Human Abilities: Vision & Cognition

Prof. James A. Landay
Computer Science Department
Stanford University
Autumn 2018
November 5, 2018

Hall of Fame or Shame?

Create your Google Account

Clearly highlights error (red text & box)
Tells me what I did wrong/how to fix it
In user's language
(but, be careful w/ humor)
Red may be an issue, more later...

Hall of Shame!

Error Messages
- where is the error?
- what's wrong with it?
- parse & fix it yourself!
Why Study Color?

1) Color can be a powerful tool to improve user interfaces by communicating key information

2) Inappropriate use of color can severely reduce the performance of systems we build

Visible Spectrum

- Retina covered with two types of light-sensitive receptors called rods and cones.
 - Rods: primarily for night vision and perceiving movement; sensitive to broad spectrum of light; can’t discriminate between colors; sense intensity or shades of gray.
 - Cones: used to sense color.
Retina

- Center of retina has most of the cones → allows for high acuity of objects focused at center
- Edge of retina is dominated by rods → allows detecting motion of threats in periphery

Color Perception via Cones

- "Photopigments" used to sense color
- 3 types: blue, green, "red" (really yellow)
 - each sensitive to different band of spectrum
 - ratio of neural activity of the 3 → color
- other colors are perceived by combining stimulation

Color Sensitivity

- AKA Red not as sensitive to blue
 - lots of overlap

Distribution of Photopigments

- Not distributed evenly – mainly reds (64%) & very few blues (4%) → insensitivity to short wavelengths (blue)
- Few blue cones in retina center (high acuity) → "disappearance" of small blue objects you fixate on
- As we age lens yellows & absorbs shorter wavelengths → sensitivity to blue is even more reduced
- Implication: don't rely on blue for text or small objects!

Focus

- Different wavelengths of light focused at different distances behind eye’s lens → need for constant refocusing?
 - causes fatigue
 - be careful about color combinations
Focus

- Different wavelengths of light focused at different distances behind eye's lens
 - need for constant refocusing → causes fatigue
 - be careful about color combinations
- Pure (saturated) colors require more focusing than less pure (desaturated)
 - don't use saturated colors in UIs unless you really need something to stand out

Color Deficiency
(Also known as “color blindness”)

- Trouble discriminating colors
 - besets about 9% of population
- Two main types
 - different photopigment response most common
 - reduces capability to discern small color diffs
 - red-green deficiency is best known
 - lack of either green or red photopigment → can't discriminate colors solely dependent on R & G

Color Guidelines

Avoid simultaneous display of highly saturated, spectrally extreme colors
 - e.g., no cyans/blues at the same time as reds, why?
 - refocusing!
 - desaturated combinations are better → pastels

Use the Hue Circle

Pick non-adjacent colors
 - opponent colors go well together (red & green) or (yellow & blue)

Color Guidelines (cont.)

- Avoid pure blue for text, lines & small shapes
- Avoid adjacent colors that differ only in blue
- Blue makes a great background color

Color Guidelines (cont.)

- Size of detectable changes in color varies
 - hard to detect changes in reds, purples, & greens
 - easier to detect changes in yellows & blue-greens
 - older users need higher brightness levels
- Hard to focus on edges created by only color
 - use both brightness & color differences
- Avoid single-color distinctions
 - mixtures of colors should differ in 2 or 3 colors
 - helps color-deficient observers
Administrivia

• Quiz 2 grades
 - Average 4.3 / 5
 - Median 5 / 5
 - Std. Dev .83
 - Range 2-5

• Have your Heuristic Evaluation ready to go when you arrive in studio Thur/Fri

Pop Quiz

No notes, do not look up info, do not share to people outside of this room

The Model Human Processor

Developed by Card, Moran & Newell ('83)
- based on empirical data
The Model Human Processor

MHP Basics
- Sometimes serial, sometimes parallel
 - serial in action & parallel in recognition
 - pressing key in response to light (serial)
 - driving, reading signs & hearing at once (parallel)
- Parameters
 - processors have cycle time (T) \(\sim 100 \text{ ms} \)
 - memories have capacity, decay time & type

