

GAZE-ENHANCED

USER INTERFACE DESIGN

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Manu Kumar

May 2007

 ii

© Copyright by Manu Kumar 2007

All Rights Reserved

 iii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

 __
 (Terry Winograd) Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

 (Scott Klemmer)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

 __
 (Shumin Zhai)

Approved for the University Committee on Graduate Studies.

 iv

Abstract

The eyes are a rich source of information for gathering context in our

everyday lives. A user’s gaze is postulated to be the best proxy for attention or

intention. Using gaze information as a form of input can enable a computer system to

gain more contextual information about the user’s task, which in turn can be

leveraged to design interfaces which are more intuitive and intelligent. Eye gaze

tracking as a form of input was primarily developed for users who are unable to

make normal use of a keyboard and pointing device. However, with the increasing

accuracy and decreasing cost of eye gaze tracking systems it will soon be practical for

able-bodied users to use gaze as a form of input in addition to keyboard and mouse.

This dissertation explores how gaze information can be effectively used as an

augmented input in addition to traditional input devices.

The focus of this research is to augment rather than replace existing

interaction techniques. Adding gaze information provides viable alternatives to

traditional interaction techniques, which users may prefer to use depending upon

their abilities, tasks and preferences. This dissertation presents a series of novel

prototypes that explore the use of gaze as an augmented input to perform everyday

computing tasks. In particular, it explores the use of gaze-based input for pointing

and selection, scrolling and document navigation, application switching, password

entry, zooming and other applications. It presents the results of user experiments

which compare the gaze-augmented interaction techniques with traditional

mechanisms and show that the resulting interaction is either comparable to or an

improvement over existing input methods. These results show that it is indeed

possible to devise novel interaction techniques that use gaze as a form of input

without overloading the visual channel and while minimizing false activations.

 v

The dissertation also discusses some of the problems and challenges of using

gaze information as a form of input and proposes solutions which, as discovered over

the course of the research, can be used to mitigate these issues. Finally, it concludes

with an analysis of technology and economic trends which make it likely for eye

tracking systems to be produced at a low enough cost, that when combined with the

right interaction techniques, they would create the environment necessary for gaze-

augmented input devices to become mass-market.

The eyes are one of the most expressive features of the human body for non-

verbal, implicit communication. The design of interaction techniques which use gaze-

information to provide additional context and information to computing systems has

the potential to improve traditional forms of human-computer interaction. This

dissertation provides the first steps in that direction.

 vi

Acknowledgments

I would like to thank my advisor Terry Winograd for letting me chose my own

path for my research and most importantly for guiding me along the way and

educating me in the ways of academia and academic research. Terry was always very

encouraging and helped me to look at problems from different perspectives. Working

with Terry has been a wonderful experience and I could not have hoped for a better

advisor for my Ph.D.

Andreas Paepcke was always ready and willing to roll up his sleeves and help

with designing studies and analyzing data. Andreas taught me all I know about

statistical analysis and helped to make my work better in many ways. Scott Klemmer

has truly brought new energy and perspectives to the HCI group and his presence

has increased the quantity and the quality of the work being done at Stanford. I am

also grateful to Pat Hanrahan and Brian Wandell for serving on my orals committee

and to Dan Boneh for the opportunity to co-author a paper with him.

Shumin Zhai, David Beymer and Arnon Amir from IBM Almaden Research

have been a constant source of encouragement and served as a sounding board

providing advice and feedback at critical junctures of this research. I have truly

enjoyed our discussions on both eye tracking technology and applications.

Shumin Zhai and Rob Jacob wrote the seminal papers that became the

foundation of my work and I thank them both for their contribution to the field and

for their interaction with me. I would like to recognize Andrew Duchowski and Roel

Vertegaal for their contribution to the field and for organizing the Eye-Tracking

Research and Application symposium, where I met several outstanding individuals in

the field of eye-tracking.

 vii

Bob Dougherty helped me in the initial prototyping phases of attempting to

build my own eye tracker. The financial support of Stanford Media X and the School

of Engineering Equipment Matching grant was instrumental in my ability to have an

eye tracker on my desk and also to fund the final year of my Ph.D. I would especially

like to acknowledge Ellen Levy and Kathy Lung for their support.

Colin Johnson and Greg Edwards of EyeTools, Inc. were always willing to help

and share information. Nico Vroom of Tobii Technology, AB provided a loaner eye

tracker when our unit needed to be returned to Sweden for repair and helped to

keep my research on schedule.

