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1 Background

Machine learning researchers often think of images as continuous data and language as discrete
data with tokens representing lookup indices into an embedding table. However, in the social media
industry, images are often user data associated with an embedding at upload time (e.g. from a
pre-trained vision network). Data pipelines treat those images as discrete data with PhotoId acting
as a lookup index. Like in natural language processing, downstream tasks do not require knowledge
of how an embedding was generated.

That brings us to the question of fairness. Without knowing the mechanics of the original embedding
computation, how can can we ensure downstream tasks do not implicitly encoding sensitive informa-
tion? Our project examines the use of another neural network, dubbed the translator network, to
produce an alternative embedding for a given photo. The translator network assumes nothing about
the structure or training procedure for the original embeddings.

Below, in Section 2 we discuss some properties and challenges of choosing a dataset for training
and evaluation. Section 3 illustrates the training procedure while treating race as a protected feature.
Finally, in Section 4, we show success in translating embeddings through adversarial learning but
caveat that training is unstable and translated embeddings lose some generality.

2 Dataset

(a) Annotated as fe-
male, middle eastern
race and age 10-19

(b) Annotated as male,
latino hispanic race
and age 20-29

(c) Annotated as fe-
male, black race and
age 20-29

(d) Annotated as male,
white race, and age 40-
59

Figure 1: Samples from the Fairface dataset. Each example contains a square-cropped face image
annotated with a gender (2 classes), race (7 classes) and age (9 classes, non-uniformly distributed)
labels. Examples lack a uniform pose and are from different eras of photography.

Large scale vision datasets that are annotated with protected information are few and far between. At
the project milestone we used the IMDB-Wiki dataset introduced in Rothe et al. [2018]; however in
this final report use the FairFace dataset introduced in Kärkkäinen and Joo [2019]. FairFace, unlike
IMDB-Wiki, is balanced across race and contains images annotated with three potentially protected
attributes: race, gender and age cohort. The switch was motivated by the race annotation and greater
data cleanliness.

FairFace is pre-split into training (86,744 examples) and validation sets (10,954). Gender classes
are roughly balanced (47% female) as are the seven race categories (with Caucasians being over-



represented at 20%). Age labels are not balanced and are categorically annotated into nine different
categories. Figure 1 shows a few examples from the dataset. In this project, race is treated as a
protected attribute while making a gender prediction.

3 Approach
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Figure 2: Contrasting a translation network with a standard neural network encoder architecture.
The translator network is trained on top of an existing network and the reduces the ability for new
networks to reconstruct protected labels.

The overall goal is to preserve as much of the original embedding as possible while removing any
encoding of protected attributes. As shown in Figure 2, the components of the set-up are:

1. Given an image, an encoder network predicts an embedding for the image. The encoder
network is frozen after its training with no further gradient updates applied.

2. Embeddings produced by the encoder become the training set for a translator network. The
translator network consumes embeddings and produces fair embeddings while preserving
shape. In other words, it is an auto-encoder.

3. Two heads are attached to the translator network: one that predicts a control label and one
that predicts a protected label. In our dataset, the control label is gender and the protected
label is race.

4. Using those heads, we train the translator network with a fairness-regularizing loss that
tries to ensure it maintains control task performance while making any other network
perform poorly at protected label prediction.

For our primary encoder network we use ResNet-34 as defined in He et al. [2015]. We experiment
with two approaches: using pre-trained weights as-is as well as fine-tuning the network on our dataset
to predict a multi-class (gender, race) label. As described in Section 4.1, the latter approach appears
to perform better.
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3.1 Loss Function

The goal of translator is three fold: (1) to preserve the ability to make predictions on a control task,
(2) to remove the ability to predict protected features and (3) to preserve as much of the structure of
the original embeddings as possible. The following loss matches that structure:

Losstranslator = Losscontrol + αLossfairness + βLossreconstruction

The natural choice of Losscontrol is a softmax-loss which encapsulates the ability of the network to
predict its control label.

The natural choice of Lossreconstruction comes from viewing it as auto-encoder for embeddings. We
chose a Euclidean Lossreconstruction = ||embedfair − embedunfair||22 but any distance function
would suffice.

The choice of Lossfairness is more interesting; we examine three choices from the literature:

• Lossfairness = −CrossEntropy(protectedLabel) attaching a new head on the embed-
dings to predict the protected label; Wadsworth et al. [2018] explored this loss to reduce
bias in recidivism-prediction.