What is missing from MHP?
- Haptic memory
 - for touch
- Moving from sensory memory to WM
 - attention filters stimuli & passes to WM
- Moving from WM to LTM
 - elaboration

Memory
- Working memory (short term)
 - small capacity (7 ± 2 “chunks”)
 - 6174591765 vs. (617) 459-1765
 - NBC/IBM/MGM vs. NBC IBM GMC
 - rapid access (~70ms) & decay (~200 ms)
 - pass to LTM after a few seconds of continued storage
- Long-term memory
 - huge (if not “unlimited”)
 - slower access time (~100 ms) w/ little decay
MHP Principles of Operation

- Recognize-Act Cycle of the CP
 - on each cycle contents in WM initiate actions associatively linked to them in LTM
 - actions modify the contents of WM

- Discrimination Principle
 - retrieval is determined by candidates that exist in memory relative to retrieval cues
 - interference by strongly activated chunks

Experiment

- Task: Quickly tap each target 50 times accurately

- Conditions:
 - Two ½" diameter targets 6" apart
 - Two ½" diameter targets 24" apart
 - Two 2" diameter targets 24" apart (no accuracy required)

- Turn to neighbor: discuss what will happen

Experimental Results

- Task: Quickly tap each target 50 times accurately

 22 s
 35 s
 27 s
 18 s

Experimental Results (Last Year)

- Task: Quickly tap each target 50 times accurately

 30 sec
 48 sec
 31 sec
 21 sec (lots of spread)
Experimental Results (2 years ago)

- Task:
 Quickly tap each target 50 times accurately

Principles of Operation (cont.)

Fitts’ Law

- moving hand is a series of microcorrections
- correction takes $T_p + T_c + T_m = 240 \text{ msec}$
- time T_{pos} to move the hand to target size S, which is distance D away is given by:
 $$T_{pos} = a + b \log_2 \left(\frac{D}{S} + 1 \right)$$

- summary
 - time to move the hand depends only on the relative precision required

Fitts’ Law Example

Which will be faster on average?
- pie menu (bigger targets & less distance)

Pie Menus in Use Today

Apple Watch Is a Negative Fitts’ Law Example

Simple Experiment

- Volunteer
- Start saying colors you see in list of words
 - when slide comes up
 - as fast as you can
- Say “done” when finished
- Everyone else time it…
Simple Experiment

- Do it again
- Say “done” when finished

Memory

- Interference
 - two strong cues in working memory
 - link to different chunks in long term memory

- Why learn about memory?
 - know what’s behind many HCI techniques
 - helps you understand what users will “get”
 - aging population of users

Simple Experiment

- Do it again
- Say “done” when finished

Memory

- Interference
 - two strong cues in working memory
 - link to different chunks in long term memory

- Why learn about memory?
 - know what’s behind many HCI techniques
 - helps you understand what users will “get”
 - aging population of users
Design UIs for Recognition over Recall

- **Recall**
 - info reproduced from memory
 - e.g., command name & semantics

- **Recognition**
 - presentation of info provides knowledge
 - e.g., command in menu reminds you of semantics
 - easier because of cues to retrieval
 - cue is anything related to item or situation where learned
 - e.g., giving hints, icons, labels, menu names, etc.

Human Abilities Summary

- **Color**
 - can be helpful, but pay attention to
 - how colors combine
 - limitations of human perception
 - people with color deficiency

- **Model Human Processor**
 - perceptual, motor, cognitive processors + memory
 - model allows us to make predictions

- **Memory**
 - three types: sensory, WM & LTM
 - interference can make hard to access LTM
 - cues in WM can make it easier to access LTM

- **Key time to remember from MHP:** ~100 ms cycle time & memory access time

Further Reading

Vision and Cognition

- **Books**

- **Applying Fitts’ Law to Mobile Interface Design** by Justin Smith

Next Time

- **Conceptual Models & Interface Metaphors**
 - Read "The Psychology of Everyday Things" (Ch. 1)
 - from *The Design of Everyday Things* by Donald Norman

- **Studio**
 - Ad-hoc group heuristic evaluation
 - Must be present to get credit on assignment