
Arguing a  
Research Project

CS 197 | Stanford University | Michael Bernstein
cs197.stanford.edu

Administrivia
You all have projects and groups at this point. Let us know if that’s
not the case.
Assignment 3 — Project Introduction — is out on Wednesday and
due next Wednesday.

After Assignment 3, your main goal is to make self-guided progress on
the project through the rest of the quarter! We will provide scaffolds via
assignment check-ins.

Notes on the “clarity” rubric item for our Assignments

2

Last time
How do we get to the point where we know what has been done,
and why our idea is different, new, and exciting?
Bit flip: articulating an assumption present in all prior work that you
are breaking
Literature search process:

Iterative expansion of  
the most relevant work 
from the set of papers  
you’ve seen so far

3

Today: from bit flip to
paper introduction
How do we articulate our project persuasively to a peer? A bit flip
isn’t enough on its own.
If we can’t explain the project clearly enough for another researcher
in the same area to understand it, we don’t really understand our
project ourselves.

(This happens more often than you might think. It’s hard!)
4

RELATED WORK
In this section, we motivate flash organizations through an
integration of the crowdsourcing and organizational design
research literature, and connect their design to lessons from
distributed work and peer production (Table 1).

Crowdsourcing workflows
Crowdsourcing is the process of making an open call for con-
tributions to a large group of people online [7, 37]. In this
paper, we focus especially on crowd work [42] (e.g., Amazon
Mechanical Turk, Upwork), in which contributors are paid
for their efforts. Current crowd work techniques are designed
for decomposable tasks that are coordinated by workflows
and algorithms [55]. These techniques allow for open-call
recruitment at massive scale [67] and have achieved success
in modularizable goals such as copyediting [6], real-time tran-
scription [47], and robotics [48]. The workflows can be op-
timized at runtime among a predefined set of activities [16].
Some even enable collaborative, decentralized coordination
instead of step-by-step instructions [46, 86]. As the area ad-
vanced, it began to make progress in achieving significantly
more complex and interdependent goals [43], such as knowl-
edge aggregation [30], writing [43, 61, 78], ideation [84, 85],
clustering [12], and programming [11, 50].

One major challenge to achieving complex goals has been that
microtask workflows struggle when the crowd must define
new behaviors as work progresses [43, 44]. If crowd workers
cannot be given plans in advance, they must form such action
plans themselves [51]. However, workers do not always have
the context needed to author correct new behaviors [12, 81],
resulting in inconsistent or illogical changes that fall short of
the intended outcome [44].

Recent work instead sought to achieve complex goals by mov-
ing from microtask workers to expert workers. Such sys-
tems now support user interface prototyping [70], question-
answering and debugging for software engineers [11, 22, 50],
worker management [28, 45], remote writing tasks [61], and
skill training [77]. For example, flash teams demonstrated that
expert workflows can achieve far more complex goals than
can be accomplished using microtask workflows [70]. We in
fact piloted the current study using the flash teams approach,
but the flash teams kept failing at complex and open-ended
goals because these goals could not be fully decomposed a
priori. We realized that flash teams, like other crowdsourc-
ing approaches, still relied on immutable workflows akin to
an assembly line. They always used the same pre-specified
sequence of tasks, roles, and dependencies.

Rather than structuring crowds like assembly lines, flash orga-
nizations structure crowds like organizations. This perspective
implies major design differences from flash teams. First, work-
ers no longer rely on a workflow to know what to do; instead,
a centralized hierarchy enables more flexible, de-individuated
coordination without pre-specifying all workers’ behaviors.
Second, flash teams are restricted to fixed tasks, roles, and
dependencies, whereas flash organizations introduce a pull
request model that enables them to fully reconfigure any or-
ganizational structure enabling open-ended adaptation that
flash teams cannot achieve. Third, whereas flash teams hire

the entire team at once in the beginning, flash organizations’
adaptation means the role structure changes throughout the
project, requiring on-demand hiring and onboarding. Taken
together, these affordances enable flash organizations to scale
to much larger sizes than flash teams, and to accomplish more
complex and open-ended goals. So, while flash teams’ pre-
defined workflows enable automation and optimization, flash
organizations enable open-ended adaptation.

