
Server-side
programming

CS147L Lecture 6
Mike Krieger

Friday, October 30, 2009

Intro

Friday, October 30, 2009

Welcome back!

Friday, October 30, 2009

By the end of today...

- Server-side programming basics

- What to implement for this class

- PHP basics & syntax

- Calling PHP scripts from your Javascript

- Talking to a local database using PHP

Friday, October 30, 2009

Reminder: Getting stuff
onto the Stanford space

Friday, October 30, 2009

With an FTP program

- Sign on to cardinal.stanford.edu

- Transmit static files to WWW/ folder, cgi
scripts to cgi-bin/ folder

- If you still haven’t, request CGI setup at
http://www.stanford.edu/services/
web/cgi/personal.html (can take a few
hours)

Friday, October 30, 2009

http://www.stanford.edu/services/web/cgi/personal.html
http://www.stanford.edu/services/web/cgi/personal.html
http://www.stanford.edu/services/web/cgi/personal.html
http://www.stanford.edu/services/web/cgi/personal.html

Then...

- files will be available at:

http://www.stanford.edu/~yoursunetid

- server scripts at:

http://www.stanford.edu/~yoursunetid/cgi-bin

Friday, October 30, 2009

http://www.stanford.edu/~yoursunetid
http://www.stanford.edu/~yoursunetid
http://www.stanford.edu/~yoursunetid/cgi-bin
http://www.stanford.edu/~yoursunetid/cgi-bin

Server-side

Friday, October 30, 2009

The 4 components
HTML

<div>hello world</div>

CSS

div { font-weight: bold}

Javascript
$('div').click(function...

Server-side
onRequest: return {"hello":"world"}

content

style

action

communication

Friday, October 30, 2009

Options

Friday, October 30, 2009

Languages

- Python (frameworks like Django; robust
library support)

- Ruby (fmwrks like Rails; easy to pick up)

- PHP (ubiquitous server support, pretty
easy to pick up)

- Perl, ASP.net, ...

Friday, October 30, 2009

For this class...

- We’ll use PHP, easiest to get going

- Recommendation: just use Stanford web
hosting, instead of local

- But...see tech group or CS147L page for
instructions for local running of PHP

Friday, October 30, 2009

In the future...

- Frameworks like Django and Rails
provide great ways to get projects off the
ground & let you focus on interaction

Friday, October 30, 2009

When server-side runs

- When rendering the page

- As an asynchronous request from the
page itself

Friday, October 30, 2009

Friday, October 30, 2009

General Strategy

- GET content, POST user data

- Server responds using JSON

Friday, October 30, 2009

Saving time

Friday, October 30, 2009

For CS147

- Only do server-side when it helps a part
of your app feel more “real” or if it’s the
fastest way to get something done

- If you need to persist user data, or let
people exchange messages, etc.

- Don’t worry much about scalability,
performance, security...

Friday, October 30, 2009

In other words...

- Do the simplest thing you can to
prototype your idea, & focus on the
interactive components and variations
instead

Friday, October 30, 2009

PHP intro

Friday, October 30, 2009

A brief history

- Originally stood for “personal home
page”

- Later: “PHP=PHP: Hypertext Processor”

- Current version: PHP5 (available on
Stanford servers)

Friday, October 30, 2009

Large PHP-based sites

- Facebook

- Flickr

- Wikipedia

Friday, October 30, 2009

Two ways of using PHP

- Rendering web pages (mixed in with
HTML)

- Just responding to requests (handling
form submission, etc)

Friday, October 30, 2009

Our first PHP script

Friday, October 30, 2009

hello.php
<?php
� print "hello!";
?>

Friday, October 30, 2009

Demo
hello.php

Friday, October 30, 2009

<?php ?>

- Anything inside will be executed as PHP

- Anything outside will just be rendered to
the browser

Friday, October 30, 2009

Testing PHP

- Load up the page in browser, or:

- From command line, run: php5
yourfilename.php (will act as if it’s
rendering to the browser)

