Usability Testing

Why do Usability Testing?

- Can’t tell how good UI is until people use it!
- Expert review methods are based on evaluators who may:
 - know too much
 - not know enough (about tasks, etc.)
- Hard to predict what real users will do

Choosing Participants

- Representative of target users. How so?
 - job-specific vocab / knowledge
 - tasks
- Approximate if needed
 - system intended for doctors?
 - get medical students or nurses
 - system intended for engineers?
 - get engineering students
- Use incentives to get participants
 - t-shirt, mug, free coffee/pizza

Ethical Considerations

- Usability tests can be distressing
 - users have left in tears
- Testing/fieldwork can be coercive if there is a power imbalance (e.g., in under resourced communities)

- You have a responsibility to alleviate these issues
 - make voluntary with informed consent (form)
 - avoid pressure to participate
 - let them know they can stop at any time
 - stress that you are testing the system, not them
 - make collected data as anonymous as possible
- Often must get human subjects approval (IRB)
Usability Test Proposal

- A report that contains
 - objective
 - description of system being testing
 - task environment & materials
 - participants
 - methodology
 - tasks
 - test measures
- Get approved & then reuse for final report
- Seems tedious, but writing this will help “debug” your test

Selecting Tasks

- Tasks from low-fi design can be used
 - may need to shorten if
 - they take too long
 - require background that test user won’t have
- Don’t train unless that will occur in real deployment
- Avoid bending tasks in direction of what your design best supports
- Don’t choose tasks that are too fragmented
 - fragmented = do not represent a complete goal someone would try to accomplish with your application
 - e.g., phone-in bank test

Two Types of Data to Collect

- Process data
 - observations of what users are doing & thinking
 - qualitative
- Bottom-line data
 - summary of what happened
 - time, errors, success
 - i.e., the dependent variables
 - quantitative

Which Type of Data to Collect?

- Focus on process data first
 - gives good overview of where problems are

Which Type of Data to Collect?

- Focus on process data first
 - gives good overview of where problems are
- Bottom-line doesn’t tell you:
 - where to fix
 - just says: “too slow”, “too many errors”, etc.
- Hard to get reliable bottom-line results
 - need many users for statistical significance

The “Thinking Aloud” Method

- Need to know what users are thinking, not just what they are doing
- Ask users to talk while performing tasks
 - tell us what they are thinking
 - tell us what they are trying to do
 - tell us questions that arise as they work
 - tell us things they read
Thinking Aloud (cont.)

- Prompt the user to keep talking
 - “tell me what you are thinking”
- Only help on things you have pre-decided
 - keep track of anything you do give help on
- Make a recording & take good notes
 - make sure you can tell what they were doing
 - use a digital watch/clock
 - record audio & video
 - or even event logs

Will thinking out loud give the right answers?

- Not always

 - If you ask, people will always give an answer, even it is has nothing to do with facts
 - panty hose example

 ⇒ Try to avoid specific questions (especially that have binary answers)

Using the Test Results

- Summarize the data
 - make a list of all critical incidents (CI)
 - positive & negative
 - include references back to original data
 - try to judge why each difficulty occurred

- What does data tell you?
 - UI work the way you thought it would?
 - users take approaches you expected?
 - something missing?

Using the Results (cont.)

- Update tasks & rethink design
 - rate severity & ease of fixing CIs
 - fix both severe problems & make the easy fixes

Measuring Bottom-Line Usability

- Situations in which numbers are useful
 - time requirements for task completion
 - successful task completion %
 - compare two designs on speed or # of errors

- Ease of measurement
 - time is easy to record
 - error or successful completion is harder
 - define in advance what these mean

- Do not combine with thinking-aloud. Why?
 - talking can affect speed & accuracy
Analyzing the Numbers

- Example: trying to get task time ≤ 30 min.
 - test gives: 40, 5, 20, 90, 10, 15
 - mean (average) = 30
 - median (middle) = 17.5
 - looks good!

- Did we achieve our goal?
 - Wrong answer, not certain of anything!

- Factors contributing to our uncertainty?
 - small number of test users (n = 6)
 - results are very variable (standard deviation = 32)

- std. dev. measures dispersal from the mean

Analyzing the Numbers (cont.)

