

← → C fi 🎂 https://accounts.google.com/SignUp?service= Q, Q, ≤	2 🖸 🔩 🕭 🕕 🕽 🐗 📸 🗔 家 🗔 🖪
🛗 Apps 🚯 CS 147: HCI+D Auto 📄 Gates Information N 🔰 Axess 📄 NETGEAR Rou	uter W?: 🗋 kimonify » 🔛 Other Bookmarks
Google	Signin
Create your Google	Account
create your doogre	
One account is all you need	Name
A single username and password gets you into everything Google.	First Lest
A single contrast in a parameter give you may ever young cooper.	Choose your username
🛽 🖂 💿 💶 🐰 🕨 📓	@gmal.com
	Create a password
Take it all with you	Confirm your password
rand it all with you	

Outline

- •Human visual system
- •Guidelines for design
- •Team Break
- •Models of human performance (MHP)
- Two in class experiments
- Memory

Why Study Color?

- 1) Color can be a powerful tool to *improve* user interfaces by communicating key information
- 2) Inappropriate use of color can severely *reduce the performance* of systems we build

Retina

- Retina covered with two types of light-sensitive receptors called?
- _rods
- •primarily for night vision & perceiving movement
- sensitive to broad spectrum of light
- •can't discriminate between colors
- sense intensity or shades of gray

-cones

used to sense color

Color Perception via Cones

- "Photopigments" used to sense color
- •3 types: blue, green, "red" (really yellow)
- -each sensitive to different band of spectrum -ratio of neural activity of the 3 \rightarrow color
- •other colors are perceived by combining stimulation

Distribution of Photopigments

- Not distributed evenly mainly reds (64%) & very few blues (4%) →

 insensitivity to short wavelengths (blue)
- Few blue cones in retina center (high acuity) \rightarrow "disappearance" of small blue objects you fixate on
- As we age lens yellows & absorbs shorter wavelengths \rightarrow sensitivity to blue is even more reduced
- Implication
 don't rely on blue for text or small objects!

Focus

- Different wavelengths of light focused at different distances behind eye's lens
- -need for constant refocusing → ?
 •causes fatigue
- -be careful about color combinations

Focus

• Different wavelengths of light focused at different distances behind eye's lens

- need for constant refocusing \rightarrow ?

causes fatigue be careful about color combinations

 Pure (saturated) colors require more focusing than less pure (desaturated)
 don't use saturated colors in UIs unless you really need something to stand out

Color Deficiency (Also known as "color blindness")

- Trouble discriminating colors -besets about 9% of population
- •Two main types
- -different photopigment response most common •reduces capability to discern small color diffs
- -red-green deficiency is best known
 •lack of either green or red photopigment → can't discriminate colors soley dependent on R & G

Color Guidelines

Avoid simultaneous display of highly saturated, spectrally extreme colors

-e.g., no cyans/blues at the same time as reds, why?
 •refocusing!

-desaturated combinations are better \rightarrow pastels

Use the Hue Circle

Pick non-adjacent colors –opponent colors go well together (red & green) or (yellow & blue)

Color Guidelines (cont.)

KEEP CALM JUST SAY NO TO BLUE

Avoid pure blue for text, lines & small shapesAvoid adjacent colors that differ only in blue

• Blue makes a great background color

Color Guidelines (cont.)

- Size of detectable changes in color varies - hard to detect changes in reds, purples, & greens - easier to detect changes in yellows & blue-greens - older users need higher brightness levels
- Hard to focus on edges created by only color
 _use both brightness & color differences
- Avoid single-color distinctions
 _mixtures of colors should differ in 2 or 3 colors
 _helps color-deficient observers

Administrivia

•Quiz 2 grades

- -Average 4.3/5
- -Median 5/5
- -Std. Dev. .83
- -Range **2-5**

• Have your Heuristic Evaluation ready to go when you arrive in studio Thur/Fri

Day	Date	Lecture	Reading	Out	Due	Studio
Wed	11/7/2018	Conceptual Models and Interface Metaphors (PPT)	"The Psychology of Everyday Things" (Ch. 1), from The Design of Everyday Things by Donald Norman	#8 Hi-fi Prototype (group)	#7 Heuristic Evaluation (individual)	#9 Heuristic Evaluation (ad-ho group) Group Heuristic Template
Mon	11/12/2018	1) Usability Testing (PPT) 2) Midterm Review (PPT)				
Wed	11/14/2018	Midterm (in class)				Project Work and Feedback
Mon	11/19/2018	Thanksgiving Break				
Wed	11/21/2018	Thanksgiving Break				
Mon	11/26/2018	Design Patterns (PPT)	The Design of Sites, by van Duyne, Hong, & Landay: 1) Making the Most of Web Design Patterns" (Ch 2) 2) 'Up-Front Value Proposition' (Pattern C2) 3) 'Process Funnel' (Pattern H1) 4) 'Meaningful Error Messages' (Pattern K13)	#10 Poster and Pitch Slide (group)	#3 Web Site (group)	

Day	Date	Lecture	Reading	Out	Due	Studio
Wed	11/28/2018	No Lecture - work on Project			#8 Hi-fi Prototype Midway Milestone (group)	Presentation #4: Hi-Fi Prototype Midway Milestone Project Work and Feedback
Mon	12/3/2018	1) Guest Lecture: TBD 2) Work on Project in Class			#10 Poster and Pitch Slide (group) Mon (12/4): First Draft Wed (12/6): Final	
Wed	12/5/2018	From On Body to Out of Body User Experience			#8 Hi-fi Prototype (group)	30-second Pitch and Demo Practice (group)
Fri	12/7/2018	Project Expo (6:30-9:30PM) @ d.school Atrium				
Sat	12/8/2018	Write-up due 6PM			Write-up due 6PM	

