
Speak↑: Low-Fi Prototype
“Better lectures, powered by real-time student data”

Team

Name Email Role

Brad Reyes breyes28@ Dr. Bradass: Professional Demon Exorcist

Karen Gomez kgomez@ Mother of Dragons

Nick Akiona nakiona@ Grandmaster Champion

Reid Watson rawatson@ Supreme Mugwump

Introduction
This document describes a prototype mobile app designed by the SpeakUp team in the Fall
2014 offering of CS147 at Stanford. Team members constructed an interactive “medium-fi”
prototype of a mobile app for enabling feedback and communication in large lectures. The
web version of this project is hosted at https://web.stanford.edu/~rawatson/cs147/, where
you can find links to the runnable prototype and README file.

https://www.google.com/url?q=https%3A%2F%2Fweb.stanford.edu%2F~rawatson%2Fcs147%2F&sa=D&sntz=1&usg=AFQjCNEcifWqzHlxHLcfYc61s0pmZokv2Q

Student Tasks

Task Difficulty Description

1 Simple Sign up for a class: A student who has never used the SpeakUp app
before must sign up as a student in the CS147 class at the prompting
of the instructor.

2 Medium Respond to a question posed by the lecturer: A lecturer has posed a
“clicker question” for the class to answer. The student must respond
with the correct answer (“low-fi”)

3 Complex Provide feedback on a lecture: A student sitting in lecture decides that
the content is being presented in an unclear fashion, and the pace is
moving too quickly. The student should also indicate that they don’t
understand the part about the human eye.

Based on the results of our user testing in the low-fi prototype, we decided to keep the
student tasks unchanged, but designate the “sign up for a class” task as the easy task. This
is based on the fact that most testers found that task to be very simple, and the previous
simple task proved to be difficult for some participants.

The “pose a question to the lecturer” task is still a component of our app, and is working in
the prototype. We simply decided to use it for the purposes of this report in order to ensure
that we had an easy, medium, and complex task.

Lecturer Tasks

Task Difficulty Description

1 Simple View feedback on lecture: An instructor should be able to glance at
their feedback from lecture and understand what students are saying
about their lecture.

2 Medium Read and answer questions from students: An instructor should be
able to view the top questions asked by students and answer the most
popular questions, marking them as resolved once finished.

3 Complex Create and ask a “clicker question”: An instructor should be able to
create and ask a “clicker question”, which is opened for responses
from all students in the lecture.

The lecturer tasks we chose are unchanged from our previous iteration. These three tasks
span a nice range of difficulty, and they cover the three most important features of our app
(communication between student and lecturer).

Revised interface design

Major UI Changes
Menu Bar: To switch between the “Ask”, “Answer”, and “Feedback” screens, our low-fidelity
prototype used a swipe feature where users could move between the three tasks. However,
during testing, none of the participants knew that this feature existed, as there was no
button to show the feature, and were unable to easily transition between the three tasks. By
adding a menu bar at the bottom of the screen, with a button for each task, the student can
easily and quickly navigate between the three tasks.

Sliders: While testing our low-fidelity prototype, we told users to submit feedback using the
sliders to indicate that the professor was covering material too quickly. Some participants
moved the slider to the left, while others slid it to the right. To eliminate this ambiguity, we
added labels to the bottom of the slider named “Too Slow” and “Too Fast.”

Ask Screen: During testing, participants did not know they had the ability to look through
already submitted questions before posing new questions. To make this function obvious,
we added a scrollbar to the right-hand side of the box listing the questions. Additionally, we
decided to remove the number of votes that each question has received to reduce clutter on
the screen, and instead plan to make this a backend functionality, where we show the
questions that have been upvoted more times at the top of the screen.

Greying Out Menu Bar: We decided to gray out the buttons on the menu bar until a particular
class was selected, to prevent a student from navigating to an Ask or Answer screen without
choosing a class.

Task 1 (student)

Task 1: A student signing up for a class in SpeakUp

Task 2 (student)

Task 2: Answering a “clicker question” posed by the lecturer

Task 3 (student)

Task 3: A student submitting feedback on a lecture

Task 0 (lecturer)

A lecturer selecting the class and lecture they would like to view

Task 1 (lecturer)

A lecturer selecting the class and lecture they would like to view

Task 2 (lecturer)

A lecturer viewing the questions asked by students during lecture.