- This is what basic statistics can be used for

- Crank through the procedures and you find
 - 95% certain that typical value is between 5 & 55

- Usability test data is highly variable
 - need lots to get good estimates of typical values
 - 4x as many tests will only narrow range by 2x
 - breadth of range depends on sqrt of # of test users
 - this is when online methods become useful
 - easy to test w/ large numbers of users

Measuring User Preference

- How much users like or dislike the system
 - can ask them to rate on a scale of 1 to 10
 - or have them choose among statements
 - “best I’ve ever…”, “better than average” ...
 - hard to be sure what data will mean
 - novelty of UI, unrealistic setting ...

- If many give you low ratings → trouble

- Can get some useful data by asking
 - what they liked, disliked, where they had trouble, best part, worst part, etc.
 - redundant questions are OK

Comparing Two Alternatives

- Between groups experiment
 - two groups of test users
 - each group uses only 1 of the systems

- Within groups experiment
 - one group of test users
 - each person uses both systems (cheaper)
 - can’t use the same tasks or order (learning)
 - best for low-level interaction techniques
 - e.g., new mouse, new swipe interaction, …
Comparing Two Alternatives

- Between groups requires many more participants than within groups.
- See if differences are statistically significant: assumes normal distribution & same std. dev.
- Online companies can do large AB tests: look at resulting behavior (e.g., buy?)

Instructions to Participants

- Describe the purpose of the evaluation: “I’m testing the product; I’m not testing you.”
- Tell them they can quit at any time.
- Demonstrate the equipment.
- Explain how to think aloud.
- Explain that you will not provide help.
- Describe the task: give written instructions.
- One task at a time.

Comparing Two Alternatives

- Between groups requires many more participants than within groups.
- See if differences are statistically significant: assumes normal distribution & same std. dev.
- Online companies can do large AB tests: look at resulting behavior (e.g., buy?)

Instructions to Participants

- Describe the purpose of the evaluation: “I’m testing the product; I’m not testing you.”
- Tell them they can quit at any time.
- Demonstrate the equipment.
- Explain how to think aloud.
- Explain that you will not provide help.
- Describe the task: give written instructions.
- One task at a time.

Comparing Two Alternatives

- Between groups requires many more participants than within groups.
- See if differences are statistically significant: assumes normal distribution & same std. dev.
- Online companies can do large AB tests: look at resulting behavior (e.g., buy?)

Instructions to Participants

- Describe the purpose of the evaluation: “I’m testing the product; I’m not testing you.”
- Tell them they can quit at any time.
- Demonstrate the equipment.
- Explain how to think aloud.
- Explain that you will not provide help.
- Describe the task: give written instructions.
- One task at a time.

Comparing Two Alternatives

- Between groups requires many more participants than within groups.
- See if differences are statistically significant: assumes normal distribution & same std. dev.
- Online companies can do large AB tests: look at resulting behavior (e.g., buy?)

Instructions to Participants

- Describe the purpose of the evaluation: “I’m testing the product; I’m not testing you.”
- Tell them they can quit at any time.
- Demonstrate the equipment.
- Explain how to think aloud.
- Explain that you will not provide help.
- Describe the task: give written instructions.
- One task at a time.

Comparing Two Alternatives

- Between groups requires many more participants than within groups.
- See if differences are statistically significant: assumes normal distribution & same std. dev.
- Online companies can do large AB tests: look at resulting behavior (e.g., buy?)

Instructions to Participants

- Describe the purpose of the evaluation: “I’m testing the product; I’m not testing you.”
- Tell them they can quit at any time.
- Demonstrate the equipment.
- Explain how to think aloud.
- Explain that you will not provide help.
- Describe the task: give written instructions.
- One task at a time.

Comparing Two Alternatives

- Between groups requires many more participants than within groups.
- See if differences are statistically significant: assumes normal distribution & same std. dev.
- Online companies can do large AB tests: look at resulting behavior (e.g., buy?)

Instructions to Participants

- Describe the purpose of the evaluation: “I’m testing the product; I’m not testing you.”
- Tell them they can quit at any time.
- Demonstrate the equipment.
- Explain how to think aloud.
- Explain that you will not provide help.
- Describe the task: give written instructions.
- One task at a time.
Next Time

- Lecture
 - Midterm (*closed-book*)

- Studio
 - Hi-fi prototype planning session