Friday, October 30, 2009

Example: Running
hello.php from cmd

Friday, October 30, 2009

helloinhtml.php
<body>
<div>Now I'm going to print some PHP stuff:</div>
<?php
� print "this is coming from PHP, can you tell?";
?>
<div>this is some other stuff....</div>
</body>

Friday, October 30, 2009

Demo
helloinhtml.php

Friday, October 30, 2009

Some more basics
<?php
� // variables have $ before them, don't get mixed up with jQuery :)
� $hello = "this is a string";
� $another = 5; /* PHP is weak-typed like Javascript */
� // for loops look familiar:
� for ($i=0; $i < 10; $i++) {
� � // concatenate strings using a dot (.):
� � print "this is iteratation number ".$i."
";
� }
� // semicolons are mandatory!
?>

Friday, October 30, 2009

Arrays

- Ordered (like JS arrays) or associative
(like JS objects)

- Can have mixed types inside them, like
JS

Friday, October 30, 2009

Ordered Arrays
>> $arr = array('zero', 'one', 'two');
array(3) { [0]=> string(4) "zero" [1]=> string(3) "one" [2]=>
string(3) "two" }

>> $arr2 = array();
array(0) { }

>> $arr2[] = 'zero';
array(1) { [0]=> string(4) "zero" }

>> $last = array_pop($arr2);
string(4) "zero

>> var_dump($arr2); // useful debugging command
array(0) { }

Friday, October 30, 2009

Iterating through array
>> $arr = array('red', 'green', 'yellow');
>> foreach ($arr as $key => $value) {
>>�print "index: ".$key." ";
>>�print "value: ".$value."
";
>> }
index: 0 value: red
index: 1 value: green
index: 2 value: yellow

Friday, October 30, 2009

Associative Array
>> $assoc = array("red"=>"angry", "blue"=>"sad");
array(2) { ["red"]=> string(5) "angry" ["blue"]=> string(3) "sad" }

>> $assoc["red"];
string(5) "angry"

>> $assoc["green"] = "envy";
array(3) { ["red"]=> string(5) "angry" ["blue"]=> string(3)
"sad" ["green"]=> string(4) "envy" }

>> unset($assoc["red"]);
array(2) { ["blue"]=> string(3) "sad" ["green"]=> string(4) "envy" }

Friday, October 30, 2009

Functions
<?php
// functions can have default arguments:
function printStuff($what_to_print, $linebreak=true) {
� print $what_to_print;
� if ($linebreak == true) print "
";
}

printStuff("hello");
printStuff("how's life?");
printStuff("I'm doing well.", false);
printStuff(" Very well, actually");

?>

Friday, October 30, 2009

Demo
functions.php

Friday, October 30, 2009

Today’s demo app:
cafés on campus

Friday, October 30, 2009

Features

- Get information about 3 different cafés on
campus

- Post a review about food at each

- View other people’s messages

- If we have time: tell us which café is
nearest to us

Friday, October 30, 2009

To follow along
- http://mkrieger.org/week06.zip or do an svn

update and look inside the week6 folder

- Examples will work best in Safari or Chrome

- Use FTP to cgi-bin files to your cgi-bin folder,
and the WWW/ files into your WWW/ folder

- Using SecureCRT or the Terminal, log into
cardinal.stanford.edu to run from
command line

Friday, October 30, 2009

http://mkrieger.org/week06.zip
http://mkrieger.org/week06.zip

Part 1: Café List

Friday, October 30, 2009

For now...

- Hard-code 3 different café names

- All of our server responses will be JSON
for parsing in the Javascript

Friday, October 30, 2009

JSON in PHP
// remember: JSON is just the Javascript object notation

>> $arr = array("CS"=>array("CS147", "CS108"), "ME"=>array
("ME101, ME310"));
array(2) { ["CS"]=> array(2) { [0]=> string(5) "CS147" [1]=>
string(5) "CS108" } ["ME"]=> array(1) { [0]=> string(12)
"ME101, ME310" } } //not suitable for Javascript!