MHP Basics

- Sometimes serial, sometimes parallel
 -serial in action & parallel in recognition
 •pressing key in response to light (serial)
 - •driving, reading signs & hearing at once (parallel)

Parameters

- -processors have cycle time (T) $\sim 100 \text{ ms}$
- -memories have capacity, decay time & type

What is missing from MHP? Haptic memory -for touch Moving from sensory memory to WM -attention filters stimuli & passes to WM Moving from WM to LTM -elaboration

Memory

- Working memory (short term)
- -small capacity (7 ± 2 "chunks") •6174591765 vs. (617) 459-1765 •NBCIBMGMC vs. NBC IBM GMC -rapid access (~70ms) & decay (~200 ms)

•pass to LTM after a few seconds of continued storage

Long-term memory

- -huge (if not "unlimited")
- -slower access time (~100 ms) w/ little decay

•Recognize-Act Cycle of the CP -on each cycle contents in WM initiate actions associatively linked to them in LTM -actions modify the contents of WM

- •Recognize-Act Cycle of the CP -on each cycle contents in WM initiate actions associatively linked to them in LTM -actions modify the contents of WM
- Discrimination Principle -retrieval is determined by candidates that exist in memory interference by strongly activated chunks

- Task: Quickly tap each target 50 times accurately
- Conditions:
- Two ½" diameter targets 6" apart Two ½" diameter targets 24" apart Two 2" diameter targets 24" apart
- Two 2" diameter targets 24" apart (no accuracy required)
- Turn to neighbor: discuss what will happen

Principles of Operation (cont.)

Fitts' Law

- -moving hand is a series of microcorrections •correction takes Tp + Tc + Tm = 240 msec
- -time Tpos to move the hand to target size S, which is distance D away is given by:
 - $Tpos = a + b \log 2 \left(\frac{D/S}{+} + 1\right)$

-summary

•time to move the hand depends only on the *relative precision* required

Simple Experiment

Volunteer

- Start saying *colors* you see in list of words -when slide comes up
- -as fast as you can
- •Say "done" when finished
- •Everyone else time it...

Simple Experiment

Do it againSay "done" when finished

Bandana Forward Home Test Basket Paper

Simple Experiment

Do it againSay "done" when finished

Yellow White Black Blue Red Green

Memory

Interference

- -two strong cues in working memory
- -link to different chunks in long term memory
- •Why learn about memory?
- -know what's behind many HCl techniques -helps you understand what users will "get"
- -aging population of users

er local directory name

Design UIs for Recognition over Recall

Recall

- info reproduced from memory - e.g., command name & semantics

Recognition

- presentation of info provides knowledge that info has been seen before
 e.g., command in menu reminds you of semantics
- easier because of cues to retrieval
 cue is anything related to item or situation where learned
- e.g., giving hints, icons, labels, menu names, etc.

	howto_co	lepack_folderdialog _ a x			
-	New Person Come	er (heady tracks, particularly 🔄 🔤			
e Select Folder					
⊕ ⊙ + † ↓ + West + Offeiger + Redy + + 0 Surch Redy					
0.9	nice • Nos fold			10 ×	
	L Fandy	Name	Date modified	Type	
	🗼 alterating	A howle codepact folderdates	2/10/2014 3:09 PM	Ender	
	Colletz	houte mania disabasiasi	2102014.2.00 PM	Eleber	
	📕 Fogners 📗	ChilDeventions	2/18/2014 10:15 JM	Firefuller	
	😹 hostajales	Collivariation	218/2014 1013 JM	Ris Seller	
	🔒 hanta prin	a OldDan	218/2014 1014 AM	All Market	
	🔒 hanta ada	bouts seni otate colored strahoters.	2102062243264	Electricity	
	😸 henda, ada	boute zere bright color triangle	2142054251994	Ele folder	
	🔋 hexte, arte 🗸	4			
	Feide	beets, codepart, folderdialog			
			Salart Public	Carve	

Ok

Cancel

Human Abilities Summary Color can be helpful, but pay attention to

- how colors combine
 limitations of human perception
 people with color deficiency
- Model Human Processor
 perceptual, motor, cognitive processors + memo
- model allows us to make predictions
 Memory
- interference can make hard to access LTM

• Key time to remember from MHP: ~100 ms cycle time & memory access time

Further Reading Vision and Cogniti

Books

- *The Psychology Of Human-Computer Interaction*, by Card, Moran, & Newell, Erlbaum, 1983
- Human-Computer Interaction, by Dix, Finlay, Abowd, and Beale, 1998.
 Perception, Irvin Rock, 1995.
- <u>Pages 66-99 of "Cognitive Aspects in Interaction Design</u>", from Interaction Design, 3rd Edition by Rogers, Sharp, & Preece
- Applying Fitts' Law to Mobile Interface Design by Justin Smith

Next Time

Conceptual Models & Interface Metaphors
 -Read <u>"The Psychology of Everyday Things" (Ch. 1)</u>,
 from *The Design of Everyday Things* by Donald Norman

Studio

-Ad-hoc group heuristic evaluation-Must be present to get credit on assignment