• Lossfairness = CrossEntropy(protectedLabel) modified so that it has a negative gradi-
ent during back-propagation; Raff and Sylvester [2018] successfully explored this loss as a
general method for reducing discrimination.

• Lossfairness as an adversarial CrossEntropy loss over another network that predicts the
protected label. We formulate optimization as a minimax problem with alternating rounds
of minimizing Losscontrol + αLossfairness + βLossreconstruction with respect to the
translator and maximizing Lossfairness with respect to adversary. Madras et al. [2018]
explored this loss as a general framework to fairness.

Results using these loss functions are described later in Section 4.2.

3.2 Evaluation and Training Procedure

Figure 3: Information flow between the four networks and three loss functions involved in training
and evaluation.

Unlike typical fairness problems, our goal is to remove protected information for unknown down-
stream tasks. We had originally examined the use of parity gap and opportunity gap (Beutel et al.
[2017]) as a success metric. However, it is possible for the translator to show equality of opportunity
while also encoding latent information about protected features. In other words, it appeared the
fairness regularizers made the embeddings fair only relative to the instantiation of the control head.
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We therefore evaluate success by the performance of an independent evaluation adversary trained
to predict the protected label. This network is strictly used for evaluation and is trained independently
from the original fairness network (which itself may be trained with its own adversarial loss).

As Figure 3 shows, the training procedure requires up to 4 networks:
1. the base network that to produce (unfair) embeddings
2. a translator network to produce fair embeddings with a control task head
3. depending on the loss, either an adversarial network predicting protected features or a

protected head to the translator network.
4. an independent evaluation adversary trained to directly predict the protected feature

The translator is successful if the evaluation adversary has little or no predictive power over protected
attributes. We choose F1-score as the metric of predictive power due to simplicity and disallowing a
trivial bias-only solution. We were burned a few times by the adversary trivially learning a bias term
that maximizes accuracy on the most represented protected class.

For simplicity, our protected race label is binarized into Caucasian and non-Caucasian. During
translator training, we periodically re-train an adversarial evaluator and report its accuracy and F1
scores. Networks are trained against the training set but we take care to only use metrics calculated
against the validation set.

3.3 Hyper-parameters and Tuning

Our hyper-parameter space is quite large because of the number of networks involved in training.
Table 5 shows a list of hyper-parameters for our best model utilizing an adversarial loss. We search
over the parameter space using a random search procedure.

Figure 4: Various curves for the F1 score of the evaluation adversary predicting race. During translator
training, we periodically re-train the adversary from scratch to predict race. Curves are unstable and
vary intra-run and inter-run.

In practice, training outcomes were binary when using an adversarial loss: the control task and
adversary either had full predictive power or none at all. Figure 4 illustrates the instability of
outcomes in during training runs of the random search procedure. We choose a run that had full
predictive power for the control task, no predictive power for the adversary and a high reconstruction
weight; i.e. one that preserved as much of the original embeddings as possible.

4 Results

Much of this project was trying to get something working. We omit details of all our many failed
experiments and are pleased to report that we eventually found a feasible network that conceals
protected information. The network uses the hyper-parameters of Table 5 and an adversarial regular-
izing loss. It places a large (70%) weight on reconstruction of the original embeddings but removed
race-specific information. Figure 6 contrasts nearest neighbors in the original embedding space
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with those in the translated embedding space and shows a much greater racial diversity amongst
candidates.

Parameter Best Run Description
objective weight 0.27059 Blend weight to put on control loss
reconstruction weight 0.71765 Blend weight for reconstruction loss
adversary weight 0.011765 Blend weight for adversarial loss
adversary every 10 Minimax balance; how many minimization

steps before applying adversary maximization
translator squeeze 2-layer relu 512->60->512 Structure of the translator
learning rate 0.0088587 Learning rate for translator network
num epochs 4 Number of training epochs
adversary lr 0.0088587 Learning weight for adversarial loss
weight decay 0.27826 L2 regularization for training / adversary
batch size 0.008587 Batch size for training

Figure 5: The best hyper-parameters found during a random search procedure. In practice, we found
that outcome was binary; either the adversary activated fully o not at all. We chose a variant that
activated the adversary but also retained a high reconstruction weight.

Source Original Nearest Neighbors Translated (Fair) Nearest Neighbors

Figure 6: Euclidean nearest-neighbors for validation set examples in the two latent embedding spaces.
The original nearest neighbors are cleary aligned along gender and race lines while the translated
nearest neighbors retain gender information without race.

