Clustrophile 2: Guided Visual Clustering Analysis

Marco Cavallo and Çağatay Demiralp

Fig. 1: Clustrophile 2 is an interactive tool for guided exploratory clustering analysis. Its interface includes two collapsible sidebars (a, e) and a main view where users can perform operations on the data. Clustrophile 2 tightly couples b) a dynamic data table that supports a rich set of filtering interactions and statistics and c) multiple resizable Clustering Views, which can be used to work simultaneously on different clustering instances. Each Clustering View provides several ways to guide users during their analysis, such as d) the Clustering Tour.

Abstract—Data clustering is a common unsupervised learning method frequently used in exploratory data analysis. However, identifying relevant structures in unlabeled, high-dimensional data is nontrivial, requiring iterative experimentation with clustering parameters as well as data features and instances. The space of possible clusterings for a typical dataset is vast, and navigating in this vast space is also challenging. The absence of ground-truth labels makes it impossible to define an optimal solution, thus requiring user judgment to establish what can be considered a satisfiable clustering result. Data scientists need adequate interactive tools to effectively explore and navigate the large space of clusterings so as to improve the effectiveness of exploratory clustering analysis. We introduce Clustrophile 2, a new interactive tool for guided clustering analysis. Clustrophile 2 guides users in clustering-based exploratory analysis, adapts user feedback to improve user guidance, facilitates the interpretation of clusters, and helps quickly reason about differences between clusterings. To this end, Clustrophile 2 contributes a novel feature, the clustering tour, to help users choose clustering parameters and assess the quality of different clustering results in relation to current analysis goals and user expectations. We evaluate Clustrophile 2 through a user study with 12 data scientists, who used our tool to explore and interpret sub-cohorts in a dataset of Parkinsons disease patients. Results suggest that Clustrophile 2 improves the speed and effectiveness of exploratory clustering analysis for both experts and non-experts.

Index Terms—Clustering tour, Guided data analysis, Exploratory data analysis, Interactive clustering analysis, Interpretability, Explainability, Visual data exploration recommendation, Dimensionality reduction, What-if analysis, Clustrophile, Unsupervised learning.

1 INTRODUCTION

The success of exploratory data analysis (EDA) depends on the discovery of patterned relations and structures among data instances and attributes. Clustering is a popular unsupervised learning method [15] used by analysts during EDA to discover structures in data. By automatically dividing data into subsets based on a measure of similarity, clustering algorithms provide a powerful means to explore structures and variations in data. A cluster is a collection of samples that are considered similar to each other and dissimilar from those belonging to other clusters.

However, there is currently no single systematic way of performing exploratory clustering analysis: data scientists iteratively combine clustering algorithms with different data-transformation techniques such as data preprocessing, feature selection and dimensionality reduction, and experiment with a large number of parameters. This is an iterative process of trial and error based on recurring formulation and validation of assumptions on the data. Data scientists must make many decisions in determining what constitutes a cluster, including which clustering algorithm and similarity measure to use, which samples and features (dimensions) to include, and what granularity (e.g., number of clusters) to seek.

The space of clusterings determined by different choices algorithms,
parameters, and data samples and attributes is vast. The sheer size of this exploration space is the first challenge in exploratory clustering analysis. Data scientists need tools that facilitate iterative, rapid exploration of the space of data clusterings. The second important challenge is how to navigate efficiently in this large space, rather than merely ad hoc wandering. Therefore, clustering tools would benefit from incorporating techniques that guide users, imposing a structure over the space of clustering that leads to efficient navigation. Although clustering is unsupervised by definition, we consider here the common case of complete absence of labels for validation (sometimes referred to as “fully unsupervised clustering”). If formal validation is not possible, how do we estimate the meaningfulness of the outcome of a clustering algorithm? Using the concepts of cluster compactness (closeness of data points within the same cluster) and separation (how far a cluster is from others), different internal validation measures have been introduced to estimate the “goodness” of a clustering and compare it to other clustering results. Though widely used, these metrics fail to incorporate the context of the analysis and the users goals and her prior knowledge and expectations, which often have significant role in determining the meaningfulness of a clustering result. For instance, if a user is interested in determining a set of progression states in Parkinson’s disease, discovering that the best clustering—according to the Silhouette index—is that separating people affected by the disease on their right side and those affected on their left side is of limited use. Furthermore, each internal validation metric takes into account slightly different characteristics of the data and should be carefully chosen based on the clustering task. There is indeed no absolute best criterion that, independently of the data and of the final aim of the clustering, can establish the best result for the users needs.

