Speak?: Hi-Fi Prototype

“Better lectures, powered by real-time student data

n

Team

Name Email Role

Brad Reyes breyes28@ | Developer

Karen Gomez | kgomez@ | User Testing

Nick Akiona nakiona@ | Design

Reid Watson rawatson@ | Manager and Documentation

Problem and Solution

Giving an engaging, interesting, and effective lecture to more than 50 students isn't easy.
Lectures occur infrequently, and most instructors don’t get actionable feedback when
students are confused. This problem can be equally frustrating for students, who become
bored when they feel confused by lecture content.

SpeakUp aims to provide real time data about student understanding to lecturers, and offer
concrete ways for lecturers to keep students interested. SpeakUp allows students to easily
indicate their confusion when watching lectures, respond to “clicker questions” in real time,
and helps instructors improve their course content with real time feedback on engagement
and clicker questions.

Tasks

Simple Task: Respond to a question posed by the lecturer

This task allows the lecturer to get immediate feedback on the students’ understanding by
easily seeing how many students correctly answer a question posed during class. Many
professors use iClicker questions to test the students’ understanding, and we felt it would be
easy to integrate this functionality in our application.

C5 147 = Dec. 02 CS 14T = Dec. 02 = Poll C5 147 » Dec. 02

Evaluate each of the mathematica
expressons, and indicate which number
iz the langest

IEREFTE L
#2e90-01) Give feedback

Give feedback Ask or view Questions

Ask or view Questions Answer a poll

Anawer a poll

Dther Courses Other Lectures Other Courses Other Lectures

Task 1: A student responding to a question posed by the lecturer

Medium Task: Provide feedback on a lecture
Although there exist ways for students to give lecturers feedback, many of these methods

happen

after a class has finished, such as course evaluations that take place at the end of

the quarter. Our primary goal with the creation of this application, was to provide an easy
way for students to give lecturers feedback on the material being presented in a timely

manner,

so that this feedback can be incorporated into future lectures. This task allows

students to give the lecturer feedback on the pace and clarity of the lecture during class, so
that this information can be used to improve lecture and, in turn, the learning experience for
the student.

— CS 147 » Dec. 02
CS5 14T = Dec. 02

Give feedback

Ay other commens?

Give feedback et this fechre Ask of view Questions

Aszk or view Questions | |

Other Courses Other Leciures
Dther Courses Dther Leciures

Task 2: A student giving the lecturer feedback

Complex Task: Ask the lecturer a question

This task allows students to pose a question to the lecturer during class and also gives
other students the ability to vote on questions that they would like answered. Sites like
Piazza allow students to ask questions after lecture has occurred, so we wanted to create a
way for students to ask the lecturers questions as the material is being presented in class.

CS5 147 = Dec. 02

Give feedback

i
Ask or view Questions

Anawer & poll

Diker Courses Diber Leciures

C5 147 > Dec. 02 » Duestions CS 147 = Dec. 02 = Questions

Enter the question you'd ke answered hese

Can wee Qet b class puppy?

+ sk a guestion

Task 3: A student asks the lecturer a question

Major Usability Problems Addressed

Heuristic Evaluation from Mid-Fi Prototype:

1.

Violation: [H2-3. User control and freedom] [Severity 3]

Description: “There is no option to remove a class once it is added. Add a ‘Remove’
button.”

Changes: No visible changes were implemented between the mid-fi and hi-fi
prototypes. Removing classes already occurs in two ways. Firstly, a student can go
into his or her setting and remove the class from the class list. Since students will
rarely remove classes, we decided that there should not be a button dedicated to
removing classes on the home screen. Secondly, students can set their classes to be
removed automatically a few weeks after the class has ended. This feature is also
within settings. These features are not visible since the settings screen has not been
implemented for the hi-fi prototype.

Violation: [H2-1 Visibility of system status] [Severity 3]

Description: “After the user clicks the plus button on the add class page, they are
taken back to the home screen, which now contains the newly added class. Although
the user should be able to verify that the class was successfully added by looking at
the list of courses and checking for presence of the newly added class, there should
also be some dialogue that lets the user know that they successfully added the class.
The system should implement brief feedback message on the home screen that tells
the user ‘CS 147 has been successfully added to your class list.” The interface should
make it very obvious that the user has successfully added a class, either with dialogue
and feedback messages or with significantly more noticeable changes to the page.”
Changes: We agree that a notification for a successfully added classes would be
useful, and we have worked to make clear and attractive notifications for user actions.
However, the “add class” page has not been implemented for the hi-fi prototype so this
change will not be visible.