Organizational design and distributed work
Flash organizations draw on and extend principles from organi-
zational theory. Organizational design research theorizes how
a set of customized organizational structures enable coordina-
tion [52]. These structures establish (1) roles that encode the
work responsibilities of individual actors [41], (2) groupings of
individuals (such as teams) that support local problem-solving
and interdependent work [13, 29], and (3) hierarchies that sup-
port the aggregation of information and broad communication
of centralized decisions [15, 87]. Flash organizations compu-
tationally represent these structures, which allows them to be
visualized and edited, and uses them to guide work and hire
workers. Some organizational designs (e.g., holacracy) are
beginning to computationally embed organizational structures,
but flash organizations are the first centralized organizations
that exist entirely online, with no offline complement. Organi-
zational theory also describes how employees and employers
are typically matched through the employee’s network [23],
taking on average three weeks for an organization to hire [17].
Flash organizations use open-calls to online labor markets
to recruit interested workers on-demand, which differs dra-
matically from traditional organizations and requires different
design choices and coordination mechanisms.

Organizational design research also provides important insight
into virtual and distributed teams. Many of the features af-
forded by collocated work, such as information exchange [64]
and shared context [14], are difficult to replicate in distributed
and online environments. Challenges arise due to language
and cultural barriers [62, 34], incompatible time zones [65, 68],
and misaligned incentives [26, 66]. Flash organizations must
design for these issues, especially because the workers will
not have met before. We designed our system using best prac-
tices for virtual coordination, such as loosely coupled work
structures [35, 64], situational awareness [20, 27], current state
visualization [10, 57], and rich communication tools [64].

Peer production
Flash organizations also relate to peer production [3]. Peer
production has produced notable successes in Wikipedia and
in free and open source software. One of the main differences
between flash organizations and peer production is whether
idea conception, decision rights, and task execution are central-
ized or decentralized. Centralization, for example through a
leadership hierarchy, supports tightly integrated work [15, 87];
decentralization, as in wiki software, supports more loosely
coupled work. Peer production tends to be decentralized,
which offers many benefits, but does not easily support inte-
gration across modules [4, 33], limiting the complexity of the
resulting work [3]. Flash organizations, in contrast, use central-
ized structures to achieve integrated planning and coordination,

Your goal
Writing an Introduction to  
the paper.
Often, we do this before we even
start implementing the project, to
make sure we can articulate it
clearly.

INTRODUCTION
Crowdsourcing mobilizes a massive online workforce into
collectives of unprecedented scale. The dominant approach
for crowdsourcing is the microtask workflow, which enables
contributions at scale by modularizing and pre-specifying all
actions [7, 55]. By drawing together experts [70] or ama-
teurs [6], microtask workflows have produced remarkable
success in robotic control [48], data clustering [12], galaxy la-
beling [54], and other goals that can be similarly pre-specified.
However, goals that are open-ended and complex, for example
invention, production, and engineering [42], remain largely
out of reach. Open-ended and complex goals are not eas-
ily adapted to microtask workflows because it is difficult to
articulate, modularize, and pre-specify all possible actions
needed to achieve them [71, 80]. If crowdsourcing remains
confined to only the goals so predictable that they can be en-
tirely pre-defined using workflows, crowdsourcing’s long-term
applicability, scope and value will be severely limited.

In this paper, we explore an alternative crowdsourcing ap-
proach that can achieve far more open-ended and complex
goals: crowds structured like organizations. We take inspi-
ration from modern organizations because they regularly or-
chestrate large groups in pursuit of complex and open-ended
goals, whether short-term like disaster response or long-term
like spaceflight [8, 9, 63]. Organizations achieve this com-
plexity through a set of formal structures — roles, teams, and
hierarchies — that encode responsibilities, interdependencies
and information flow without necessarily pre-specifying all
actions [15, 83].