We introduce Clustrophile 2, a new interactive tool for guided clustering analysis. Clustrophile 2 guides users in clustering-based exploratory analysis, adapts user feedback to improve user guidance, and facilitates the interpretation of clusters, and helps reason quickly about differences between clusterings. To this end, Clustrophile 2 contributes a novel feature, the Clustering Tour, to help users choose clustering parameters and reason about the quality of different clustering results in line with user’s analysis goals and expectations. We evaluate Clustrophile 2 through a user study with 12 data scientists of varying skill sets who used our tool to explore and interpret sub-cohorts in a dataset of Parkinson’s disease patients. We find that the Clustering Tour enables data scientists to discover algorithms and parameters that they are unfamiliar with or hesitant to use. Similarly, the Clustering Tour helps data scientists avoid prematurely fixing on a particular set of data attributes or algorithmic parameters during exploratory analysis.

In addition to the Parkinson dataset used for the evaluation study, we use the OECD Better Life (OECD for short) dataset [30] to demonstrate the use of our tool in figures throughout the paper. The OECD dataset consists of eight numerical socioeconomic development indices of 34 OECD member countries. Below we first summarize related work and then discuss our design criteria for Clustrophile 2. We then present the user interface of Clustrophile 2 along with the integrated visualizations and interactions, operationalizing the design criteria presented. Then we introduce the clustering tour and the underlying graph model. Next we present a qualitative user study conducted with 12 data scientists, then discuss our design criteria for Clustrophile 2, and finally present our analysis of the user study results. The OECD Better Life dataset is a comprehensive example of interactive visualization tools for exploring large complex data.
of quality metrics, considering user feedback, clustering parameters, data features along with interpretable explanations in guiding users.

3 Design Criteria

We identify a set of high-level design criteria to be considered in developing systems for interactive clustering analysis. These criteria are based on research literature and on the regular feedback we received from data scientists during the development of Clustrophile 2.

D1: Show variation within clusters. Clustering is useful for grouping data points based on similarity, thus enabling users to discover salient structures. The output of clustering algorithms generally consists in a finite set of labels (classes, clusters) to which each data point belongs. In fuzzy clustering, the output is the probability of belonging to one of those classes. However, in both cases the user receives little or no information about the differences among data points in the same cluster. Clustrophile 2 combines various visualizations of the data—table, scatterplots, matrix diagrams, distribution plots—to facilitate the exploration of data points at different levels of granularity. In particular, scatterplots represent dimensionally reduced data and thus provide a continuous spatial view of similarities among high-dimensional data points.

D2: Allow quick iteration over parameters. The outcome of a clustering task is highly dependent on a set of parameters: some of them may be chosen based on the type of data or the application domain, others are often unknown a priori and require iterative experimentation to refine. Clustrophile 2 enables users to interactively update and apply clustering and projection algorithms and parameters at any point while staying in the context of their analysis session.

D3: Represent clustering instances compactly. It is important for users to be able to examine different clustering instances fluidly and independently without visual clutter or cognitive overload. We define “clustering instance” to be the outcome of a clustering algorithm according to specific parameters. The Clustrophile 2 interface uses the “Clustering View” element as the atomic component representing a clustering instance. Clustering View pairs a projection scatterplot and a clustering heatmap, using two complementary visualizations. A compact, self-descriptive representation is also useful for visually comparing different clustering instances. Clustrophile 2 lets users work simultaneously on multiple Clustering Views, which can be freely organized by users across the interface and help them keep track of how different choices of features, algorithms and distance measures affect clustering results.

D4: Facilitate interpretable naming. How to attach meaning to the “learned” structures in clustering is an important yet challenging problem.

D5: Support analysis of large datasets. The ability to interactively explore and analyze large datasets is important for analysts in many domains and has been a major request of our collaborators. Clustrophile 2 adopts caching, precomputation, sampling and feature selection, which can be considered a form of importance sampling, to support analysis with larger datasets. Addressing computational scalability also helps mitigate the visual scalability issues. Clustrophile 2 also supports common interaction techniques such as panning & zooming and visual grouping with smooth convex-hull patches to reduce visual clutter.

D6: Support reasoning about clusters and clustering instances. Users often would like to know what features (dimensions) of the data points are important in determining a given clustering instance, or how different choices of features or distance measures might affect the clustering. For example, is it a “valid” or “good” clustering? Users also would like to understand the characteristics of data points in a given cluster that distinguish the cluster from other clusters and how these data points come to be in the cluster. Clustrophile 2 dynamically chooses a combination of metrics based on the data and user preference in supporting clustering analysis. It also includes automated metric suggestions, visual explanations (e.g., decision-tree based cluster visualization), quantitative indicators (e.g., stability and confidence scores), textual descriptions and hyperlinks to help user better interpret results and make informed decisions, eschewing the blind use of clustering parameters and validation methods.

D7: Promote multiscale exploration. Clustering requires users to iteratively generate hypotheses and try to validate them. Consequently, it is fundamental for interpretability and trust to arm the user with the ability to reach the same solution in multiple ways, thus enabling data exploration at multiple scales. Clustrophile 2 integrates views to compare and analyze single clustering results, drill down the perspective of single clusters, identify potential subclusters and even inspect single points with respect to their feature distribution. Clustrophile 2 lets users view statistical summaries for each cluster and perform “isolation” [11], which enables splitting clusters characterized by mild features into more significant subclusters. Dynamic filtering and selection of single data points are also implemented and coupled with statistical analysis to identify and eventually remove outliers and skewed distributions in the data.