Violation: [H2-3 User control and freedom] [Severity 3]

Description: “After the student clicks add a class, they are taken to a page that
allows them to input the class information. However, there is nothing that lets the user
know where they are in the app, such as an Add Class header at the top of the app.
Although there is only one step between the homepage and the add class page, a
header/title would still help to ensure that the user is always clear on exactly where
they are in the app. This is especially important given that the homepage and the add
class page are similar in layout and design, meaning that the user could possibly
experience confusion navigating between the two pages.”

Changes: As stated earlier, the ‘Add Class’ page has not been implemented for
the hi-fi prototype. Therefore, the updated header for this page will not be a visible
change.

. Violation: [H2-6. Recognition rather than recall] [Severity 3]

Description: “Selecting a class in progress in the home screen is confusing. Perhaps
adding instructions ‘Select current lecture’ on top might be helpful.”

Changes: In pursuit of a minimalist design, we have chosen not to add this help
text for home screen. We saw no confusion or hesitation when testing this screen on
usability test participants. Therefore, we disagree with this violation and have chosen
not to implement any changes.

. Violation: [H2-2. Match between system and the real world] [Severity 3]
Description: “The user does not need to select the current lecture. The app can get
the schedule of the class and automatically display the options for the current lecture.”
Changes: In the mid-fi prototype we chose not to implement this feature because
we still wanted the student to be able to view older lectures and did not have an
obvious method of changing lectures if we did not force the user to select it initially.
However, in the hi-fi prototype we implemented a class specific screen the allows the
user to easily change the lecture. This allowed us to automatically place the user into
the most current lecture of the class he or she selected.

IR Y CS 147 > Dec. 02

LasCiures

Laghurn 1 THEEHT
Bylhas ond Brrwnal Prodao e

Laztira 7 TaCTIL

Iopiee . e i Evasaion. Give f "
- feedbacl

Lastirn 3 EOF - -

Tew e Ev Goliek. Priiyzag, Ask of view Questions

[EET S RS

Mid-fi Prototype Hi-fi Prototype

6.

7.

Violation: [H2-3. User control and freedom] [Severity 3]

Description: “It is impossible to skip a question. Sometimes a wrong answer is
penalized and not being able to skip a question can harm the user’s grade. Add a
‘Skip’ button.”

Changes: A lecture can only have one active question at a time. When the
lecturer closes a question or poses a new question, the old question will no longer be
displayed. A user may simply refrain from answering a question, if desired. There is
no need for a ‘Skip’ button.

Violation: [H2-3. User control and freedom] [Severity 3]

Description: “The student cannot re-answer a question. The user might accidentally
click the wrong button or decide to change her answer. The app should allow multiple
submissions while there is still time left to answer a question. Keep current question
active until time is up.”

Changes: In our hi-fi prototype, we made the question remain active for as long as
the professor leaves the question open. This gives students the ability to update their
question until the professor closes the poll.

C5 147 = Dec. 02
Answer

Your answer was
successfully

submitted!
Your Last Give feedback

Refg_cp'llse:

Ask or view Questions

Answer a poll

Other Courses Oiher Lectures

Mid-fi Prototype Hi-fi Prototype

8. Violation: [H2-2] Match between system and the real world [Severity 3]

Description: “The feedback icon for the student is the same as that of the teacher (ie.
the graph icon). Although it makes sense to have this as the icon for teachers (since
the feedback page displays line graphs similar to the icon), this is a much less intuitive
icon for the student feedback page. The sliders and text input on the feedback page do
not correspond the line graph icon, which should be changed in favor of a symbol
more directly related to the content of the page.”

Changes: We could not find a better icon for the feedback screen, so we ended up
keeping icon the same, which is the graph icon. Because there is a label under each
icon, the student will know how to navigate to the feedback page.

Violation: [H2-5. Error prevention] [Severity 4]

Description: “It is easy to not notice the ‘Answer’ section of the menu when the
instructor has asked a question. Make ‘Answer’ section more noticeable when active
or alert the user every time a question is asked.”

Changes: The intended use for this feature is that the lecturer poses a question
during class and gives the students time to answer the question right away. For this
reason, we felt it was unnecessary to add a notification when a question is posed.
Moreover, since the application is for use when students are in lecture, adding a
notification would alert students who were not in class to answer the question, which is
not the intended usage for this feature.

