
Platelist: med-fi prototype report
Wen Sun, Gene Oetomo, Kyle Qian, Omar R. 

October 31, 2014

1 Problem and solution overview
When trying to cook, people encounter many small obstacles: they have to buy
groceries, they have to plan their meals in advance, they have to find recipes.

Platelist lets you:

• keep a ``platelist'' of recipes you like, like a music playlist of songs

• plan your meals for the week from that list

• order the ingredients you need for the week

making it easy and quick to cook for yourself. We remove the barriers that stop
many people from cooking.

2 Tasks
2.1 Simple: Creating a Platelist
APlatelist (Figure 1) is a list of meal recipes; eachmeal recipe is like a song on amu-
sic playlist. atway, you don't have to bookmark recipe pages on yourweb browser,
or have sheets of paper lying around with your favorite recipes. Once you've accu-
mulated a collection of recipes, you can plan aweek's worth ofmeals out by deciding
what you will eat for each meal (Task 3).

2.2 Moderate: Searching for recipes
We offer the user two types of search (Figure 2): a simple search by keyword (eggs,
burger, or some other simple query), and an advanced search with a more compli-
cated querying interface. You search for a meal, find a recipe you want, then add it
to a Platelist to use when planning your week later.

1



Figure 1: Simple task: creating a Platelist

2.3 Complex: Weekly meal plan
Once you have Platelists containing meals you'd want to eat, you can plan an up-
coming week out on our Calendar interface (Figure 3). On Sunday, for example,
you might sit down and plan your meals until the next Sunday. Your Platelist might
have a salad; then you'd select that and assign it to lunch onursday. We also give
you the option to choose how many meals you want to eat on each day.

With your week's meals planned out, you can order the groceries you need all
at once. A button adds everything to your Shopping Cart.

3 Revised interface design
In general, we made a number of small aesthetic and behavior changes to the UI
to optimize for the mobile multitouch prototype. For example, we added the swipe
gesture to open the app.

We believe the leap from the medium-fi prototype to the hi-fi prototype will be
smaller than the one we've made from the lo-fi prototype to here.

2



Figure 2: Moderate task: searching for recipes

3.1 Multiple platelists
In the lo-fi prototype, we had a screen with an empty Platelist, but we had no func-
tionality to manage multiple Platelists. You were confined to the one built-in list.

You might want one Platelist for simple breakfasts, and one for fancy meals to
cook for parties, and others for other kinds of meals, and the lo-fi prototype did not
support those cases. In the med-fi prototype, we added the ability to manage (add
and delete) more than one Platelist in the app, making our simple task (creating
a Platelist) more meaningful. We added a drop-down menu so you could scroll
through the different Platelists.

3.2 Advanced search function
Our lo-fi prototype had a complex query UI where you could search by specific
ingredients, cooking time, and other parameters. But people we talked to said that
they oen just wanted to search for a specific meal (a hamburger, or a salad, for
instance), and the search UI had an intimidating number of parameters. So we
added a simple search query box where you can type keywords, much like a Google
search box. We preserved the advanced search in a separate screen for users with

3



Figure 3: Complex task: weekly meal plan

more specific needs -- you click the Advanced Search button to reach it.
We also added a new goal in designing advanced search: we wanted to give the

user the ability to use premade food options, since not everyone wants to cook all
the time. en the user can manage all their meals from within Platelist, even ones
where they aren't cooking a recipe.

3.3 Scheduling
In our lo-fi prototype, we only had one shuffle button that created an entire week of
items for the user -- the user had no control. In our newUI, we created slots for each
day that the user can check if they want ameal. For example, each day automatically
has 3 empty slots for food items that they want for that day. If they want breakfast
and lunch, they just tap on two different slots to put those into the week. When they
are finished selecting their choices, they just press the shuffle button, and it places
the corresponding types of food into their selected slots.

4



3.4 Tab bar
We added a tab bar to the bottom of the screen. Participants in the lo-fi prototype
complained that modes of the app were hard to see, and the overall structure wasn't
obvious. e tab bar shows that you can Search for recipes, view a Platelist, view
your weekly Calendar, or order groceries in the Shopping Cart. You no longer need
to remember the app's structure and where you are in the flow.

3.5 Shopping cart
e Shopping Cart screen was previously only accessible from the Calendar screen.
Now it's a top-level screen, visible from the tab bar. is change makes ordering a
more prominent and easier-to-manage function.

3.6 Text bubbles for instructions
We added little text bubbles in places like the Calendar to alert first-time users about
how the UI works. Blank meal slots inform the user that they can add a meal to the
calendar.

4 Prototype overview
4.1 Tools
We used Proto.io to construct the prototype. It was easy to pick up, and the basic
functionality was straightforward. e resulting prototype was clean and simple,
considering it was a quick mock-up. Storyboarding was also easy: we simply linked
specific buttons to specific pages. Overall, it was easy because all the design aspects
were visual, and we just had to drag and drop.

4.2 Limitations and tradeoffs
Although it was easy to pick up, thereweremany advanced functions of Proto.io that
were not intuitive. ere were some tutorials, but we didn't want to have to watch
all of them to understand how to use the soware. Some features we wanted to add
to the prototype were really hard to figure out and frustrated us (such as editing the
navigation bar).

Also, since everything was hard-coded, we couldn't make a simple wrapper
function to do the same thing for multiple items. For example, to delete an item
from the Platelist, you would press the X on the corner. However, to do this with
every item, we would have to implement each one individually, which would have

5



been extremelymundane, so instead we just implemented it on a few and used those
select few to demonstrate.

Working in a group was also difficult; Proto.io didn't have a way to synchronize
multiple edits going on simultaneously, unlike Google Docs, for example.

Overall, Proto.io was easy to use at first, but we had trouble withmore advanced
functionality later. It's easy to make a quick sketch, but not reasonable to imple-
ment full functionality because that would require repetitive hard-coding, such as
the deleting function mentioned above.

4.3 Wizard of Oz techniques
e only recipe we implemented was Scrambled Eggs, so we were careful when giv-
ing the demo to just click that specific item.

We also mentioned earlier that because Proto.io does not have an easy-to-use
way to repeat behavior, we only implemented deleting for a few items on the Platelist.

4.4 Hand-coded features
TODO

5 Prototype screenshots

6


	Problem and solution overview
	Tasks
	Simple: Creating a Platelist
	Moderate: Searching for recipes
	Complex: Weekly meal plan

	Revised interface design
	Multiple platelists
	Advanced search function
	Scheduling
	Tab bar
	Shopping cart
	Text bubbles for instructions

	Prototype overview
	Tools
	Limitations and tradeoffs
	Wizard of Oz techniques
	Hand-coded features

	Prototype screenshots