D8: Keep a stateful representation of the current analysis. One of the primary motivations for data analysts in using interactive tools is to increase their productivity or save time. The iterative nature of a clustering analysis continuously forces users to try out different parameters and features, perform a set of computations and decide which of the many directions to take next making the analysis session extremely hard to reproduce. Clustrophile 2 enters each operation performed by users in a log, enabling them to undo/redo single operations and also to review the workflow of their analysis.

D9: Guide users in clustering analysis. Due to the number of possible combinations, iterative experimentation on different clustering parameters can be non-trivial or time consuming, and becomes even more challenging in a high-dimensional dataset. Furthermore, most users do not know in detail the advantages and disadvantages of clustering or projection methods, sometimes choosing them blindly and simply trying all possible parameter combinations. It is thus important that the system provide assistance to the user in navigating complex clustering spaces, while incorporating the user’s feedback in the process. Clustrophile 2 provides textual explanations with suggestions on when it could be worth using certain parameters with references (hyperlinks) to existing literature. Clustrophile 2 also provides automated suggestions based on the dataset currently analyzed, on previous computations and on user preferences. Clustrophile 2 introduces a novel feature, the Clustering Tour. The Clustering Tour recommends a sequence of clusterings based on clustering configuration choices, data features, and user feedback. It samples the clustering space promoting coverage in clustering spaces, while incorporating the user’s feedback in the process.

4 User Interface and Interactions

In this section we briefly describe the main components of the Clustrophile 2 interface and interactions. Clustrophile 2 has been developed iteratively according to the design considerations introduced in the previous section. We refer back to the relevant design criteria to motivate our design choices. Clustrophile 2 interface consists of a main,
central view Fig. 1, two collapsible sidebars (left Fig. 1 and right Fig. 1) and multiple modal windows displayed with relevant interactions.

The left sidebar (or Navigation Panel) contains a button menu to import datasets from comma-separated-values (CSV) files, load data from previous analyses and export the results (i.e., clusters, chart images) of the current session. Clustrophile 2 supports saving the current state of the analysis (D8) for follow-up analysis and sharing it with contributors who are also listed in the Navigation Panel. The right sidebar (hidden by default) records a log of the operations and parameter changes made by the user (Fig. 1), enabling him easily to revert the analysis to a previous state (D8). A convenient list of the top pairwise feature correlations in the dataset is also displayed (Fig. 1), facilitating a quick overview of statistical dependencies. The main view is subdivided into an upper region containing the Data Table (Fig. 1) and a lower region that displays one or more clustering views. Clustrophile 2 in fact enables data scientists to work simultaneously on multiple clustering instances (D3), but at the same time links the coordinate Data Table view to only one instance at a time. The currently selected clustering instance is generally the one the user last interacted with, and its corresponding Clustering View is marked with a blue header. The selected instance and its cluster names are also made available in the Navigation Panel (Fig. 1).

4.1 Visualization Views

Clustering View A Clustering View (Fig. 2) represents a single clustering instance and has the goal of both visualizing the identified clusters and characterizing them based on their distinctive features. In our user interface, the Clustering View also lets the user dynamically change projection and clustering parameters for an associated clustering instance, and keeps them always visible for easier comparison with other Clustering Views.

The minimal set of visualizations we choose to summarize a clustering instance consists of a scatterplot (Fig. 2, left) and a heatmap (Fig. 2, right). The scatterplot provides a two-dimensional projection of the data obtained using dimensionality reduction and encodes clustering assignments through color. Since clustering algorithms divide data into discrete groups based on similarity, projections are a natural way to represent different degrees of variation within and between groups as distance between elements (D1). Each cluster of points can also be identified by a colored convex hull, simplifying the visualization in case of a larger number of data points (D5).

The heatmap aims instead at providing a qualitative and quantitative description of each cluster based on the aggregate feature values of the data points it contains. Each column of the matrix represents a cluster; rows represent data features (dimensions). The color of each cell encodes the average value of cluster members for a specific feature with respect to the feature distribution. For instance, in the heatmap in Fig. 2 the dark red cell indicates that the Red cluster is characterized by very high WORKINGLONGHOURS, whereas the dark blue cells indicate that the same cluster has very low EDUCATIONALATTAINMENT and STUDENTSKILLS, i.e., red means higher values, blue lower values. This way, each cluster can be quickly described (D6) by observing the heatmap vertically (e.g., intense colors indicate average values); similarly, clusters can be compared by looking horizontally at the matrix diagram (e.g., the second row of the heatmap). It is easy to see that the green cluster is the one with highest STUDENTSKILLS. By hovering on each cell, the user can inspect the average feature value of each cluster and the p-value associated to the current selection feature algorithm (which encodes the relevance of a feature). Clusters are ordered from largest to smallest and display their member number and color right beneath each column. Since with high-dimensional datasets (D5) the number of rows would become too large, we display only the top ten relevant features, which are chosen automatically by a feature selection algorithm (more on this later) or manually selected by the user.