>> $json_data = json_encode($arr);
{"CS":["CS147","CS108"],"ME":["ME101, ME310"]} //much better!

Friday, October 30, 2009

Exercise 1
Take this data (data/cafes.txt) and make it a PHP array:

Cafes:
� - NeXus Cafe
� � - 318 Campus Drive West, Stanford, CA
� � - Opens at 8am
� � - Closes at 3pm
� - Bytes Cafe
� � - 350 Serra Mall, Stanford, CA
� � - Opens at 7am
� � - Closes at 3pm
� - Cool Cafe
� � - 328 Lomita Drive, Stanford, CA
� � - Opens at 11am
� � - Closes at 1pm

Friday, October 30, 2009

Live TextMateing

Friday, October 30, 2009

getcafes.php
<?php
� $cafes = array(
� � "nexus"=>array(
� � � "address" => "318 Campus Drive West, Stanford, CA",
� � � "full_name" => "NeXus Cafe",
� � � "opens" => 8,
� � � "closes" => 15
� �),
� � "bytes"=>array(
� � � "address" => "350 Serra Mall, Stanford, CA",
� � � "full_name" => "Bytes Cafe",
� � � "opens" => 7,
� � � "closes" => 15
� �),
� � "coolcafe"=>array(
� � � "address" => "328 Lomita Drive, Stanford, CA",
� � � "full_name" => "Cool Cafe",
� � � "opening_hour" => 11,
� � � "closing_hour" => 13
� �)
�);
�
� print json_encode($cafes);

?>
Friday, October 30, 2009

Client-side

- Strategy: use $.getJSON to get the café
list

- Build some <div>s, use jQTouch to
navigate between them

Friday, October 30, 2009

$.getJSON recap
Usage:
$.getJSON(url, data, callback); or
$.getJSON(url, callback);

so:
$.getJSON("/~mkrieger/doStuff.php",
� � � function(response) {
� � � � console.log(response);
� � � });

Friday, October 30, 2009

Starting point
<head>
� <style type="text/css" media="screen">@import "../jqt/jqtouch.css";</style>
� <style type="text/css" media="screen">@import "../jqt/theme.css";</style>
� <script src="../jquery.js" type="text/javascript" charset="utf-8"></script>
� <script src="../jqt/jqtouch.js" type="text/javascript" charset="utf-8"></
script>
� <script type="text/javascript" charset="utf-8">
� var jQT = new $.jQTouch();
� var cgiPath = '/~mkrieger/cgi-bin/';
� $(document).ready(function(){
� � // do stuff here
� });
</script>
</head>
<body>
� <div id="home" class="current">
� � <ul id="cafelist">
� </div>
</body>

Friday, October 30, 2009

Demo
index-1.html

Friday, October 30, 2009

Exercise 2
Start from index-1 and have it fetch the data & write to the
console

Friday, October 30, 2009

TextMate...

Friday, October 30, 2009

Fetching data
$(document).ready(function(){
� $.getJSON(cgiPath + 'getcafes.php', function(response){
� � for (var cafe in response) {
� � � console.log(response[cafe]);
� � }
� })
})

Friday, October 30, 2009

Demo
index-2.html (watch the console)

Friday, October 30, 2009

Exercise 3
For each café:

1. Create a <div> with an id of the café's shortname
2. Create a inside that div for jQTouch's list view
3. Create two s inside each :
� 1. Full name of the café
� 2. Address
4. Append that to the <div>
5. Append the <div> to the <body>
6. Create an with a link like such: Full Café Name and add it to the
cafélist on the front page