Sergei Vassilvitskii helped me analyze and wrap my head around the pros and

cons of various algorithms. Samuel Ieong saved me countless hours by showing me

how to program the magic macros and tricks in Excel to analyze the data from user

studies. Michael Bernstein shared the code for his Master’s thesis with me, which

served as an example for me to get up to speed on C#. Rohan Puranik joined as an

undergraduate research assistant and assisted with prototyping and data analysis.

I would also like to thank Ron Yeh for the early brainstorming sessions in

which I was able to share my crazy thoughts of wanting to control things with my

eyes. Ron’s willingness to tolerate my harebrained ideas and engage in stimulating

discussions provided the encouragement for me to actually consider giving them a

shot. Thank you also to Taemie Kim, one of the best research partners I have worked

with, for her crucial contribution to our debut short-paper at CHI on the Dynamic

Speedometer; my current and past office mates Ian Buck, Doantam Phan and Bryan

Chan for putting up with me for many years; Jeff Klingner, who was always willing to

help me brainstorm solutions to problems as I walked up and down the hall; Leith

Abdulla for providing the nourishment (aka junk food) and the engaging

conversation to help in procrastination and thinking; Bjoern Hartmann and Dan

Maynes-Aminzade, who were willing to assist and share their endless creativity;

David Akers, Brian Lee, Heidy Maldonado, Wendy Ju, Merrie Ringel Morris, Kayvon

Fatahalian, Mike Houston, Joel Brandt and the many other members of the Gates 3B

HCI and Graphics family who have always been very supportive.

 viii

Thank you to Heather Gentner and Ada Glucksman — without whom things

would never run so smoothly. They shield us from the immense bureaucracy that a

large university is and help ensure we can get things done. John Gerth’s emails at odd

hours of the night are testament to the hard work it takes to secure our computing

resources.

A special thanks to Ren Ng – who on one hand made it more of a challenge for

me to finish my dissertation by providing the distraction of a cool new startup —

something I tried hard to stay away from for years, since I knew I would get

distracted! In all fairness, he also provided the motivation for me to finish.

Interacting with Ren over the past year and a half has made me realize that my true

passion lies in the world of startups and entrepreneurship and I am looking forward

to returning to that passion after completing the Ph.D.

I would also like to thank my parents who have always afforded me the

freedom to follow my own path. I know that they miss me very much and would

rather have me home, but they still encourage me to do what I want; my sister, who

by being available at home enables me to stay in the United States and my

grandmother, Pushpa Guglani, who was a remarkable lady till the very end. She

encouraged me to think free and to follow my dreams. I dedicate this Ph.D. to her for

she would have been very proud.

Most of all thank you to my fiancée, Hana Konfrštová, who has put up with the

endless hours I have spent in front of the computer and my never ending requests

for her to massage my arms which were sore from RSI. We’ve both had an incredibly

busy year, filled with several critical milestones, and it would not have been possible

to make it through it without each other’s support.

