Usability Testing

Prof. James A. Landay
Computer Science Department
Stanford University
Winter 2021
March 3, 2021

Hall of Fame or Shame?

- Kitchen Stories

Hall of Fame!

- Kitchen Stories
- Like
 - Large pictures of recipes
 - Photos & videos
 - Shopping list that marks off as you purchase
- Wish
 - ?

Usability Testing

Prof. James A. Landay
Computer Science Department
Stanford University
Winter 2021
March 3, 2021

Outline

- Why do usability testing?
- Choosing participants
- Ethical considerations
- Designing & conducting the test
- Using the results
- Experimental options & details

Why do Usability Testing?

- Can’t tell how good UI is until?
 - people use it!
- Expert review methods are based on evaluators who may?
 - know too much
 - not know enough (about tasks, etc.)
- Hard to predict what real users will do
Choosing Participants

- Representative of target users. How so?
 - job-specific vocab / knowledge
 - tasks
- Approximate if needed
 - system intended for doctors?
 - get medical students or nurses
 - system intended for engineers?
 - get engineering students
- Use incentives to get participants
 - t-shirt, mug, free coffee/pizza

Ethical Considerations

- Usability tests can be distressing
 - users have left in tears
- Testing/fieldwork can be coercive if there is a power imbalance (e.g., in under resourced communities)

Usability Test Proposal

- A report that contains
 - objective
 - description of system being testing
 - task environment & materials
 - participants
 - methodology
 - tasks
 - test measures

- Get approved & then reuse for final report
- Seems tedious, but writing this will help “debug” your test

Selecting Tasks

- Tasks from low-fi design can be used
 - may need to shorten if
 - they take too long
 - require background that test user won’t have

- Don’t train unless that will occur in real deployment
- Avoid bending tasks in direction of what your design best supports
- Don’t choose tasks that are too fragmented?
 - fragmented = do not represent a complete goal someone would try to accomplish with your application
 - e.g., phone-in bank test

Two Types of Data to Collect

- Process data
 - observations of what users are doing & thinking
 - qualitative

- Bottom-line data
 - summary of what happened
 - time, errors, success
 - i.e., the dependent variables
 - quantitative
Which Type of Data to Collect?

• Focus on process data first
 - gives good overview of where problems are

Which Type of Data to Collect?

• Focus on process data first
 - gives good overview of where problems are
• Bottom-line doesn’t tell you where to fix
 - just says: “too slow”, “too many errors”, etc.
• Hard to get reliable bottom-line results
 - need many users for statistical significance

The “Thinking Aloud” Method

• Need to know what users are thinking, not just what they are doing

Thinking Aloud (cont.)

• Prompt the user to keep talking
 - “tell me what you are thinking”
• Only help on things you have pre-decided
 - keep track of anything you do give help on
• Make a recording & take good notes
 - make sure you can tell what they were doing
 - use a digital watch/clock
 - record audio & video
 - or even event logs

Will thinking out loud give the right answers?

• Not always

 • If you ask, people will always give an answer, even it is has nothing to do with facts
 - panty hose example

 ➔ Try to avoid specific questions (especially that have binary answers)
Try it out!
Use the think aloud protocol to test one task in your medium-fi prototype.

In a moment, we will break you out into your teams. You have 3 minutes to identify which task to study. Select one person to rotate into the next breakout room down (within your studio, 1 to 2, 4 to 1). If possible, this should be someone who has not done a HE on that team’s prototype.

When they arrive, ask your visitor to complete the task while speaking their thought process aloud. Take notes!

Using the Test Results
• Summarize the data
 - make a list of all critical incidents (CI)
 - positive & negative
 - include references back to original data
 - try to judge why each difficulty occurred

• What does data tell you?
 - UI work the way you thought it would?
 - users take approaches you expected?
 - something missing?