Users can select one or more data points or clusters from both the scatterplot and the heatmap. When a selection is performed, it is reflected in both visualizations and the Data Table. The isolation feature further lets users re-cluster and re-project only the selected points, an operation particularly useful for finding subclusters (D7). From the Clustering View, users can dynamically change the parameters associated to the associated clustering instance. Currently supported clustering methods include K-means, Agglomerative (Hierarchical) [36], DBSCAN [9], Birch [52], Cure [13] and CLIQUE [11] algorithms that, as applicable, can be combined with ten different clustering metrics and three types of linkage strategies. Six types of projection methods are also available: PCA [45], MDS [19], CMDs [46], t-SNE [25], Isomap [44] and LLE [37]. Users can also define custom projection and clustering algorithms and metrics. We note that by default Clustrophile 2 applies dimensionality reduction and clustering in high-dimensional space, and then visualizes the results using, respectively, a scatterplot and a heatmap.

The user can control the number of displayed clusters through a slider located underneath the heatmap (Fig. 2). Different numbers of clusters are automatically precomputed by Clustrophile 2 based on user settings, so that the user can quickly change the number of clusters without waiting for further computations (D5). Another parameter that can be chosen from the clustering view is the sampling rate of the data; this is useful for doing clustering in the presence of larger datasets (D5).

Data Table While the Clustering View provides a high-level summary of a clustering instance, it is fundamental for data scientists to be able to drill down in the data and inspect individual data samples. The Data Table view gives the user the raw data, supporting statistical analysis, automatic outlier detection, selection and filtering. These features in particular make it possible to reason about how single data points and feature distributions affect the current clustering, and help the user decide which dimensions should be considered or excluded by the clustering algorithm.

The Data Table (Figure 1a) contains a dynamic table visualization of the current dataset in which each column represents a feature (dimension) and each row represents a data sample. The Data Table displays data and cluster assignments associated with the currently selected Clustering View. For each row, a vertical, colored band encodes the cluster membership of the associated data sample (Figure 1b), whereas a set of green or red arrows respectively identify particularly high or low feature values (“outliers”) with respect to each feature distribution (Figure 1b). Clicking on the buttons next to each feature name orders rows by cluster or by column and displays basic statistics on a particular feature in a pop-up window (Figure 3d). In particular, Clustrophile 2 can compare the statistical values computed on the currently selected rows and those of the whole dataset (Figure 3g), plus a histogram plot of the feature distribution. A list of the features that correlate most to the selected feature is also given, allowing quick discovery of data trends. The search functionality (Figure 3a) lets users select data samples using arbitrary keyword search on feature names and values. Users can also filter the table using expressions in a mini-language (Figure 3b). For example, typing age > 40&weight < 180 dynamically selects data points across visualizations in which the fields age and weight satisfy the entered constraint. When some rows are selected, the corresponding points of the scatterplot and cluster columns in the heatmap in the current Clustering View are highlighted.

Cluster Details While the Data Table works well for inspecting single data points and feature distributions across the dataset, the Cluster Details modal (Fig. 4) aims at a deeper characterization of a specific cluster. The modal can be opened by double-clicking on any cluster in the user interface and contains statistical information about the members...
of the cluster—such as most relevant features, top pairwise feature correlations and outliers. The user can use this view to assign a custom name to a cluster or to display the histogram for each feature distribution with respect to the cluster. An automatically generated cluster description containing suggestions on the analysis is also displayed.

4.2 Raising Awareness About Choosing Parameters

Given the high number of parameter combinations that may influence a clustering outcome, it is important to guide users towards a reasonable choice of parameters in the context of the current analysis. From each Clustering View, the user can access a “Help me decide” panel containing a tab dedicated to the choice of each parameter.

Feature selection The choice of which features of the original dataset to feed to the clustering algorithm can strongly influence both the performance and the quality of clustering results. To help the user understand if and which data dimensions should be included in the analysis, Clustrophile 2 provides a list of the most relevant features according to several feature-selection algorithms useful in removing noisy or uninfluential features (e.g. univariate feature selection based on chi-squared or ANOVA F-value, recursive feature elimination [14]).

Clustrophile 2 also introduces a hierarchical clustering of the dataset’s features (Fig. 5b), displaying through a scatterplot and a dendrogram how data dimensions can be grouped together based on similarity through feature agglomeration. After applying any feature selection strategy, the user can choose to apply the suggested selection or choose manually which features to consider in the clustering.

Sampling In presence of larger datasets (more than 10,000 data samples) Clustrophile 2 suggests that the user perform clustering only after sampling the original data, in order to speed up the computation. Since the analysis is unsupervised, the user can change only the percentage of random sampling.