 ix

Contents

Abstract ... iv

Acknowledgments ... vi

Contents .. ix

List of Tables .. xiv

List of Illustrations ... xv

1 Introduction .. 1

1.1 Thesis Statement .. 3

1.2 Contributions ... 4

1.3 Dissertation Roadmap .. 5

2 Background ... 7

2.1 Motivation ... 7

2.2 Gaze as a Form of Input ... 8

2.3 History of Eye Tracking .. 10

2.4 State of the Art in Eye Tracking ... 12

2.5 Challenges for Gaze Input .. 13

2.5.1 Eye Movements are Noisy ... 13

2.5.2 Eye Tracker Accuracy .. 14

2.5.3 The Midas Touch Problem .. 15

2.6 Summary ... 15

3 Pointing and Selection ... 17

3.1 Related Work .. 18

3.2 EyePoint .. 21

3.2.1 Design Principles... 23

 x

3.2.2 EyePoint Implementation .. 23

3.2.3 Disabled & Able-bodied Users ... 26

3.3 Evaluation ... 27

3.3.1 Quantitative Evaluation .. 27

3.3.1.1 Web Study ... 28

3.3.1.2 Balloon Study ... 29

3.3.1.3 Mixed Study .. 30

3.3.2 Qualitative Evaluation ... 31

3.3.3 Web Study Results .. 32

3.3.4 Balloon Study Results .. 33

3.3.5 Mixed Study Results ... 35

3.4 Discussion... 36

3.5 Summary ... 39

4 Scrolling ... 41

4.1 Manual Scrolling .. 42

4.1.1 The Page Up / Page Down Problem 42

4.1.2 Gaze-enhanced Page Up / Page Down 43

4.2 Automatic Scrolling .. 43

4.2.1 Explicit Activation/Deactivation .. 43

4.2.2 Estimation of Reading Speed.. 44

4.2.3 Eye-in-the-middle ... 45

4.2.4 Smooth scrolling with gaze-repositioning 45

4.2.5 Discrete scrolling with gaze-repositioning 46

4.3 Off-Screen Gaze-Actuated Buttons ... 47

4.3.1 Dwell vs. Micro-Dwell based activation 49

4.4 Evaluation ... 49

4.4.1 Gaze-enhanced Page Up / Page Down 49

4.4.2 Smooth-scrolling with Gaze-Repositioning 50

4.4.3 Discrete scrolling with Gaze-repositioning 51

4.5 Summary ... 51

5 Application Switching .. 53

 xi

5.1 Background and Related Work .. 54

5.2 Design Rationale .. 56

5.3 EyeExposé .. 57

5.4 Evaluation ... 59

5.4.1 Quantitative Evaluation .. 59

5.4.2 Qualitative Evaluation ... 63

5.5 Results.. 63

5.6 Discussion... 65

5.6.1 Performance Results.. 66

5.6.2 Accuracy Results ... 67

5.6.3 Subjective Results ... 68

5.7 Summary ... 68

6 Password Entry .. 69

6.1 Background and Related Work .. 70

6.2 Motivation for Eye Tracking ... 72

6.3 Threat Model ... 73

6.4 Design Choices .. 73

6.4.1 Target Size ... 74

6.4.2 Keyboard Layout ... 75

6.4.3 Trigger Mechanism .. 75

6.4.4 Feedback... 75

6.4.5 Shifted Characters .. 76

6.5 Implementation.. 76

6.6 Evaluation ... 78

6.6.1 Method .. 78

6.6.2 Results ... 79

6.7 Discussion... 80

6.8 Future Work .. 82

6.9 Summary ... 82

7 Zooming .. 85

7.1 Background and Related Work .. 85

 xii

7.2 Gaze-contingent Semantic Zooming .. 87

7.3 Prototype Implementations .. 88

7.3.1 Google Maps Prototype .. 88

7.3.2 Windows Prototype ... 89

7.3.3 Piccolo Prototype .. 89

7.4 Discussion... 90

8 Other Applications .. 91

8.1 Gaze-contingent screen and power saver 91

8.2 Gaze-enhanced Multi-Monitor Coordination 92

8.3 Gaze-controlled virtual screens/desktops 93

8.4 Deictic Reference in Remote Collaboration 94

8.5 No-Nag IM Windows .. 94

8.6 Focus Plus Context Mouse ... 95

8.7 Summary ... 95

9 Improving Gaze Input .. 97

9.1 Saccade Detection and Fixation Smoothing 97

9.2 Eye-hand Coordination .. 101

9.3 Focus Points .. 105

9.4 Summary .. 107

10 Low-cost Eye Tracking ... 109

10.1 Market Background ... 110

10.2 Technology Background .. 110

10.3 Cost Factors .. 112

10.3.1 Material Costs ... 112

10.3.2 Research and Development Costs 112

10.3.3 Business Costs .. 113

10.4 Technology Trends .. 113

10.5 Cost-Lowering Approaches .. 114

10.5.1 Use of Mass-market Image Sensors 114

10.5.2 Use of Multiple cameras ... 114

10.5.3 Build on Existing Image Processing Libraries 115

 xiii

10.6 Low-Cost Prototype ... 115

10.7 Mass Market Strategy ... 117

10.8 Summary .. 118

11 Conclusion .. 119

11.1 Summary of Contributions ... 119

11.2 Design Challenges for Gaze Interaction ... 120

11.3 Design Guidelines for Gaze Interaction ... 122

11.4 Concluding Remarks ... 124

Bibliography .. 127

 xiv

List of Tables

Table 1. Result of Friedman’s ANOVA on errors. .. 65

Gaze-enhanced%20User%20Interface%20Design%20(draft%2033).doc#_Toc167498560

 xv

List of Illustrations

Figure 1. Logo for the Gaze-enhanced User Interface Design

(GUIDe) research project. .. 2

Figure 2. Tendonitis: a form of repetitive strain injury (RSI)

caused by excessive use of the keyboard and particularly

the mouse. .. 8

Figure 3. A scleral coil contact lens being inserted into a subject’s

eye. .. 11

Figure 4. Electro-oculography (EOG) approach for eye tracking

measures the potential difference between eye muscles.......................... 11