Friday, October 30, 2009

Doing something
interesting

$(document).ready(function(){
� $.getJSON(cgiPath + 'getcafes.php', function(response){
� � for (var cafe in response) {
� � � var fullname = response[cafe].full_name;
� � � var address = response[cafe].address;
� � � var newDiv = $("<div id='" + cafe + "'></div>");
� � � var newList = $("").appendTo(newDiv);
� � � $("" + fullname + "").appendTo(newList);
� � � $("at: " + address + "").appendTo(newList);
� � � newDiv.appendTo(document.body);
� � � $('' + response[cafe].full_name
+ '').appendTo('#cafelist');
� � }
� })
})

Friday, October 30, 2009

Demo
index-3.html

Friday, October 30, 2009

Posting a Message

Friday, October 30, 2009

jQTouch & Forms

- By default, will AJAX-ify all forms

- Place an <a> with class="submit" inside
the form and it will work to submit as
AJAX

- The response will be loaded as the next
page

- Override these defaults by passing in:
formSelector: false to jQTouch initializer

Friday, October 30, 2009

Exercise 4
1. Add a new div that will be our submission form
2. Create a <form> inside that <div>
3. Add form fields for a username and a review score
4. Add a type="hidden" input field so that we can also POST
which café is being reviewed
5. Add a link at the bottom that has class="submit" so jQTouch
knows that it should POST that form

Friday, October 30, 2009

The code
<form id='review-form' action="/~mkrieger/cgi-bin/savereview.php" method='POST'>
� � <input type="hidden" name='cafeid' id="reviewing-cafe-id" />
 <ul class="edit rounded">
� � Review for:
 <input type="text" name="username" placeholder="Your name"
id="some_name" />
� �
� � <select name="score">
� � � <option value="none">How good was the food?</option>
� � <optgroup label="Positive">
� � <option value="5">Amazing</option>
� � <option value="4">Pretty Good</option>
� � </optgroup>
� � <optgroup label="Negative">
� � <option value ="2">Not very good</option>
� � <option value ="1">Terrible</option>
� � </optgroup>
� � </select>
� �
�
� <a style="margin:0 10px;color:rgba(0,0,0,.9)" href="#" class="submit
whiteButton">Submit
</form>

Friday, October 30, 2009

Let’s add a form
Demo: index-4.html

Friday, October 30, 2009

Side note: dynamically
setting the action=

$('#review-form').attr('action', cgiPath + 'savereview.php');

(in the $(document).ready function)

Friday, October 30, 2009

Saving the review

Friday, October 30, 2009

$_GET, $_POST,
$_REQUEST

- PHP provides three arrays in a request,
$_GET, $_POST, and $_REQUEST, which
combines the two

Friday, October 30, 2009

Getting all values
<?php
� foreach ($_REQUEST as $key => $value) {
� � print $key.": ".$value."
";
� }
?>

demo: request.php

Friday, October 30, 2009

Checking if all fields are
present

<?php
� $required_fields = array("firstname", "lastname", "age");
� $missing_fields = array();
� $response = array();
� foreach ($required_fields as $key => $value) {
� � if (!isset($_REQUEST[$value])) {
� � � $missing_fields[] = $value;
� � }
� }
� if (count($missing_fields) > 0) {
� � $response['status'] = 'error';
� � $response['errors'] = $missing_fields;
� } else {
� � $response['status'] = 'success';
� }
� print json_encode($response);
?>

Friday, October 30, 2009

Demo
required_fields.php

Friday, October 30, 2009

Importing other PHP files
<?php include_once ('file.php'); ?>

Friday, October 30, 2009

Quick task: Make the
$cafes object imported

// cafes.php:
$cafes = array(
� "nexus"=>array(
� � "address" => "318 Campus Drive West, Stanford, CA",
� � "full_name" => "NeXus Cafe",
� � "opens" => 8,
� � "closes" => 15
�),
� "bytes"=>array(
� � "address" => "350 Serra Mall, Stanford, CA",
� � "full_name" => "Bytes Cafe",
� � "opens" => 7,
� � "closes" => 15
�),
� "coolcafe"=>array(
� � "address" => "328 Lomita Drive, Stanford, CA",
� � "full_name" => "Cool Cafe",
� � "opening_hour" => 11,
� � "closing_hour" => 13
�)