Additional Changes:

1.

Change: Class Landing Page

Description: The biggest change we made between the mid-fi and hi-fi prototypes
was the addition of a class landing page. This page helps the user navigate through
our three tasks and provides clear ways to change the current lecture or class. The
user will reach this page after selecting a class/lecture or after submitting feedback or
answering a question. Notifications on this page provided the user feedback on his or
her previous actions.

Reasoning: We created this landing page for two reasons. First, in our mid-fi
prototype we had several separate notification screens. We wanted to unify these
screens and allow users to easily navigate to all other parts of the app from this single
screen. Second, we needed a clean way for a user to change lectures in a manner
that fixed violation five in the heuristic evaluation.

SpeakUp CS 147 » Dec. 02

EE 3644

Give feedback

Azk or view Questions

Enrall in another course Dther Courses Dbser Lectures

Once a class is chosen, the user is taken to a page from which any task can be completed.

Design Evolution

Our design was first conceived after doing our interviews with potential customers of our
product. By implementing the master-apprentice model, we were able to analyze our
customer’s work practice. From that, we were able to perform a task analysis to try and
pinpoint the important tasks our app would help our the user perform. After brainstorming
ideas that lined up with our contextual inquiry results, we started sketching very raw Ul
designs for our future app. We narrowed down the three best project ideas from our multiple
sketches and picked the one that had the most significance, feasibility, and interest within our

group.

Using the master-apprentice model to
investigate our customer’s work practice.
This shot was taken from where one of our
participants was sitting during a class

Once we understood our customer’s work
practice, we had a brainstorming session to
stir up ideas so we could make sketches for

the UI.

N
L]
/ :\ - o A
| he
.S
{
E o
< ot L
[Tie be!
B (5 2 e
\ R i -
JeE o< h Disge
7 Ten s e y v ’“
| !M \
€ dAn s - e "
¢ (X) . Ot

Duvewa Bpears i shudents

Can TRk

_— interface for
stdengs

(Srmarr Phore chp)

Sc\l/j; 1-0~Qt Follcwng’

Axf= R

Q) 6= x°

Score Wistey

(] % /\)\\/\/

Click to select

7 THe v g answer

b) #x) = 5"

¢) fx) = 2,3 +C oy
“betrer per formon

NE) =35 Sl b

Fee0B Ack Lecture Remeny
(ST

Quiew —

Inter bace

us! <liclers Content?

o ceueet

Spoclent —r—

porspectives

Lectire <r7\c 5

Qreal| Sedntachon

—

-

\ [aro7rcss |

One of the three finalists for project ideas. It
ultimately lost to the sketch on the right. It
featured a Google Glass design that would
allow lecturers to physically see popular
questions above the students heads.

The sketch we decided to work off of. We
picked it because of its significance,
feasibility and general interest within our
group. It actually has some of the tasks that
are in the hi-fi prototype!

With that in mind, we created a concept video that helped us further define and improve our
tasks by storyboarding them and creating scenarios that our customers will potentially have to
perform. This storyboarding process allowed us to refine our last Ul design choice by making
the Ul centered around making the three tasks accessible to our customer base. By fleshing
out these scenarios in a concept video, we saw our scenarios and completion of tasks in
action, thus making us confident in moving forward to user testing.

Sceng 7 FerppAck

Praloguel Texts

1 T
. Twe Sues ouTHE EVE OOV
FEEL RELEVANT
¢ T gnIOVED THE TAREAWAYS OM

To USE COLORS - SPEND
L::::.e "MME on USE THAN

THEORY.

Ouir first design that is centered around the three We also storyboarded our scenarios
tasks we created from the contextual inquiry phase. | for the concept video. By creating
The user must swipe to get to the screen regarding | these scenarios, we were able to

a specific task. Here is an example of what our Ul refine our tasks, which would play an
storyboard looked like trying to answer a question. | important part in the rest of our
design.

The next step was to create a lo-fi prototype and test it on users to see what is and isn’t
intuitive. For the most part, we kept the design we created at the end of the concept video
project. After testing it on some college students (since our student Ul will mostly be used by
that demographic) and a lecturer (with our lecturer Ul), we obtained important usability test
results to incorporate into our next design phase. One of the most important results we
obtained was the fact that users never found our swipe mechanic intuitive as all three
students got stuck when they needed to swipe to get to the next screen. Another important
one involved some ambiguity throughout the system as a whole, including confusion about
the difference between the ask and feedback tasks and the fact that users would place the
“Pace” slider in opposite directions when giving feedback, even though they were told to give
feedback to a lecturer who spoke too fast.

