STANFORD HCI GROUP CSl47.stantord.edu

Software Tools

Scott Klemmer
Autumn 2009

It accomplishes an important
task

or better and tor worse) You don't have to make it yourself, and it abstracts a set of knowledge (in this case, how the threads ot a screw act as a wedge)

Internal thread

External thread
P

Lastly, (for better and for worse) it provides a platform for standardization

On April 21,1864, a man named William Sellers

dorD

d2 or D2
d1 or D1

Standards

Change where innovation happens. It inhibits innovation in the area of the standard (b/c __),
but it enables innovation in areas that build on the standard.

Developers are People Too...
...and tools are interfaces too

Toolkits

- A collection of widgets
- Menus, scroll bars, text entry fields, buttons, etc.

- Toolkits help with programming
- Help maintain consistency among Uls
- Key insight of Macintosh toolbox

B Path of least resistance translates into getting
programmers to do the right thing

- Address common, low-level features for all Uls
B Address the useful & important aspects of Uls

Why use toolkits?

- Code reuse saves programmer time
- 50% of code is for the GUI [Myers & Rosson, CHI '92]

- Consistent look & feel across apps
- Easier to modity and iterate the Ul

- Make Ul development accessible to more
people

What should tools do?

- He

p design the interface given a specification of the

tasks.

e

e
oo

o implement the interface given a design.

o evaluate the interface after it is desighed and
bose improvements, or at least provide information

to allow the designer to evaluate the intertace.
- Create easy-to-use interfaces.

- Allow the designer to rapidly investigate difterent
designs.

- Allow non-programmers to design and implement user
interfaces.

- Pro

vide portability across difterent machines and

devices.
- Be easy to use themselves.

Tools Can Yield Better Interfaces

- Designs can be rapidlz prototyped and implemented,
nossibly even before the application code is written.

- It is easier to incorporate changes discovered through
user testing.

- More eftfort can be expended on the tool than may be

oractical on any single user intertace since the tool will
oe used with many different applications.

- Difterent applications are more likely to have

consistent user intertaces it they are created using the
same user intertace tool.

- Tools can enable a variety of specialists to participate
in interface design

Tools Can Lower Maintenance Costs

. There will be less code to write

- There will be better modularization due to the separation of
the user interface component from the application.

- The level of expertise of the intertace designers and
implementers might be able to be lower, because the tools hide
much of the complexities of the underlying system.

- Reliability may improve, since the code for the user intertace is
created automatically from a higher level specitication.

- It may be easier to port an application to different hardware
and software environments since the device dependencies are
isolated in the user interface tool.

Success of Tools

- Today's tools are highly successtul
- Window Managers, Toolkits, Interface Builders
ubiquitous
- Most software built using them

- Are based on many years of HCl research

Brad A. Myers. “A Brief History of Human Computer Interaction Technology.”
ACM interactions. Vol. 5, no. 2, March, 1998. pp. 44-54.

12

Plotting the Learning Curve

L
7
-
M
-
b,
"
dond
—
-
J
'0 e
y =+
Ny
o —

Sophistication of what can be created

Plotting the Learning Curve

QL
(]
-
e
o
[
i
Jd
We—
-
>
,{-l—c
~——
B

*

m

Sophistication of what can be created

Threshold and Ceiling

QL
]
-
—
-
:9“\
d
—
-
&
'l —
e
-
» y—

Sophistication of what can be created

Threshold, Ceiling, and Walls

>

=
=
&L
ol .
=

Threshold, Ceiling, and Walls

| Legd
Mindsto

| |

Sophistication of what can be created

Threshold, Ceiling, and Walls

)
¥y
—
Y
O
g
T
=
We—
—
&
#—
=
®

i i i i

Sophistication of what can be created

Threshold and Ceiling

C
/" PROGRAMMING

MFC —~

ACTION _
SCRIPT

FLASH

DIFFICULTY
(THRESHOLD)

GOAL

SOPHISTICATION
(CEILING)

(after Myers)

A success story: view source on

the Web

Huge user interface innovation.