Friday, October 30, 2009

getcafes2.php
<?php require_once ('cafes.php'); ?>

<?php
� print json_encode($cafes);

?>

Friday, October 30, 2009

Exercise 4
1. Grab the username, score, and which café was reviewed from
the $_REQUEST
2. Also print out some HTML that will be shown as the success/
error page

Friday, October 30, 2009

Saving the Review,
beginning

<?php
� // in a real app, check these are present & valid
� $username = $_REQUEST['username'];
� $cafeid = $_REQUEST['cafeid'];
� $score = $_REQUEST['score'];
� $full_cafe_name = $cafes[$cafeid]['full_name'];
?>

Friday, October 30, 2009

Provide feedback

<div id="submit-results" style="padding: 20px">
Thanks for submitting your review of <?php print $full_cafe_name; ?>

<a style="margin:0 10px;color:rgba(0,0,0,.9)" href="#home"
class="backHome whiteButton">Back
</div>

Friday, October 30, 2009

Demo so far
savereview-beginning.php

Friday, October 30, 2009

Database

Friday, October 30, 2009

SQLite

- File-based database (doesn’t require
running a separate server)

- PHP & Python have built-in support

- Supported on Stanford servers!

- Works fine for small apps & prototypes

- Docs: http://www.sqlite.org/lang.html

Friday, October 30, 2009

http://www.sqlite.org/lang.html
http://www.sqlite.org/lang.html

If you get file permission
errors

- In Terminal or SecureCRT, do:

chmod 755 yourdbname.db

Friday, October 30, 2009

SQLite in PHP

- SQLiteDatabase class

- Takes a filename as its parameter

Friday, October 30, 2009

SQLite in PHP
$db = new SQLiteDatabase('cafe.db');
$all_reviews = $db->query("SELECT * FROM reviews");
//inserting
/* reviews' schema is: id, username, cafeid, score
$db->queryExec("INSERT INTO reviews(username,cafeid,score)
VALUES('mikeyk', 'nexus', 5)");

Friday, October 30, 2009

Check if table exists
// check if table exists, create if not

// use query when you need a result back,
// queryExec when you don't expect one back

if ($db = new SQLiteDatabase('cafe.db')) {
� $result = $db->query("SELECT name FROM sqlite_master WHERE
type='table' AND name='reviews'");
� if ($result->numRows() == 0) {
� � $db->queryExec('CREATE TABLE reviews (id int, username text,
cafeid text, score int, PRIMARY KEY (id))');
� }
} else {
 die($err);
}

Friday, October 30, 2009

A brief note on SQL
injection

- If input to SQL isn't properly escaped,
user-submitted data could have bad side
effects

Friday, October 30, 2009

Make input safe
$safe_name = sqlite_escape_string($_REQUEST['username']);
// prevent SQL injection attack!

Friday, October 30, 2009

Exercise 5
1. Take the data we received from the client and make it DB-
safe
2. Insert it into the database

Friday, October 30, 2009

Actually insert
$username = sqlite_escape_string($_REQUEST['username']);
$cafeid = sqlite_escape_string($_REQUEST['score']);
$score = sqlite_escape_string($_REQUEST['score']);

$command = "INSERT INTO reviews(username, cafeid, score) VALUES('%s',
'%s', %d)";
$replaced = sprintf($command, $username, $cafeid, $score);
$db->queryExec($replaced);

Friday, October 30, 2009

Demo
index-4.html

Friday, October 30, 2009

 Loading data

Friday, October 30, 2009

Strategy

- When a user clicks into a café,
asynchronously fetch the reviews using
jQuery's load function

- Have PHP read the Database and write
the HTML to return

Friday, October 30, 2009

Event

- We want to watch for
pageAnimationEnd and use
jQuery’s .bind function to listen for it

