
stanford hci group http://cs147.stanford.edu

Scott Klemmer
Autumn 2009

Software Tools



It accomplishes an important 
task



(for better and for worse) You don’t have to make it yourself, and it abstracts a set of knowledge (in this case, how the threads of a screw act as a wedge)



Lastly, (for better and for worse) it provides a platform for standardization
On April 21, 1864, a man named William Sellers 



Standards

Change where innovation happens. It inhibits innovation in the area of the standard (b/c ___), 
but it enables innovation in areas that build on the standard. 



Developers are People Too...
...and tools are interfaces too



9

Toolkits

 A collection of widgets
 Menus, scroll bars, text entry fields, buttons, etc.

 Toolkits help with programming
 Help maintain consistency among UIs

 Key insight of Macintosh toolbox
Path of least resistance translates into getting 

programmers to do the right thing
 Address common, low-level features for all UIs
Address the useful & important aspects of UIs



7

Why use toolkits?

 Code reuse saves programmer time
 50% of code is for the GUI [Myers & Rosson, CHI ’92]

 Consistent look & feel across apps
 Easier to modify and iterate the UI
 Make UI development accessible to more 

people



8

What should tools do?

 Help design the interface given a specification of the 
tasks.

 Help implement the interface given a design.
 Help evaluate the interface after it is designed and 

propose improvements, or at least provide information 
to allow the designer to evaluate the interface.

 Create easy-to-use interfaces.
 Allow the designer to rapidly investigate different 

designs.
 Allow non-programmers to design and implement user 

interfaces.
 Provide portability across different machines and 

devices.
 Be easy to use themselves.



Tools Can Yield Better Interfaces

 Designs can be rapidly prototyped and implemented, 
possibly even before the application code is written.

 It is easier to incorporate changes discovered through 
user testing. 

 More effort can be expended on the tool than may be 
practical on any single user interface since the tool will 
be used with many different applications.

 Different applications are more likely to have 
consistent user interfaces if they are created using the 
same user interface tool. 

 Tools can enable a variety of specialists to participate 
in interface design



Tools Can Lower Maintenance Costs

 There will be less code to write
 There will be better modularization due to the separation of 

the user interface component from the application.
 The level of expertise of the interface designers and 

implementers might be able to be lower, because the tools hide 
much of the complexities of the underlying system.

 Reliability may improve, since the code for the user interface is 
created automatically from a higher level specification. 

 It may be easier to port an application to different hardware 
and software environments since the device dependencies are 
isolated in the user interface tool.



12

Success of Tools

 Today’s tools are highly successful
Window Managers, Toolkits, Interface Builders 
ubiquitous
Most software built using them
Are based on many years of HCI research

Brad A. Myers. “A Brief History of Human Computer Interaction Technology.” 
ACM interactions. Vol. 5, no. 2, March, 1998. pp. 44-54.



Plotting the Learning Curve



Plotting the Learning Curve

Graphical 
Editor

HTML

Javascr
ipt



Threshold and Ceiling



Threshold, Ceiling, and Walls



Threshold, Ceiling, and Walls

OpenC
V

Lego 
Mindsto

rms



Threshold, Ceiling, and Walls

Goal



(after Myers)

Threshold and Ceiling



A success story: view source on 
the Web

Huge user interface innovation.



Library



Architecture



19

Discussion of Themes, cont.

Path of Least Resistance
 Tools should guide implementers into better user 

interfaces
 Goal for the future: do this more?

Predictability
 Programmers do not seem willing to release control
 Especially when system may do sub-optimal things

Moving Targets
 Long stability of Macintosh Desktop paradigm has enabled 

maturing of tools



20

Window Managers
 Multiple (tiled) windows in research systems of 

1960’s: NLS, etc.
 Overlapping introduced in Alan Kay’s thesis (1969)
 Smalltalk, 1974 at Xerox PARC
 Successful because multiple windows help users 

manage scarce resources:
 Screen space and input devices
Attention of users
Affordances for reminding and finding other work



24

Sequential Programs
 Program takes control, prompts for input

 command-line prompts (DOS, UNIX)

 The user waits on the program
 program tells user it’s ready for more input
 user enters more input



25

Sequential Programs (cont.)
 General Flow

Prompt user for input
Program reads in a line of text
Program runs for a while (user waits)
Maybe some output
Loop back to beginning

 But how do you model the many actions a user can 
take?
 for example, a word processor?
 printing, editing, inserting, whenever user wants 
 sequential doesn’t work as well for graphical and for 

highly-interactive apps

•Sequential works really well for text-based and low-interaction apps
•Doesn’t work as well for graphical and high-interaction apps
•For example, how do you model the mouse input?



26

Example Interactions

scroll bar

close box

title bar

folder

size control



27

Modern GUI Systems

 Three concepts:
Event-driven programming
Widgets
 Interactor Tree

 Describes how most GUIs work
Closest to Java
But similar to Windows, Mac, Palm Pilot

•Three concepts that are part of windowing systems today:
•Event-driven programming
•Widgets (Model / View / Controller, but we won’t talk about that here)
•Interactor Tree

•Describes how most windowing systems work
•Closest to how Java works, but if you understand this then you’ll also understand how Windows, Macintosh, and Palm Pilot work too!



35

What this means for design
 Harder to use non-standard widgets

 have to buy or create your own, ex. pie menus
 Easy to re-arrange widgets and layout of app, but hard 

to change behavior (i.e. the code)
 provides some support, not a lot
 stresses importance of getting features right first

 Harder to do things beyond mouse and keyboard
 speech and sketching harder

 Harder to do multi-user multi-device apps