4.1 Baseline Vs. Model

We also examine the choice of base network for producing the underlying unfair embeddings. The
goal is unfair embeddings containing linear predictive power over race and gender. We started with a
ResNet-34 model and trained simple linear layers (Adam optimizer, lr=0.0001) on their embeddings
with two approaches:

• No-fine tuning. Linear layer predicting gender=male achieves 0.761 F1-score on the valida-
tion set and predicting race=Caucasian achieves 0.346 F1-score on the validation set.

• Fine-tuning ResNet-34 first by a (gender, race) categorical label (14 categories). After-
wards, a linear layer predicting gender=male achieves 0.928 F1-score on the validation set
and predicting race=Caucasian achieves 0.734 F1-score on the validation set.

Results were relatively stable across choice of hyper-parameters. Since fine-tuning performed better
we use it as our base model. Its associated metrics (0.928 F1 on gender=male and 0.734 F1 on
race=caucasian) also become the baseline for our fairness translator. We seek a model that has
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Figure 7: Learning curves during training for our best model run. With our choice of hyper-parameters
we were quickly able to obtain validation-set performance of predicting gender (eval f1), while having
no information about race (adversary f1) and retaining embedding semantics (reconstruction loss).

nearly the same gender prediction performance where an adversary predicting race=Caucasian has
comparatively worse performance.

Our final model, with hyper-parameters shown in Table 6, achieves a F1 score for predicting gen-
der=male of 0.9242 on the validation set, nearly matching our original baseline. Conversely, an
independently trained linear adversary has no predictive power on race=Caucasian and achieves
a F1 score of zero. The results for the independent adversary were also relatively stable across
hyperparameters.

Although not our primary objective, our best model also shows a small demographic parity gap
(0.01) and equality of opportunity gap (gender=male 0.01, gender=female 0.02) confirming that race
information is not being used in gender prediction.

4.2 Alternative Losses

While our best model uses an adversarial loss, we also experimented with the other fairness regulariz-
ing losses previously mentioned in Section 3.1.

Unlike Wadsworth et al. [2018], training with Lossfairness = −CrossEntropy(protectedLabel)
forced our loss function to diverge to negative infinity. Our network was free to learn an arbitrarily
bad predictor which drove cross-entropy to negative infinity. We tried constraining this model by
adding larger L2 regularization but training remained unstable.

We also tried using Lossfairness = CrossEntropy(protectedLabel) but flipping the sign of the
gradient during back propagation. After an extensive random search we found that the model
struggled to maintain control task performance when minimizing the fairness loss. Reconstruction
loss also oscillated during training which suggests the negative gradient may hamper the ability of
the model to structure embeddings.

4.3 Alternative Models

With so many models in our task, there are arbitrarily large numbers of modeling choices that could
have been made. During the course of training we tried different base models (e.g. ResNet18,
ResNet54) and a plethora of adversarial regularizers (one layer, two layer and three layers). Most
of these experiments either failed or had identical performance to our model above; we leave a full
exploration of causes to future work.

4.4 Generalization of Embeddings

The re-construction loss helps ensure that our embeddings are as close as possible to the original
embeddings. This raises the question: would a model trained on the original embedding maintain
performance when evaluated using the fair embeddings?

We test this by using FairFace dataset’s age label; binarizing into age < 30 (negative) and age >= 30
(positive). We first trained a linear model on the original embeddings that was able to achieve a
F1-score of 0.70 against the validation set. We then evaluated with the fair embeddings against the
validation set. During early stages of training it is able to generalize with a maximum eval F1-score
of 0.55. As training continues, the network appears to specialize to the unfair embeddings and
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fair embedding evaluation metrics diverge (down to zero). It is a promising result but leave deeper
explorations to future work.

5 Conclusion

Above, we describe a method removing protected information from pre-trained embeddings without
accessing the original network. We prove its efficacy by removing latent racial information encoded
in a ResNet34 model fine-tuned on the FairFace dataset. Doing so required adversarial training that
was unstable but effective. We also examined alternative losses but diverge or have poor predictive
power at the control task.

(a) t-SNE reduction of fair embeddings (b) t-SNE reduction of unfair embeddings

Figure 8: Visualization of our two embedding spaces, with unfair embeddings showing clear racial
patterns.

At the onset of this project we were unsure whether our task was feasible. Most of our time was spent
developing a model that did not diverge during training. As our project progressed, we eliminated non-
adversarial methods and discovered that fairness regularizers targeted reduce prediction performance
but don’t necessarily remove latent information. Given more time, our next steps would be to explore
more datasets, try to characterize why certain models can fairly translate, and explore different
formulations of the reconstruction loss. Thank you!
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