
README FILE
Maya Harvey, Gaya Tarcar, Jonathan A�eld, Janelle Rudolph

CS 147 Autumn 2022

Prototype Link

Please download the .zip file from the website to obtain the prototype files. To
see how to build, please check Operating Instructions.

General Overview

The lucIDLy app is intended for use at any time, but at least once daily, as users
are required to complete the Daily Survey that can be accessed from the home
screen. In addition to completing the Daily Survey questions, users are able to
access trend-over-time data and visit available friends in this prototype. Users
will also be able to obtain rewards from checking in and observe how the app
might display specific health insights.

Design Tools

We constructed our high-fidelity prototype using React Native, React, and Expo
Go. Since lucIDLy is an app with a mobile format (even when accessed from the
plush toy’s screen), we were able to develop an iPhone UI for lucIDLy with React



Native. This gave us the advantage of an easily and realistically testable
prototype. All graphics for the prototype were constructed inside Figma using
shapes and text and imported into React Native.

Though lucIDLy is intended to be for use with all mobile platforms (such as
Android, etc), we only modeled for an iOS platform with React Native. This
means that users of di�erent mobile operating systems might not experience a
100% accurate prototype to what their use of the app would really look like.

Operating Instructions
Note -

To operate, download the .zip file and unzip the package. In the Terminal, use the cd command to
navigate into the package, then run npm i, then npm start. You will need to have node installed
already. This will build the prototype.

Users are able to return to the Garden/Home Screen at any time by clicking the upper left bear icon.

Login/Onboarding

- Upon loading, users must input a username and password.

Garden/Home Screen

- Click the Garden Inventory button at the bottom of the screen to view user inventory, a
scrollable page.

- Click the Daily Survey button in the top middle of the screen to begin Task 1 and
complete the Daily Survey.

- Click the small button of a graph to the left of the Daily Survey button to begin Task 2
and view health trends over time.

- Click the small button with user silhouettes to the right of the Daily Survey button to
begin Task 3 and interact with friend users.

Task 1 - Record one’s current mental and physical well-being

- Click the Daily Survey button in the top middle of the screen to begin Task 1 and
complete the Daily Survey.

- After interacting with the questions on the screen by clicking the buttons prompted by
the text, click Next on the bottom of the screen to progress or Back to go to the previous
page.

- Upon completion of the survey, users will be presented with a reward screen and



prompted to click the upper left home button.
- User answers are stored and not refreshed upon clicking daily survey again to preserve

realistic functionality.

Task 2 - Compare and track mental and physical wellbeing over time

- Click the small button of a graph to the left of the Daily Survey button to begin Task 2
and view health trends over time.

- Users can view two hard-coded graphs for physical and mental health.
- Users can scroll to view a hard-coded summary of survey answers from previous days

that updates based on survey answers.

Task 3 - Make others aware of how one is feeling

- Click the small button with user silhouettes to the right of the Daily Survey button to
begin Task 3 and interact with any of 3 friend users with varying statuses.

- Clicking the pig icon will take users to an invitation to visit the pig’s garden. Users may
accept or decline the invite.

- Accepting will take users to the pig’s garden, where users can return back to friends or
click the upper right chat icon to view the chat with the pig.

- Declining will return users to the main friend page.
- Doing either will mark the invite as read, eliminating the invite from the main friend

page.
- Clicking the bunny or the koala icon will take users to the bunny’s or the koala’s status

page, where users can click a button to invite them over, or click the other button to ask
to visit.

Limitations

For our Hi-fi prototype, we were unable to implement every single small feature
of the app, despite implementing all the tasks’ main functionality.

We did not implement the harvest functionality, as we determined this did not
contribute to the tasks we prioritized in our prototype. Instead, the only
collectible users are able to view is the coin collection page upon finishing the
survey.

In addition, users are not able to physically submit chat text that they have
typed into the chat page, though they are able to type and draft out a message.



Meanwhile, on the health-over-time screen, users are not able to view a live
graph based on their real-time survey answers - the graph is a hard-coded
image. In addition, we decided to remove the specific health insights pages as
we determined that it was not directly conducive to our second task of viewing
health trends over time.

On the world-view screen where users are able to view friends and their
statuses, the user is unable to actually go see the bunny and the mouse’s
gardens, only ask to be invited to visit or ask them to visit. The only garden
available to visit is accessible from the pig’s invite message. Furthermore, once
at the pig’s garden, users are only able to view the garden and return to
previous pages or to access the chat feature, not explore the garden further.

The bear screen where users are able to tap locations of discomfort has only the
hardcoded stomach option available to tap.

A couple buttons lack functionality and pages that they redirect to, as they do
not directly contribute to the task performances. For example, the button to
invite contacts does not lead anywhere and is just in the background as an
example.

Wizard-of-Oz

Health Insights/Graph: Due to the lack of historic use, there is no past data to
draw from - as such, the prototype ‘magically’ analyzes supposed past health
data to give the user a graph based on their history, without demonstrating how
this occurs.

Rewards: Since there is no past user data to demonstrate the ‘progress’ that this
user might have made as reasoning for why they are receiving specific rewards,
we have acted as the algorithm that will determine the quality and quantity of
rewards that the user receives from checking in.

Friend Status: Users are unable to manually set their own status. However, on
the world-view screen, we are still able to view other friends’ statuses even with
skipping this step. This is so that users can understand the results of this feature



and how it might impact friend visit requests without having to do anything on
their end.

Login: Upon opening the app, users are prompted to input a username and
password to create an account. This information is not actually stored anywhere
other than the username being used to address the user throughout the
remainder of the app.

Graphs: Graphs would update after the user submitted the survey depending
on their response. When we tried implementing the only graph package for
React Native, we found that it crashed when new props were appended to it. In
response, we instead created 10 di�erent graphs with di�erent possible
outcomes depending on what the user inputted for their daily survey. This way,
the graphs were already stored and we could just pull up whichever graph
matched the survey information.

Hard-Coded

User information: As there are no users on the app, historic user data has been
hard-coded, except those pertaining to recent survey answers. All friend data -
habitats, current status, etc. has been hard-coded so that there are friends to
interact with.

Inventory: As there is no historic use by the current user, all objects in the
inventory must be hard-coded.

Health Insights/Graphs: Again due to the lack of historic use, the graphs page
has been fabricated and hard-coded to provide an example, though the historic
answers reflect what the user has actually put in.

Survey Questions: The answer choices for survey questions have been
hard-coded, such as the bear only having the stomach as the option to select
for discomfort. Furthermore, there have been emotions and feelings provided
already for survey questions, though users can add more.

Inventory and Chat Page: The inventory was non-clickable because adding
seeds and goods to the garden was not part of our tasks. Also, our chat page



was non-interactive because we did not have another user on the other side of
our interface.