Clustering algorithm, metric and linkage For each possible choice of clustering parameters, Clustrophile 2 provides a textual description with theoretical advantages/drawbacks and use cases for each method (Fig. 5a). For instance, users can learn that Kmeans is not suited in the presence of uneven cluster sizes and non-flat geometries, or that Cityblock affinity can outperform Euclidean distances in case of sparse data. In the case of clustering metrics and linkage criteria, Clustrophile 2 can suggest to the user which parameters to use by testing them asynchronously and picking the one that generates the best cluster separation. Hyperlinks to related literature are also included.

Number of clusters Clustering algorithms do not generally output a unique number of clusters, since this is generally a user-defined parameter. By generalizing the idea of the “elbow plot” for the K-means cost function, Clustrophile 2 precomputes a range of clustering solutions, each with a different number of clusters in a user-defined range, and compares them in a line chart (Fig. 5c). In particular, the horizontal axis corresponds is the number of clusters and the vertical axis represents the value of one of the internal validation measures. Based on the metric formulation, the optimal number of clusters is given by the maximum, minimum or elbow value of the line chart [23]. When applicable, Clustrophile 2 complements the line chart with a clustering-algorithm-specific plot (e.g., a dendrogram for hierarchical clustering).

A silhouette plot [36] is also included (Fig. 5c, right), providing more detailed information about which clusters should be merged and which data points are critical to determining the optimal cluster number.

Projection Although the dimensionality-reduction method used to visualize the scatterplot does not influence the clustering results, it may visually bias how a user perceives the quality of a given clustering instance. To handle this, Clustrophile 2 provides a description and set of references for each projection method in addition to an automated suggestion. By precomputing each projection, our tool applies the same internal evaluation metrics used for clustering to the dimensionally reduced data and suggests a projection algorithm that optimizes cluster compactness and scatterplot separation.

4.3 Guiding Users Towards a Better Clustering

Once clustering parameters are chosen, the next step is assessing the quality of clustering outcome. In the panel “Is this a good clustering?”, Clustrophile 2 aims at helping the user reason on the absolute and relative “satisfactoriness” of the results.

Quantitative validation Since no ground truth labels are available, internal validation measures are the only objective numerical values for assessing the goodness of a clustering instance and comparing it to other instances. Instead of adopting only one metric, Clustrophile 2 acknowledges the pros and cons of each measure and tries to help the user choose the measure that better fits the data and requirements. Using Liu et al.’s work [23], we associate the performance of each validation metric to a set of five conditions: presence of skewed distributions, subclusters and different cluster densities; robustness of the algorithm to noise; and monotonicity of the measure’s cost function. While the first three can be automatically inferred from the data, the last two are dictated by user preferences. For instance, using Silhouette in presence of subclusters or Calinski-Harabasz with noisy data could lead the user to a non-optimal cluster choice.

On top of briefly describing each measure, Clustrophile 2 filters them dynamically to show only those that match the user’s interest and displays how their value changes based on the number of clusters. For each measure, Clustrophile 2 shows a unique number of clusters, since this is generally a user-defined parameter. By generalizing the idea of the “elbow plot” for the K-means cost function, Clustrophile 2 precomputes a range of clustering solutions, each with a different number of clusters in a user-defined range, and compares them in a line chart (Fig. 5c). In particular, the horizontal axis corresponds is the number of clusters and the vertical axis represents the value of one of the internal validation measures. Based on the metric formulation, the optimal number of clusters is given by the maximum, minimum or elbow value of the line chart [23]. When applicable, Clustrophile 2 complements the line chart with a clustering-algorithm-specific plot (e.g., a dendrogram for hierarchical clustering).

A silhouette plot [36] is also included (Fig. 5c, right), providing more detailed information about which clusters should be merged and which data points are critical to determining the optimal cluster number.

Projection Although the dimensionality-reduction method used to visualize the scatterplot does not influence the clustering results, it may visually bias how a user perceives the quality of a given clustering instance. To handle this, Clustrophile 2 provides a description and set of references for each projection method in addition to an automated suggestion. By precomputing each projection, our tool applies the same internal evaluation metrics used for clustering to the dimensionally reduced data and suggests a projection algorithm that optimizes cluster compactness and scatterplot separation.
Fig. 5: Providing guidance in clustering analysis. The figure displays only a subsets of the views included in the “Help me decide” (top row) and the “Is this a good clustering?” (bottom row) panels of each Clustering View. a) Textual explanations and hyperlinks are used to suggest clustering parameters, b) different feature selection algorithms and visualizations are used to understand the relevance of data dimensions, and c) cost function and metric plots are used to suggest a good number of clusters. To evaluate the “goodness” of a clustering, d) decision rules and automated cluster descriptions are used to foster interpretability, e) several evaluation metrics are dynamically suggested, and f) uncertain clustering assignments are visualized and tested.

Fig. 6: Clustering Tour interface. Users can explore possible clustering solutions generated by our algorithm by simply clicking on the “Generate solution” button. On the left, a) previous solutions are listed and compared, while b) the current one is represented through a scatterplot and a heatmap visualization in the middle. Users can also define c) constraints on clustering parameters, specifying which ones can be modified by the Clustering Tour algorithm.