Figure 5. SRI Dual Purkinje Eye Tracker uses corneal reflections

to track eye movements. ... 11

Figure 6. A head mounted eye tracker which fixes the position of

the camera relative to the motion of the head. .. 11

Figure 7. IBM BlueEyes Project prototype eye tracker which uses

infra-red illumination. ... 12

Figure 8. The Tobii 1750 eye tracker. .. 12

Figure 9. Trace of eye movements when subjects are asked to

follow the lines of the figures as smoothly as possible.

Source: Yarbus, 1967. .. 13

Figure 10. Fixation jitter due to drifts, tremors and involuntary

micro-saccades, Source: Yarbus, 1967. ... 14

Figure 11. Confidence interval of eye tracker accuracy. Inner

circle is 0.5˚. Outer circle is 1.0˚. .. 14

Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199480
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199480
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199481
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199481
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199481
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199482
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199482
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199483
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199483
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199484
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199484
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199485
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199485
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199486
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199486
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199487
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199488
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199488
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199488
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199489
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199489
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199490
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199490

 xvi

Figure 12. Zhai et al.’s illustration of the MAGIC pointing

technique. ... 18

Figure 13. Ashmore et al.’s implementation of a fish eye lens for

gaze-based pointing. .. 20

Figure 14. Using EyePoint for a progressive refinement of target

using look-press-look-release action. The user first looks

at the desired target. Pressing and holding down a hotkey

brings up a magnified view of the region the user was

looking in. The user then looks again at the target in the

magnified view and releases the hotkey to perform the

mouse action. .. 21

Figure 15. Focus points - a grid of orange dots overlaid on the

magnified view helps users focus their gaze. ... 22

Figure 16. EyePoint configuration screen. ... 25

Figure 17. EyePoint real-world web-surfing task. The music link

in the navigation column on the left has been highlighted

in orange. .. 28

Figure 18. EyePoint training/test application (used for Balloon

Study). This screenshot shows the magnified view with

focus points. ... 29

Figure 19. Mixed task study for pointing and typing. When the

user clicks on the red balloon, a textbox appears below it.

The user must type in the word shown above the textbox. 30

Figure 20. EyePoint Web Study speed results. ... 31

Figure 21. EyePoint Web Study accuracy results. ... 32

Figure 22. Balloon Study speed results. .. 33

Figure 23. Balloon Study accuracy results. .. 34

Figure 24. Mixed Study performance/error results. .. 35

Figure 25. Breakdown of error rates from the web study into two

groups: users for whom the eye tracker worked well and

users for whom the eye tracker didn't work as well. 37

Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199491
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199491
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199492
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199492
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199493
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199493
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199493
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199493
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199493
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199493
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199493
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199494
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199494
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199495
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199496
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199496
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199496
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199497
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199497
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199497
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199498
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199498
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199498
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199499
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199500
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199501
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199502
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199503
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199504
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199504
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199504

 xvii

Figure 26. The Gaze-enhanced Page Up / Page Down approach

addresses the limitations of current Page Up and Page

Down Techniques by Positioning the region under the

user’s gaze at the bottom or top of the page respectively......................... 42

Figure 27. Estimation of reading speed. Vertical pixels viewed per

second = Δy/Δt (base image of gaze pattern while reading

taken from wikipedia.org). .. 44

Figure 28. The eye-in-the-middle automatic scrolling technique

adjusts the scrolling speed to match the user’s reading

speed and tries to keep the user’s eyes in the middle third

of the screen. ... 46

Figure 29. The smooth scrolling with gaze-repositioning

technique allows for reading and scanning of content.