Task 3 (lecturer)

A lecture creating a question and asking it to students

Prototype overview

Tools Used
We used proto.io as the primary prototyping tool for our app. We used their built-in assets
and screen editor to design our UI and include basic interactivity. A link to the live prototype
built is available at http://stanford.edu/~rawatson/cs147.
Proto.io proved to be a great tool for this:

● The UI for proto.io was very straightforward, and after a couple of hours it became
much easier to add in components to our prototypes

● Easy to implement a clean, professional, and minimalist design.
● Lots of high-quality icons and templates to work with.

There were a few drawbacks to proto.io though:
● Documentation was very poor, and it was difficult to discover how to complete tasks

that we were unfamiliar with. For example, it took a great deal of time to learn how to
scroll an area of content.

● It was extremely difficult to work with UI elements which are generated from dynamic
data. For example, when we wanted to set up a UI for searching for a class, it was
difficult to create a meaningful UI for searching with autocomplete without an
obscene amount of hackery.

We also used the color choosing tool Palleton to evaluate possible color schemes.
Unfortunately, we weren’t too happy with the color combinations it suggested. The
suggestions seemed out of place for the setting and goals of our project, so we decided not
to use it’s results.

Limitations
While we were mostly happy with proto.io, the issues we had with it forced us to make some
tradeoffs in the current prototype. An exhaustive list of limitations is available at
http://stanford.edu/~rawatson/cs147. Instead of repeating the itemized limitations, we’ll
instead focus on the types of limitations and reasons we made the choices we did:

● Proto.io doesn’t support dynamically updating UI components: If you’ve seen the
autocomplete feature on Google web search, you’ve seen an example of a UI which
makes realtime updates based on user input. For example, we wanted to make our
search functionality update possible results in real-time, but we couldn’t due to
proto.io limitations. We believe that this is an acceptable limitation, since faking the
feature would have been prohibitively difficult.

● It’s hard to keep transitions between states consistent: In our “answer a question”
screen, the “Go back to answer” should send you back to the answer screen with the
selected answer highlighted. We couldn’t figure out how to do this with proto.io, and
there were a few other similar areas where we had trouble keeping consistency
between transitions. This is an OK limitation, since it makes the UI only marginally
less pleasant, and the fix would have been very difficult.

http://www.google.com/url?q=http%3A%2F%2Fstanford.edu%2F~rawatson%2Fcs147&sa=D&sntz=1&usg=AFQjCNHsKEG5ZT_P8EIcmAxInl8zosIslA
http://www.google.com/url?q=http%3A%2F%2Fstanford.edu%2F~rawatson%2Fcs147&sa=D&sntz=1&usg=AFQjCNHsKEG5ZT_P8EIcmAxInl8zosIslA

● Impossible to dynamically update data: When a user submits a question, we can’t
add the question to the list of “currently asked questions”. This is an acceptable
limitation because it ‘s seems literally impossible to do this using proto.io.

Wizard of Oz Techniques
An exhaustive list of Wizard of Oz techniques is available at
http://stanford.edu/~rawatson/cs147. Instead of repeating the itemized limitations, we’ll
instead focus on the reasons we made the choices we did:

● The settings button does nothing: There are probably a few more things we’ll need to
configure (login, etc). However, they aren’t very interesting or relevant to the primary
tasks in the UI. As such, we decided to leave out the actual content for the settings
button.

● All data used in the UI is hardcoded: Take our class list for example. In this class list,
we only allow users to click on CS147. We could have made the other classes
clickable, but it would have taken up a lot of time. This is an acceptable tradeoff,
since the real product would be powered by real data instead of hardcoded UIs.

Prototype screenshots
In order to reduce filesize, we’ve linked all of our screenshots in a separate directory here:
https://drive.google.com/folderview?id=0B6ylrwKHp7pYUUIzVEVQZ2FaSk0&usp=sharing

http://www.google.com/url?q=http%3A%2F%2Fstanford.edu%2F~rawatson%2Fcs147&sa=D&sntz=1&usg=AFQjCNHsKEG5ZT_P8EIcmAxInl8zosIslA
https://drive.google.com/folderview?id=0B6ylrwKHp7pYUUIzVEVQZ2FaSk0&usp=sharing