4.4 Clustering Tour

By iteratively changing all clustering parameters, a user can dynamically explore the space of possible clustering solutions until a satisfactory solution or set of insights on the data is found. However, even with guidance in parameter choice, the space of possible parameter combinations and clustering solutions is too large to explore manually in its entirety. There are certain parameter choices that largely affect the clustering outcome, whereas other parameters have minimal influence on the results. Overall, it would be useful to let users explore first the parameter choices that determine solutions very different from each other, metaphorically making large leaps in the space of possible clusterings, in order to get a quick tour of the data. If the user likes a solution and wants to refine it, then other parameter choices can be made to explore solutions similar to the selected one. With this concept in mind, we introduce a Clustering Tour feature to help the user quickly explore the space of possible clustering outcomes. The interface shown in Fig. 6 contains (a) a list of previously explored solutions, (b) a scatterplot and a heatmap representing the current solution, (3) a set of buttons for the user to give feedback, and (4) a choice of modalities with which the user can constrain how parameters are updated.

To determine which clustering solutions to suggest to the user, our algorithm considers three fundamental measures. Let’s imagine the space of possible clustering solutions as a fully connected graph where each solution is a node (Fig. 7). Each clustering outcome is generated by a choice of parameters \(p\), has a clustering assignment (i.e. class labels) \(s\) and has a score \(s\) given by a linear combination of internal clustering validation measures. The distance between two nodes in the graph is given by \(\Delta l\), since we want to prioritize the exploration of clusters that have different outcomes. In our case, we compute \(\Delta l = 1 - AMI\), where AMI is the Adjusted Mutual Information score [48]. The same edge connecting the two nodes is also associated to their difference in parameters \(\Delta p\), and their difference in scores \(\Delta s\). We consider the current choice of parameters of the associated Clustering View to be the entry node of the graph: nodes in the same neighborhood will have very similar outcomes while distant nodes will probably lead to different clustering assignments. Since computing the full graph would be computationally infeasible, we sample a set of nodes that are distant from one another by inferring \(\Delta l\) from a hypothetical \(\Delta p\). In other words, we want to estimate roughly which parameter changes would create the largest modification in cluster...
assignments. To do this, we asynchronously apply a randomized subset of each parameter category to the current clustering and assign a weight to each of them based on the \(\Delta l \) produced. For instance, if modifying the number of clusters in the current solution produces on average a \(\Delta l \) higher than changing the clustering metric, cluster number will have a higher weight in the determination of a possible \(\Delta p \). Once this first step is computed, a set of \(\Delta p \) is chosen giving priority to changing first parameters with higher weight. Based on our tests, changes in input features are those that determine the biggest \(\Delta l \) and thus those that are explored first. In the absence of user constraints, input features are determined by cyclically applying a subscore to each data dimension through the feature selection methods described in Section 4.2 and selecting those with highest relevance and/or lowest pairwise correlation. At the same time, we randomly exclude from the analysis features of very high relevance to prevent single features from biasing the clustering result. The remaining parameters are explored in a similar way by applying sampling and randomization. Once a clustering suggestion is computed, we perform a subset of the dimensionality reduction methods in Section 4.1 and apply clustering validation measures on their output to choose the one that best visualizes the separation among clusters. The result is then shown to the user, who can continue generating solutions that are very different from one another by pressing the “Generate new solution button” to explore different perspectives on the data. If the user is relatively satisfied with the current solution, he presses the “I like it” button to explore the neighborhood of the current node in the graph. In this situation high-weight parameters (often features and cluster number) tend to remain fixed, whereas low-weight (e.g., typically the clustering metric) are changed to produce slight variations in the clustering outcome. Only at this stage, when the semantics of the identified clusters has become stable, are validation measures used to decide which solution to suggest to the user. If the user presses the “Very bad :(" button, the Clustering Tour goes back to the previous node of the graph and explores a different direction (i.e. tries to generate a solution with high \(\Delta l \) from the disliked solution). At any point of the Clustering Tour, the user can constrain the exploration to a subset of the available parameters, deciding which ones should be fixed or changed and which ones should be decided by the algorithm. When the user is satisfied, he can decide to apply the identified parameters to the associated Clustering View.

We illustrate in Fig. 8 a sample execution of the Clustering Tour on the OECD dataset, showing the results generated by the algorithm based on user feedback.