- ————— -

: ANA, :
by ...7.»...-N . -l

NNAEMN UOAMINEM »
V= V- —
I~ VY O — - em 1

..‘ |

i

;

i ‘

3.8

i
ry

' i

bra

3
o

) T) R
\'\"‘5\‘\ £8 ‘_\‘:\\S
W ~7_. A\ ‘A_W
\J\ \"“\. 7 @y ‘

\‘:,-\ W\ \\._\

\ --v r-n»o ‘=

”‘- ” - -
—x..mn«\ 5

- —

— -._-,l.__“-~
—

P '// ;
77
/

= ‘tf th"P‘"‘m'
O i = saiveil) &{){ 3
3 ¥

r—<._.

AN =

i}' ' 4’ Q" \ l‘nhuu-i‘.“’;"

.:mo._F‘ -—‘1-——4-; 4

x4

Discussion of Themes, cont.

B Path of Least Resistance

- Tools should guide implementers into better user
interfaces

. Goal for the future: do this more?

®Predictability

- Programmers do not seem willing to release control

- Especially when system may do sub-optimal things
®»Moving Targets

- Long stability of Macintosh Desktop paradigm has enabled
maturing of tools

Window Managers

- Multiple (tiled) windows in research systems of
1960's: NLS, etc.

- Overlapping introduced in Alan Kay's thesis (1969)

- Smalltalk, 1974 at Xerox PARC

- Successful because multiple windows help users
manage scarce resources:

- Screen space and input devices
- Attention of users

- Affordances tor reminding and finding other work

Sequential Programs

- Program takes control, prompts ftor input
- command-line prompts (DOS, UNIX)

4l emd.exe

Microsoft UYWindows 20808 [Uersion 5.80.21951]
(C) Copyright 1985-1999 Microsoft Corp.

Sat 86/02/20801 15:28
c:\>

» The uskr waits on the program

| [preizrEn
- user enters more input

Sequential Programs (cont.)

- General Flow

_yPrompt user for input

Drogram reads in a line of text
Drogram runs for a while (user waits)
Maybe some output

Loop back to beginning

- But-how do you model the many actions a user can
take?

- for example, a word processor?

- printing, editing, Inserting, whenever user wants

sequential doesn’t work as well tor graphical and for
highly-interactive apps

«Sequential works really well tor text-based and low-interaction apps
‘Doesn’t work as well for graphical and high-interaction apps
For example, how do you model the mouse input?

Example Interactions

close box

title bar & F-\cs160\Public M=l E3
Eile Edit Vew Help

a2 wm o B

t
Il

D Home Interacthve
Jukehox Entedain.. TV Guide

il

I|||
o

Formd frx Formd

folder | - _
Fegular FResearch TeleBears
Expressi.. MNotebook
Introtovwebh Froject
Newspaper Frototypes
scroll bar ‘ | |

1 object(s) selected

User Llsar
Interfac... Interfa. .

12 ohjp A(s) |
size contro 26

Modern GUI Systems

- Three concepts:
- Event-driven programming
- Widgets
- Interactor Tree
- Describes how most GUIs work

- Closest to Java
- But similar to Windows, Mac, Palm Pilot

«Three concepts that are part of windowing systems today:
Event-driven programming
‘Widgets (Model / View / Controller, but we won't talk about that here)
sInteractor Tree

‘Describes how most windowing systems work

Closest to how Java works, but if you understand this then you'll also understand how Windows, Macintosh, and Palm Pilot work too!

What this means for design

- Harder to use non-standard widgets
- have to buy or create your own, ex. pie menus

- Easy to re-arrange widgets and layout of app, but hard
to change behavior (i.e. the code)

- provides some support, not a lot
- stresses importance of getting features right first

- Harder to do things beyond mouse and keyboard
- speech and sketching harder

- Harder to do multi-user multi-device apps