Scrolling starts and stops depending on the position of the

user’s gaze with respect to invisible threshold lines on the

screen. .. 46

Figure 30. The discrete scrolling with gaze-repositioning

leverages the gaze-enhanced Page Up / Page down and

triggers a Page Down event when the users gaze falls

below a threshold line for a specified duration. ... 47

Figure 31. Off-screen gaze-actuated buttons/hotspots for

document navigation and control. Buttons which trigger

discrete events (Home, Page Down etc.) use a dwell-based

activation. Hotspots that have a more continuous action

(scroll up etc.) use a micro-dwell based activation. 48

Figure 32. Subjective evaluation results for Smooth scrolling with

gaze-repositioning in two conditions (with and without

explanation of how the system works). Error bars show

Standard Error. ... 51

Figure 33. Exposé view of open applications (image from

wikipedia.org). .. 54

Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199505
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199505
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199505
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199505
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199506
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199506
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199506
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199507
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199507
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199507
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199507
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199508
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199508
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199508
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199508
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199508
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199509
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199509
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199509
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199509
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199510
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199510
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199510
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199510
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199510
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199511
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199511
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199511
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199511
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199512
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199512

 xviii

Figure 34. Fono et al.’s EyeWindows technique for switching

between non-overlapping windows using eye gaze. When

the user looks at a particular window, it is restored to its

full dimension while all other windows are distorted using

an elastic windowing algorithm. ... 56

Figure 35. Using EyeExposé – Pressing and holding the EyeExposé

hotkey tiles all open applications on the screen. The user

simply looks at the desired target application and releases

the hotkey to switch applications. .. 57

Figure 36. Exposé/EyeExposé view of 12 open windows, each

window being a distinct color (yellow, white, red, purple,

light green, light blue, grey, pink, orange, dark green, dark

blue and brown). ... 60

Figure 37. Instructions for which window to switch to next were

shown on a second monitor. ... 61

Figure 38. Taskbar in each of the 4, 18 and 12 window conditions. 62

Figure 39. Alt-Tab view of 12 open application windows. 62

Figure 40. Quantitative evaluation results – time to switch

between applications. .. 63

Figure 41. Quantitative study results - error rate. .. 64

Figure 42. Qualitative evaluation results - survey ranking data. 65

Figure 43. On screen keyboard layout for ATM PIN entry. 72

Figure 44. On-screen keyboard layout for gaze-based password

entry showing QWERTY, Alphabetic layouts. .. 74

Figure 45. Gaze-pattern when the user enters "password" as the

password. Each key has a bright red dot at the center of it.

This focus point allows the user to focus their gaze at the

center of the target thereby increasing the accuracy of eye

tracking data. ... 77

Figure 46. Average time for password entry across all users in

each of the 4 conditions. Differences between Gaze+Dwell

Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199513
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199513
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199513
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199513
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199513
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199514
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199514
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199514
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199514
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199515
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199515
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199515
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199515
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199516
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199516
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199517
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199518
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199519
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199519
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199520
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199521
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199522
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199523
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199523
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199524
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199524
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199524
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199524
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199524
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199525
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199525

 xix

and Gaze+Trigger are not significant. Differences between

QWERTY and alpha layouts are significant. .. 80

Figure 47. Percentage error in password entry across all users in

each of the four conditions. Error rates in the Gaze+Dwell

conditions were similar to those of the keyboard.

Gaze+trigger error rates were considerably higher

presumably due to eye-hand coordination. .. 81

Figure 48. Google Map image before the user clicks on the +

button to zoom in one level. The region of interest

(annotated by the orange circle) happens to be the

Stanford oval. .. 86

Figure 49. Google Map image immediately after the user clicked

the + button to zoom in. Notice that the region of interest

(annotated by the orange circle) is already outside the

visible region of the map. ... 87

Figure 50. Results of our real-time saccade detection and

smoothing algorithm. Note that the one measurement

look-ahead prevents outliers in the raw gaze data from

being mistaken for saccades, but introduces a 20ms

latency at a saccade thresholds. .. 98

Figure 51. Pseudocode listing for Saccade Detection and Fixation

Smoothing algorithm. .. 99

Figure 52. Sources of error in gaze input. Shaded areas show the

target region. Example triggers are indicated by red

arrows. The triggers shown are all different attempts to

click on the upper target region. The trigger points

correspond to: a) early trigger error, b) raw hit and

smooth hit, c) raw miss and smooth hit, and d) late trigger

error. .. 102

Figure 53. Analysis of errors in the two studies show that a large

number of errors in the Speed Task happen due to early

Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199526
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199526
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199526
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199526
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199526
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199527
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199527
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199527
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199527
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199528
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199528
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199528
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199528
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199529
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199529
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199529
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199529
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199529
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199530
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199530
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199531
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199531
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199531
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199531
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199531
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199531
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199531
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199532
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199532