4.5 System Architecture

Clustrophile 2 is deployed as cloud-based web application based on a client-server architecture model. Users get access to the tool through their web browsers, by connecting to a website hosted on a dedicated server, which also holds a MongoDB [28] database containing information about users and their datasets. In particular, the system enables users to create accounts and upload their own datasets, save the state of their analyses and share it with other users. **Clustrophile 2**'s web interface is implemented in Javascript with the help of D3 [3] and React [35], whereas PEG.js [32] was used to compile the mini-language used for filtering. A separate analytics server on the same physical machine carries out the computations required by Clustrophile 2, exchanging input and output values with the user interface in JSON format. The analytics server, based on Flask and running Python, makes heavy use of NumPy [49], scikit-learn [31] and PyClustering [34] libraries. To minimize the amount of information exchanged between the client application and the analytics server, the latter creates a session for each user and keeps their datasets in memory (stateful server), so that front-end operations do not require sending the raw data to the back end. Secondly, we reduce the number of computational requests generated by the user through a caching system in the client application, leveraging the fact that clustering analysis is iterative by nature.

5 User Study

We conduct a study with twelve data scientists using Clustrophile 2 to answer an open analysis question about a real-world dataset. Our user study has two goals: 1) understanding how data scientists use the interactions, visualizations, and user-guidance features of our tool based on their level of expertise and prior knowledge of the data domain, 2) studying the overall workflows adopted by data scientists to arrive to a solution they consider satisfactory in an open-ended analysis task about a real-world dataset, where there is no guarantee of finding a solution.

Data We chose a real-world dataset about subjects with Parkinson’s disease, in which there is not trivial solution to the clustering problem. The dataset has 8652 rows and 37 features, obtained after preprocessing a subset of the data made publicly available by the Parkinsons Progression Markers Initiative (PPMI). The data contains records about human subjects associated to the Unified Parkinson’s Disease Rating Scale (UPDRS), which consists of a set of measures that describe the progression of a person’s Parkinson’s disease. The measures in the scale are evaluated by interview and clinical observation of human subjects by a clinician, and include symptoms such as rigidity of upper and...
and two participants with no prior knowledge about the domain of the data—for a total of six domain experts and six novices of neuroscience.

Procedure The study took place in the experimenters office, where one participant at a time used Clustrophile 2 on the experimenters laptop. Participants were first briefed about the study and then given a tutorial about Clustrophile 2 for about fifteen minutes, using the OECD dataset as sample data. After the tutorial, participants were introduced to the test dataset, and the experimenter explained the medical terminology found in feature names (e.g., “pronation-supination left hand”). Regardless of their knowledge of Parkinson’s disease, all participants were given the same task of identifying groups of patients with different phenotypes in the dataset. Participants were given two hours provide a “solution” with which they were satisfied. Using, Clustrophile 2’s logging feature, we timestamped and recorded each operation performed by participants. During the analysis session, participants were asked to think aloud and comment on the reasons behind their choices, which we recorded using an audio recorder. Participants could conclude the session and stop the timer whenever they felt they had obtained a satisfactory result. At the end of the analysis session, participants were asked to verbally describe the clusters in their clustering solution, based on the insights (derived from their analysis. They also completed a post-questionnaire, where they were asked to answer the following questions: Q_1) “Are you satisfied with the results or insights you obtained?”; Q_2) “Would you be able to obtain a better result with another tool or your own coding skills?”; Q_3) “Did naming clusters help you reason on their significance?”, and Q_4) “Did Clustrophile 2 help you in deciding the clustering parameters?”.

5.1 Results

We summarize results of our study in Table 1, reporting for each user their archetype and their eventual expertise in the We find that clusters identified participants are in line with recent work on phenotypes in Parkinson’s disease [12, 26]. We below discuss the results of our user study in depth, where we use the notation Pi to refer to participant number i. When meaningful, we also report how each archetype had a different type of interaction with the tool or a different approach to the analysis.

User Archetypes and Domain Knowledge Our study confirmed indeed the relationship between the analyst types and attitude in forming data analysis [17]. For instance, Fig. 9 shows that, on average, hackers seem to invest more time in the analysis and to try out more parameter combinations than the other data analysts. Similarly, expertise in the neuroscience domain suggests shorter analysis time, possibly due to better knowledge of the data features. In Fig. 10 we break down the interactive parameters changed by participants during their analysis session into sub-categories (e.g. how many times they enabled/disabled a feature, how many times they changed the number of clusters). We find that different archetypes tended to use differently the features available in Clustrophile 2. Even the type of algorithms and methods used seem to be correlated to analyst archetypes, as shown in Table 1. Based on the participants answers to Q_1 and Q_2, we demonstrate that Clustrophile 2 proved to support the analysis of all types of data analysts.

Analysis Flow For all participants, the analysis started with a default Clustering View automatically applying PCA and Agglomerative clustering to the data. The first action performed by five out of twelve users was to select the features of interest in the data, using either

![Fig. 10: Parameters changed during the analysis grouped by category and user archetype. The bar chart shows that choosing input features (enabling / disabling data dimensions) was the most performed activity, while clustering method and metric were changed less often. The cluster number parameters was also highly adjusted, especially by the Application User archetype in the context of Agglomerative clustering. It is interesting to note that about 27% of the total parameters were repeated by the same user, demonstrating the highly iterative nature of exploratory data analysis and the need for caching results. Despite not a clustering parameter, we report under the name “Statistics” the number of times each user accessed feature distribution information from the Data Table.