We combine organizational structures with computational
crowdsourcing techniques to create flash organizations:
rapidly assembled and reconfigurable organizations composed
of online crowd workers (Figure 1). We instantiated this ap-
proach in a crowdsourcing platform that computationally con-
venes large groups of expert crowd workers and directs their
efforts to achieve complex goals such as product design, soft-
ware development and game production.

We introduce two technical contributions that address the cen-
tral challenges in structuring crowds like organizations. The
first problem: organizations typically assume asset specificity,
the ability for organization members to develop effective col-
laboration patterns by working together over time [83]. Clearly
crowds, with workers rapidly assembled on-demand from plat-
forms such as Upwork (www.upwork.com), do not offer asset
specificity. So, our system encodes the division of labor into a
de-individualized role hierarchy, inspired by movie crews [2]
and disaster response teams [8], enabling workers to coor-
dinate using their knowledge of the roles rather than their
knowledge of each other.

The second problem: organizational structures need to be con-
tinuously reconfigured so that the organization can adapt as
work progresses, for example by changing roles or adding
teams [9, 63, 83]. Coordinating many workers’ reconfigura-
tions in parallel, however, can be challenging. So, our system
enables reconfiguration through a model inspired by version
control: workers replicate (branch) the current organizational
structure and then propose changes (pull requests) for those

Website development
Video transcription
User testing: video
User testing: photo
User testing
High fidelity mockups
Graphic design: packaging
Graphic design: logo
Graphic design: card front
Graphic design: card back
Content creation
Android development

= 1 hour

H
ie

ra
rc

hy
C

ro
w

d
Ti

m
el

in
e

Figure 1: Flash organizations are crowds that are computationally struc-
tured like organizations. They enable automated hiring of expert crowd
workers into role structures and continuous reconfiguration of those
structures to direct the crowd’s activities toward complex goals.

up the hierarchy chain to review, including the addition of new
tasks or roles, changes to task requirements, and revisions of
the organizational hierarchy itself.

Enabling new forms of organization could have dramatic im-
pact: organizations have become so influential as the backbone
of modern economies that Weber argued them to be the most
important social phenomenon of the twentieth century [82].
Flash organizations advance a future where organizations are
no longer anchored in traditional Industrial Revolution-era la-
bor models, but are instead fluidly assembled and re-assembled
from globally networked labor markets. These properties
could eventually enable organizations to adapt at greater speed
than today and prototype new ideas far more quickly.

In the rest of the paper, we survey the foundations for this
work and describe flash organizations and their system in-
frastructure. Following this review, we present an evaluation
of three flash organizations and demonstrate that our system
allows crowds, for the first time, to work iteratively and adap-
tively to achieve complex and open-ended goals. The three
organizations used our system to engage in complex collec-
tive behaviors such as spinning up new teams quickly when
unplanned changes arose, training experts on-demand in areas
such as medical privacy policy when the crowd marketplace
could not provide the expertise, and enabling workers to sug-
gest bottom-up changes to the work and the organization.

Architecture of an
Introduction

What is an Introduction?
The Introduction makes the case for your research, in brief.
Jennifer Widom:

“The Introduction is crucially important. By the time a referee has finished
the Introduction, they've probably made an initial decision about
whether to accept or reject the paper — they'll read the rest of the
paper looking for evidence to support their decision.

A casual reader will continue on if the Introduction captivated them, and will
set the paper aside otherwise. Again, the Introduction is crucially important.”

https://cs.stanford.edu/people/widom/paper-writing.html#intro
7

Think of it this way…

8

By this point, the video
has hopefully made
clear to you what it’s
about, and you’ve
made a decision about
whether to watch the
rest of it.

