£quality (4)

Figure [5 details the architecture using this loss to train the model. After passing through the latent
perturbation network and generator, the resulting generated data is passed to both a discriminator
to get Lyyality and a feature recognizer to get L ¢qirness. In the training phase, the weights for all
networks are frozen except for the latent network. Note that although the discriminator and feature
recognizer are needed at training time, they are no longer needed at inference time.

4 Experiments

4.1 MNIST Experiments

While many GAN models are trained on faces, running experiments on faces is inherently more
difficult, as the distribution itself is significantly larger and the feature space is larger with three
channels. Additionally, models trained to recognize specific “human” features of faces like race,
gender, etc. have varying degrees of success due to both the dimensionality of the dataset as well as
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Figure 6: Samples of our DCGAN network trained on zero/one handwritten digits, before and after
modification via our proposed method. Each image shows 100 randomly generated samples. The
numbers are sorted by quality as determined by the discriminator network, from top left to bottom
right.

the potentially subjective labelling of the different “human” features. Moreover, images created from
generative models often retain artifacts after generation, which can “confuse” the model trained to
recognize specific features. These challenges make it difficult to evaluate the efficacy of our designed
model and the effects of our latent network.

Rather than using face images, we performed several initial experiments with generative models
trained on the MNIST handwritten digit dataset. This dataset offers a much simpler image-based
alternative with clear and reliable labeling, making it easier to work with. Furthermore, compared to
face feature recognition models with varying accuracy, standard convolutional models perform nearly
perfectly in digit recognition on MNIST. In order to generate high quality digit samples, we trained
a DCGAN [18]] on the MNIST dataset for 30. We also used a pretrained digit recognition model
achieving neraly perfect classification accuracy. After training, the generator and decoder weights
were frozen. For our first experiment, we trained a DCGAN to produce either 0’s or 1’s, and for our
second experiment, we trained a DCGAN to produce all 10 MNIST digits.

In our first experiment, we found that an unaltered DCGAN trained to generate 0’s and 1’s generated
0’s approximately 42.9% of the time, demonstrating the bias in the generative model over which digit
is frequently produced. However, after implementing and training our proposed latent model to perturb
the latent input to the DCGAN generator, the altered generator produced 0’s approximately 50.2%
of the time and correspondingly 1’s approximately 48.2% of the time. These results are visualized
in Figure[6] Examining the perturbations of the latent vectors reveals that the output distribution
is only slightly different from that of the original; with randomly generated latents coming from
the uniform distribution U (—1, 1), the mean perturbation of the latents after being passed through
the latent network was 0.073, while the median perturbation was 0.054. These encouraging results
indicate that latents are only slightly altered in order to attain the desired distribution.

In our second experiment, we trained a DCGAN on all 10 digits found in the MNIST dataset. The
unaltered DCGAN generated digits at unequal frequencies, as displayed by Figure[7] Indeed, digits
1 and O were generated most frequently, while the remaining digits were produced noticeably less
frequently. After training our proposed latent model, we found that the altered generator produced
digits approximately in line with a uniform distribution over the ten; these results are likewise found
in Figure[7] Similar to before, we also computed the perturbation of the new distribution generated by
the modified latents, and found that the mean perturbation of the latents was 0.185, while the median
perturbation was 0.134. These results again indicate that the latent vectors are only slightly modified
in order to attain the desired distribution. Note that these perturbations are larger than those from our
two-digit experiments. We believe this occured because the latent mappings must now be learned for
ten digits rather than for two digits.

Since the images produced from this GAN constituted an approximation, we were also able to
calculate the FID of our output distribution from the original distribution of MNIST. Using an
unmodified DCGAN, the FID score tends towards approximately 50; using our modified generator
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Figure 7: Top: Samples of our DCGAN network trained on the entire handwritten digit dataset,
before and after modification via our proposed method. Each image shows 100 randomly generated
samples. The numbers are sorted by quality as determined by the discriminator network, from top
left to bottom right. Bottom: Frequencies of digits produced without and with the latent network.

including our latent network, our FID score was approximately 70 after 40 epochs. This result
indicates that our output distribution closely reflects that of the original MNIST distribution, but
retains a higher score because it does not precisely model the same frequencies of digits displayed in
the original MNIST distribution.

4.2 CelebA Dataset

Following the effectiveness of our model’s experiments using GANs trained on MNIST, we used a
ProGAN model [23] pretrained on CelebA [17] to generate several samples from latents uniform
on U(—1,1). We used the model used in [2]]] as the recognizer model, which is built off of
MobileNetV2 [26]], for face features labeling and implemented our latent model as described in
the methods. We aimed to balance the images produced by the gender identified by the recognizer
model. Using the pretrained ProGAN model alone, 63% of generated images were labeled as female;
however, after generating samples using a combination of the latent model and the ProGAN generator,
our the proportion of images identified as male by the recognizer model was 49.4%. Samples of this
model can be found in Figure 8]

5 Discussion

In this paper, we discuss a novel post-processing fairness method for balancing the outputs of a
generative model by training a network to perturb latent vectors. We evaluated this method on both
the MNIST and CelebA datasets and found that the modified generator network was able to produce
balanced datasets according to the identified class labels. Moreover, these balanced datasets were
produced through only slight modification of the latent vectors originally sampled from a U(—1, 1),
indicating that the latent network learns precise mappings between relevant labels and areas of the
latent space.
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Figure 8: Samples of the pretrained ProGAN network in conjunction with our latent model. These 25
samples were randomly selected from 10,000 gender-balanced images.

Given the rapidly increasing training costs for state-of-the-art GANs, we believe that this approach
will allow for highly customizable modification of generated images without needing to expensively
retrain the model. Indeed, beyond enforcing notions of fairness, this method allows for the generation
of images to fit the desired proportion of a particular dataset, which can improve methods for data
augmentation across tasks with many class labels.

5.1 Future Work

In future work, we would aim to further reproduce the methods identified in [12] and [10]. In
particular, in [12], the authors demonstrated the relationship between changing e-satisfying fairness
constraints with different GAN metrics like FID and Inception score; we would likewise want to
demonstrate a similar relationship relating the latent network with the generator network to changing
values of FID. Likewise, in [10]], the authors explored the effects of classifier accuracy when trained
off of their fair dataset. It would be interesting to implement similar results for the samples generated
by our original generator with our latent network attached.
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