Using the Results (cont.)
• Update tasks & rethink design
 - rate severity & ease of fixing CIs
 - fix both severe problems & make the easy fixes

Measuring Bottom-Line Usability
• Situations in which numbers are useful
 - time requirements for task completion
 - successful task completion %
 - compare two designs on speed or # of errors

• Ease of measurement
 - time is easy to record
 - error or successful completion is harder
 - define in advance what these mean

• Do not combine with thinking-aloud. Why?
 - talking can affect speed & accuracy

Analyzing the Numbers
• Example: trying to get task time ≤ 30 min.
 - fast gives: 40, 5, 20, 90, 10, 15
 - mean (average) = 30
 - median (middle) = 17.5
 - looks good!

• Did we achieve our goal?
• Wrong answer, not certain of anything!
• Factors contributing to our uncertainty?
 - small number of test users (n = 6)
 - results are very variable (standard deviation = 32)

Analyzing the Numbers (cont.)
• This is what basic statistics can be used for
• Crank through the procedures and you find
 - 95% certain that typical value is between 5 & 55
Analyzing the Numbers (cont.)

<table>
<thead>
<tr>
<th>Participant #</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

- number of participants: 6
- mean: 30.0
- median: 17.5
- std dev: 31.8
- standard error of the mean: \(\frac{\text{std dev}}{\sqrt{\text{#samples}}} \) = 13.0
- typical values will be mean \(\pm 2 \times \text{standard error} \) = 4 to 56
- what is plausible? = confidence (alpha=5\%, std dev, sample size) = 25.4

Web Usability Test Results

- Analyzing the Numbers (cont.): This is what basic statistics can be used for
- Comparing Two Alternatives: Between groups requires many more participants than within groups

Measuring User Preference

- How much users like or dislike the system:
 - can ask them to rate on a scale of 1 to 10
 - or have them choose among statements
 - “best UI I’ve ever…”, “better than average…”
 - hard to be sure what data will mean
 - novelty of UI, unrealistic setting…
- If many give you low ratings → trouble
- Can get some useful data by asking:
 - what they liked, disliked, where they had trouble, best part, worst part, etc.
 - redundant questions are OK

Comparing Two Alternatives

- Between groups experiment:
 - two groups of test users
 - each group uses only 1 of the systems
- Within groups experiment:
 - one group of test users
 - each person uses both systems (cheaper)
 - can’t use the same tasks or order (learning)
 - best for low-level interaction techniques
 - e.g., new mouse, new swipe interaction, …

Instructions to Participants

- Describe the purpose of the evaluation:
 - “I’m testing the product; I’m not testing you”
- Tell them they can quit at any time
- Demonstrate the equipment
- Explain how to think aloud
- Explain that you will not provide help
- Describe the task:
 - give written instructions
 - one task at a time
Reporting the Results

- Report what you did & what happened
- Images & graphs help people get it!
- Video clips can be quite convincing

Heuristic Evaluation vs. User Testing

- HE is much faster
 - 1-2 hours each evaluator vs. days-weeks
- HE doesn’t require interpreting user’s actions
- User testing is far more accurate (by def.)
 - takes into account actual users and tasks
 - HE may miss problems & find “false positives”
- Good to alternate between HE & user testing
 - find different problems
 - don’t waste participants

Summary

- User testing is important, but takes time/effort
- Use real tasks & representative participants
- Be ethical & treat your participants well
- Want to know what people are doing & why? collect process data
- Bottom line data requires more participants
- Difference between between & within groups?
 - between groups: each subject participates in only one of n conditions
 - within groups: everyone participates in multiple conditions

Further Reading on Ethical Issues With Community-based Research

- “Imperialist Tendencies” blog post by Jan Chipchase, http://janchipchase.com/content/essays/imperialist-tendencies/
- “To Hell with Good Intentions” by Ivan Illich, speech to the Conference on InterAmerican Student Projects (CASP), April 20, 1968, http://www.americaninter.edu/casp/pdfs/Illich.pdf

Next Time

- Lecture
 - Midterm (“open-book”, open notes, NO collaborating or asking other people for help)
- Studio
 - Hi-fi prototype planning session