Each introduction makes
the case for two things:
1) The problem: why do we care about the problem you’re solving?
2) The solution: why is your approach creative and correct?

9

Architecture of an intro

10

Problem
Solution

…great, Michael, thanks. But how
do we actually do this?

The Problem
Turn to a partner and explain the problem that your project is
working on [1min each]
How clearly do you understand your partner’s problem?
How clearly do you understand your partner’s bit flip?

11

Unpacking the problem
The Introduction’s goal isn’t just to set
up the problem, it’s to convey the
solution as well. To do that effectively,
your problem statement needs to set
up the bit flip.
For this to succeed, the bit needs to
integrated as part of the problem
statement.

12

Problem motivation
Set up the bit
Solution (bit flip)

Problem
Solution

Problem motivation
Explain the main problem that you’re
trying to solve:

Networks are hard to (re)configure
Interactions with computers are stuck on
flat glass displays
Generative AI models are challenging to
evaluate

Use citations to back up your claims about
the existence of the problem, and why we
should care about solving it. 13

Problem motivation

Set up the bit
Solution (bit flip)

Set up the bit
Answer the question, "Why isn't this
problem solved yet?" by setting up the bit
that you're going to flip:

Networks are configured in hardware
To break out of glass screens, outputs have
been designed into the physical world.
Generative model evaluations have been
automated, but these are proxies at best.

This is a summary of related work that is
in service of your bit set up. 14

Problem motivation
Set up the bit

Solution (bit flip)

15

bit = decentralization

The rest of the
paragraph is
dedicated to
surveying related
work with respect to
how decentralization
is architected, and to
its outcomes.

Try again: The Problem
Turn to a partner and explain the
problem that your project is working on
[1min each]
How clearly do you understand your
partner’s problem?
How clearly do you understand your
partner’s bit flip?

16

Problem motivation

Set up the bit

Solution (bit flip)

Architecture of an intro

17

Problem statement
Set up the bit
Solution (bit flip)

The Solution
Turn to a partner and explain the approach your project is taking
[1min each]
How clearly do you understand your partner’s bit flip?
How clearly do you understand how exactly the project is going to
instantiate that bit flip in a specific system, algorithm, or design?

18

Problem motivation
Set up the bit
Flip the bit
Instantiate the bit flip

Unpacking the solution
The solution has to explain two things:
what the big idea is, and how that big
idea gets instantiated in the specific
context of this problem.
(Even if someone hears your bit flip
that you want to introduce recurrence
inside the neural network, they may still
have no idea how that actually
connects to the problem of language
generation.)

19

Problem motivation
Set up the bit
Solution (bit flip)

Flip the bit
The topic sentence of this paragraph is
the thesis statement of your entire
research project.
Pivot off of the bit you set up to flip the
bit. Explain why flipping the bit is a good
idea for the problem at hand.
It should now be obvious to a reader
given the prior paragraph that this
research is novel, since you have proven
that nobody else has flipped that bit. 20

Problem motivation
Set up the bit
Flip the bit

Instantiate the bit flip

21

flip = re-centralizatize 
via guilds

The rest of the
paragraph explains
the high level idea.

Instantiate the bit flip
At this point, the reader understands the
idea that you're proposing, but it's still
very high level. In this paragraph, map that
idea onto a concrete instantiation.
Typically, this is where the system or
algorithm that you’re creating gets a name.
Explain its architecture or design at a high
level. Make clear how this architecture or
design is an instance of the bit flip.

22

Problem motivation
Set up the bit
Flip the bit
Instantiate the bit flip

23

instantiation = crowd 
guilds system

The rest of the
paragraph details how
crowd guilds work.

Try again: The Solution
Turn to a partner and explain the the
approach your project is taking  
[1min each]
How clearly do you understand your
partner’s bit flip?
How clearly do you understand how
exactly the project is going to instantiate
that bit flip in a piece of software?