![Lower limbs, leg agility, gait, spontaneity of movement, finger and toe tapping, tremor (see [12] for the full list of measures of the UPDRS scale). While most features were UPDRS values ranging from 0 to 4, few others indicated the overall progression of the disease (Hoen & Yahr stage), the use of medication (ON_OFF_DOSE) and the number of hours passed from when the subject took the drug (PD_MED).](image)

![For all participants, the analysis started with a default Clustering View automatically applying PCA and Agglomerative clustering to the data. The first action performed by five out of twelve users was to select the features of interest in the data, using either](image)
the Data table or the Help me decide panel. Most domain experts removed the non-UPDRS features directly from the Data table, whereas participants without prior knowledge often identified them through the feature selection tab of the Help me decide panel. Five other participants preferred instead to try out first different clustering algorithms and number of clusters, observing the changes in the scatterplot and in the heatmap. These users generally later noticed the high influence of the non-UPDRS features such as PD_MED_DOSE and Hoen & Yahr by primarily help of the heatmap visualization. Consequently, they proceeded in a fashion similar to the domain experts, excluding these features from their subsequent analysis. Finally, three out of twelve users (of which two belonged in the application user archetype) preferred to start their analysis with the Clustering Tour. In most cases, the analysis continued with an iterative and cyclic modification of clustering parameters and selected features, until participants realized that they could only find clustering outcomes based on affected side or severity of the disease. These clusters were easily interpreted from the heatmap visualization, which would show an horizontal gradient for increasing severity and an alternate pattern in rows corresponding to left and right related features.

5.2 Discussion

The Importance of Feature Selection

The first insight identifiable from the final clustering outcomes in Table 1 and from the histogram in Fig. 10 is the relevance of feature selection in clustering analysis. More than any other parameter, the choice of the features to feed to the clustering algorithm was able to lead users towards a satisfactory result, and at the same time was the part of the analysis in which participants spent most of their time on. In particular, participants used the feature distribution information available from the Data Table in combination with the statistical analysis methods available in the “Help me decide” panel. Whereas domain experts were often able to spot uninteresting features from their name (e.g., non-UPDRS features such as ON_OFF_STATE and PD_MED_USE) and directly remove them from the data table, participants with no prior knowledge about the domain made heavy use of principal component analysis (PCA) and univariate feature selection (e.g., ANOVA) to test the relevance of data dimensions. This allowed the scripters in particular to quickly spot features that were contributing the most to the clustering outcome, and eventually remove them from the analysis. The hacker archetype often complemented these findings by inspecting the distribution values (e.g., variance) and pairwise correlations of each feature from the Data Table. The application users seemed instead to prefer identifying relevant features and correlations from the horizontal color distribution of cells in the heatmap, expressing a more qualitative approach. After removing a first set of features, participants generally applied different clustering parameters until they realized a second round of feature selection was needed. Here the most used method was feature agglomeration, with which participants tried to agglomerate features based on correlation or semantics (e.g. removing features with high pairwise correlation, keeping only one feature out of four or more, keeping the feature with the highest variance for each left-right pair).

Clustering Tour: Exploring Different Perspectives

While most participants preferred to adopt well trusted parameters, results in Table 1 show that the four participants who used the Clustering Tour were more eager to adopt less conventional algorithms and metrics, leaving their comfort zone. “I only pushed a button and it already gave me insights I would probably not have found by trying out parameter combinations myself”, commented P3, P4, belonging to the hacker archetype, stated “I basically used the automated feature selection to result shopping [i.e. blindly use system-generated results]. However, Clustrophile 2 gives me the possibility to decide myself if solutions are reasonable. I think it’s useful for thinking outside the box.” In two cases, the Clustering Tour was initially used in unconstrained form, whereas the remaining users decided set first the desired number of clusters and a custom set of input features. The average number of solutions generated before a participant expressed a positive feedback is 3.7, followed by an average of 8.3 after the participant realized that their current parameter setting is not sufficient, and needs to be complemented by the interactive choice of data dimensions—which, together with subclustering, is essential for identifying nontrivial clusterings. Despite different user types exhibit different attitude towards exploratory data analysis, feature selection is where they spend most of their effort. Another critical aspect to consider when designing interactive clustering analysis tools is the use of precomputation, especially regarding the generation of multiple clusterings with different cluster numbers. Fig. 10 shows in particular that dynamically changing the number of clusters was a frequently performed by participants. Given the number of repeated operation, caching also proved to be essential. While the relevance of user assumptions and prior knowledge on the data further confirmed that clustering cannot be automated without incorporating these concerns, participants showed a tendency to stick to well-known parameter combinations, or blindly attempted multiple combinations by trial and error.
system can come into play and assist the user in making parameters more explainable or in comparing alternative choices through the support of visualization recommendations. A deeper understanding of the clustering outcome mostly depends on the underlying data and user task.

References