Friday, October 30, 2009

Exercise 6
1. Watch for pageAnimationEnd event to see that a café page
has loaded
2. Use jQuery's .load function to populate a <div> with data
from the server

Friday, October 30, 2009

jQuery.load
$(selector).load(url, data, callback);

Friday, October 30, 2009

Live Editing

Friday, October 30, 2009

Javascript
$("<h2>Reviews</h2><div class='reviews'></div>").appendTo(newDiv);

newDiv.bind("pageAnimationEnd", function(){
� var cafeID = $(this).attr("id");
� $(".reviews", $(this)).load(cgiPath + 'loadreviews.php', {'cafeid':
cafeID});
})

// .load() fetches an HTML page and places its content into the element
// that called it. the first parameter is the URL,
// second are the GET parameters

Friday, October 30, 2009

Demo
index-5.html

Friday, October 30, 2009

PHP: Getting Request
$cafeid = sqlite_escape_string($_REQUEST['cafeid']);

Friday, October 30, 2009

Iterating through results
in PHP

$result = $db->query("SELECT * FROM reviews WHERE cafeid='".
$cafeid."'");

while ($result->valid()) {
� $cur = $result->current();
� // do something with $cur, which is the result row
� $result->next();
}

Friday, October 30, 2009

Printing results
if ($db = new SQLiteDatabase('cafe.db')) {
� print "<ul class='rounded'>";
� $result = $db->query("SELECT * FROM reviews WHERE
cafeid='".$cafeid."'");�
� while ($result->valid()) {
� � $cur = $result->current();
� � print "".$cur['username']." rated it ".$cur
['score']."\n";
� � $result->next();
� }
� print "";
}

Friday, October 30, 2009

Bonus: Distance from
each cafe

Friday, October 30, 2009

Geocoding Review

- Geocoding: taking real-world address,
give latitude & longitude

- Reverse Geocoding: given lat/lon, guess
a real-world address

Friday, October 30, 2009

In this case...

- We have addresses for cafés

- We have lat/lon for user using
geolocation

- We need lat/lon for cafés

Friday, October 30, 2009

Demo

- Tinygeocoder's geocoder (we used their
reverse geocoder last week):

http://tinygeocoder.com/create-api.php?
q=353+Serra+Stanford+CA

Friday, October 30, 2009

http://tinygeocoder.com/create-api.php?q
http://tinygeocoder.com/create-api.php?q
http://tinygeocoder.com/create-api.php?q
http://tinygeocoder.com/create-api.php?q

Get lat/lon for cafe
// if we haven't already fetched the distance for this café
if (!$("#distance", cafeID).length) {
� $.getJSON("http://tinygeocoder.com/create-api.php?callback=?", {'q':
thisCafe.address}, function(data){
� � var lat = data[0];
� � var lon = data[1];
� � getLocationAndDistance(lat, lon, cafeId);
� })
}

Friday, October 30, 2009

http://tinygeocoder.com/create-api.php?callback=?
http://tinygeocoder.com/create-api.php?callback=?

Now, user location
/* this should look familiar from last week */
function getLocationAndDistance(lat, lon, cafeId) {
� if(navigator.geolocation) {
� � navigator.geolocation.getCurrentPosition(function(position){
� � � var dist = distanceBetweenPoints(lat, lon,
position.coords.latitude, position.coords.longitude);
� � � addDistanceInformation(dist, cafeId);
� � });
� } else {
� � // fake it
� � window.setTimeout(function(){
� � � var dist = distanceBetweenPoints(lat, lon, 37.428337,
-122.175822);
� � � addDistanceInformation(dist, cafeId);
� � }, 1000);
� }
}

Friday, October 30, 2009

Now, populate the data
function addDistanceInformation(distance, cafeId) {
� $("<li id='distance'>" + Math.floor(distance * 1000) + "m
away").insertBefore($(".postreview", "#"+cafeId));
}

Friday, October 30, 2009

Demo
index-6.html

Friday, October 30, 2009

Q’s?

Friday, October 30, 2009