24

Problem motivation
Set up the bit
Flip the bit

Instantiate the bit flip

Evaluation
How did you prove that your bit flip is
successful at solving the problem?
We obviously haven’t covered evaluation
yet in this course, so for now you’ll need
to take your best guess.

How would you convince a critical reader
that flipping the bit solved the problem
better than the prior work?

25

Problem motivation
Set up the bit
Flip the bit
Instantiate the bit flip
Evaluation

Implications
If you’re right and the bit flip is how
everyone should be approaching this
problem from now on, what implications
are there for the field?
This is your chance to stand on a small
soapbox:

Will it change the contexts in which we use
this technology? Will it broaden usage?

But don’t overplay your hand:
It probably won’t change all of computing. 26

Problem motivation
Set up the bit
Flip the bit
Instantiate the bit flip
Evaluation
Implications

Architecture of an intro

27

Problem motivation
Set up the bit
Flip the bit
Instantiate the bit flip
Evaluation
Implications

So in brief: use your literature
search to motivate your problem
and set up a bit.
Then, flip the bit and argue
persuasively that this will address
the problem. Explain how this
solution gets built into your system
or model.

How to Write
The Introduction

First, find your genre
There are a few different kinds of paper that are common:

New problem / old solution
Old problem / new solution

29

30

State of the  
literature

Address a new problem
with an old solution

Address an old problem
with a new solution

Address a new problem
with a new solution

Activity
recognition

(new) solved
with off-the-shelf  

ML (old)

Hard to convince
the world

Question  
answering (old)
with a transformer
architecture (new)

31

State of the  
literature

Answer a new question  
with an old method

Answer an old question  
with a new method

Solve a new problem
with a new technique

Social media 
disclosures of  
mental illness

Hard to convince
the world

Tie strength  
and Facebook 
use

Why only make one move?
When making an argument, you want to introduce one major new
idea, to minimize the new ideas your listener needs to absorb.
Certain ideas already have warrants in the literature: prior work
already has proven their legitimacy. A warrant is a free pass!

Old problem: the problem already has a warrant in the literature.
Visual question answering is a legitimate task; mission critical code should be
proven correct; interaction should not happen on panes of glass

Old solution: the solution already has a warrant in the literature.
Sensor fusion into features for an ML system; transformer architectures for NLP;
tangible interaction; self-play in reinforcement learning 32

Why only make one move?
Typically you are spending the introduction making the case for your
new idea. If you are trying to make the case for both a new
problem and a new solution, a reader might disagree with either.
This is not to say that you can’t do new problem / new solution; just
that it’s a risky varsity maneuver.

33

From genre to intro
Old problem / new solution:

Motivate the problem via
prior work, which has already
established the problem
Set up the bit of how all prior
work tried to solve it
Flip the bit — your new
solution
Instantiate that new solution
Implications 34

New problem / old solution:
Motivate the problem via
rhetoric, drawing on prior
work making supporting claims
Set up the bit: prior work is
not equipped for this problem
Flip the bit — your new
solution
Instantiate that new solution
Implications

Start with an outline
Your idea should be fully understandable with only six
sentences, a topic sentence per paragraph:

Problem motivation
Set up the bit
Flip the bit
Instantiate the bit flip
Evaluation
Implications

35

Keep it taut
Your goal is then to treat each outline point as a thesis sentence for
the paragraph, and use the paragraph to prove that thesis. Don’t
stray and make other interesting but un-useful points.

36

Try it
Group up, and work on your outline [7min]
Share your outline, one sentence per topic, with another group in
your section [1min each]

37

Assignment 3
Your group writes an Introduction to a paper for your project

Outline the introduction
Turn the outline into text
700-900 words

Due: next Wednesday 4pm on Canvas
Details at cs197.stanford.edu

38

http://cs197.stanford.edu

Slide content shareable under a Creative Commons Attribution-
NonCommercial 4.0 International License.

39

Computer Science Research