One of the participants for the usability test. The complete student Ul. This has all the

A group member would act as the screens a user can link to, and some even
“‘computer” while another would take notes are versions of one screen but scrolled, if a
on the situation. user ever did pick up on the scrollable
screens.

."-.‘1-" hal ';‘]"Pﬁ o pm&rj'
involues, poper®

b SuBraT7]

O[O [

An example of a task a participant would have to complete. This one involves submitting
feedback to the lecturer, but it also demonstrates one of the biggest problems with our lo-fi
prototype design: the unintuitive swipe mechanic to access the three tasks.

After that phase, we moved onto the mid-fi prototype. Changes we made for that stemmed
directly from our usability test results. We decided to change the unintuitive swipe mechanic
and instead put a navbar at the bottom of the screens to make access to all three major tasks

very easy. We also fixed the problems with ambiguity since we made the description of pace
much clearer and we clearly separated the tasks of ask and feedback with the inclusion of the
navbar.

Without the limitations of a paper prototype, we were also able to solve the problem regarding
the user’s difficulty to see if an area was scrollable or not.

Our biggest change from the lo-fi prototype to the mid-fi, we got rid of the swipe mechanic
and the navbar with rarely user icons and replaced them with a new navbar with a home
button and the three major tasks our app does!

We also changed the ambiguity of | Completing one of the tasks (in this case it's answer).
the pace slider (putting “Too Fast” I's much more intuitive to click on the navbar to get
and “Too Slow” on the edges). to one of these tasks than the swipe we had before.

With the prototype we made, a group of evaluators performed a heuristic evaluation on our
project, giving us a lot of insight about what we could possibly change for the hi-fi prototype.
You can look more into this in the “Major Usability Problems Addressed” section earlier in the
report, but some of the more important changes involved the home button, the auto selection
of lecture, and updating answers in the Answer tab. Now, there is a class landing page, which
fixed one of the violations described in that section. Additionally, the evaluation raised a great
point about the ability to change answers when the poll is still open. For screenshots, full
descriptions and changes from the mid-fi to hi-fi prototype, please visit the “Major Usability
Problems Addressed” section.

Prototype Implementation

To implement our hi-fi prototype, we created a web app using ruby on rails for the backend
and bootstrap for styling on the front end. By writing a web app in ruby on rails, we were able
to develop the app faster than developing a native app. Additionally, ruby on rails made it
very easy to implement a fully functional database for all of the course, student, and lecture
information. Using bootstrap allowed us to implement a very aesthetically pleasing and
minimalistic design that very closely matches our mid-fi prototype. Touch events were the
only substantial drawback in using these tools. The main difference between our web app
and a native app is that the feedback ‘sliders’ do not slide. Bootstrap’s sliders do not handle
touch events so a user currently has to tap the bar to move the slider instead of using the
sliding motion.

Our hi-fi prototype is a very close approximation of a fully implemented web app. Our
database and backend are fully functional and all of the main features have been
implemented. Our prototype only uses the Wizard of Oz technique when it comes to data that
was supposedly created by the lecturer interface. The lecturer interface has not been
implemented yet, so questions and lecture information had to be hardcoded into the
database. As such, the same question from the lecturer is always visible and is never closed.

Additionally, all of the information used to fill the databases for demos had to be hardcoded.
This includes the courses listed, lectures for each course, and questions already posed by
students. Since this is a lot of data to fill in, not all of the possible paths have preexisting
information. For example, the oldest lecture for CS147 does not have a question posed by
the lecturer or questions already posed by students.

In our hi-fi prototype, we fully implemented our three primary student tasks. As such, there is
not much development left for this interface beyond stylistic refinement and additional testing.
The key pieces missing from the student interface are a functional ‘add classes’ button and a
working ‘settings’ interface. Once we implement these features, the student interface will be

complete and functional.

However, in order to create a complete product, we have to create the entire instructor
interface. This step requires a substantial amount of coding, but the design work and the
database have already been completed. From there, Speakup will be ready for full user
testing and can be further developed by having a trial class use Speakup for an entire quarter.