 xx

triggers and late triggers – errors in synchronization

between the gaze and trigger events. ... 103

Figure 54. Simulation of smoothing and early trigger correction

(ETC) on the speed task for the Moving Target Study

shows that the percentage error of the speed task

decreases significantly and is comparable to the error rate

of the accuracy task. .. 104

Figure 55. Magnified view for gaze-based pointing technique with

and without focus points. Using focus points provides a

visual anchor for subjects to focus their gaze on, making it

easier for them to click in the text box. .. 105

Figure 56. An image of the eye showing the center of the pupil (p)

and the corneal reflection (g). The difference vector (p-g)

is used to determine the gaze vector. Source: Theory for

Calibration-Free Eye Gaze Tracking by Amir et al. 111

Figure 57. The low-cost prototype in development uses

commercial-over-the-shelf cameras modified to work in

the infrared spectrum. The glint source pictured above

uses IR LEDs (invisible to the human eye). .. 115

Figure 58. A screenshot of prototype software built using open

source Computer Vision libraries (OpenCV) which uses

machine learning to identify faces in the image. It then

looks within the face region to identify the eyes. Simple

image processing (erosion/dilation) helps to separate the

pupil and glint images. Ellipse-fitting provides the center

of the pupil and the glint which can then be used to

determine the point-of-regard. ... 116

Figure 59. Amir et al.’s prototype of a hardware eye-detection

sensor. Image processing is done on an on-board FPGA,

making this a lightweight peripheral that can be connected

via USB. ... 118

Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199533
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199533
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199533
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199533
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199533
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199534
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199534
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199534
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199534
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199535
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199535
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199535
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199535
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199536
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199536
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199536
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199536
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199537
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199537
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199537
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199537
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199537
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199537
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199537
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199537
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199538
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199538
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199538
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199538

 xxi

Figure 60. Concept eye tracker — here the Apple MacBook Pro

has been shown with two black bars in the top bezel,

which can conceal the infrared illuminants necessary for

eye tracking. ... 124

Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199539
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199539
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199539
Gaze-enhanced%20User%20Interface%20Design%20(draft%2032).doc#_Toc167199539

 1

1 Introduction

The eyes are a rich source of information for gathering context in our

everyday lives. We use our eyes to determine who, what, or where in our daily

communication. A user’s gaze is postulated to be the best proxy for attention or

intention [116]. Using eye-gaze information as a form of input can enable a computer

system to gain more contextual information about the user’s task, which in turn can

be leveraged to design interfaces which are more intuitive and intelligent.

Eye gaze tracking as a form of input was primarily developed for users who

are unable to make normal use of a keyboard and pointing device. However, with the

increasing accuracy and decreasing cost of eye gaze tracking systems it will soon be

practical for able-bodied users to use gaze as a form of input in addition to keyboard

and mouse – provided the resulting interaction is an improvement over current

techniques. This dissertation explores how gaze information can be effectively used

as an augmented input in addition to traditional input devices.

The focus of this research is to augment rather than replace existing

interaction techniques. Adding gaze information provides viable alternatives to

traditional interaction techniques, which users may prefer to use depending upon

their abilities, tasks and preferences. This dissertation presents a series of novel

prototypes that explore the use of gaze as an augmented input to perform everyday

computing tasks. In particular, it explores the use of gaze-based input for pointing

and selection, scrolling and document navigation, application switching, password

entry, zooming and other applications. It presents the results of user experiments

which compare the gaze-augmented interaction techniques with traditional

mechanisms and show that the resulting interaction is either comparable to or an

 2

improvement over existing input methods. These results show that it is indeed

possible to devise novel interaction techniques that use gaze as a form of input

without overloading the visual channel and while minimizing false activations.

The dissertation also discusses some of the problems and challenges of using

gaze information as a form of input and proposes solutions which, as discovered over

the course of the research, can be used to mitigate these issues. Finally, it concludes

with an analysis of technology and economic trends which make it likely for eye

tracking systems to be produced at a low enough cost, that when combined with the

right interaction techniques, they would create the environment necessary for gaze-

augmented input devices to become mass-market.

The eyes are one of the most expressive features of the human body for non-

verbal, implicit communication. The design of interaction techniques which use gaze-

information to provide additional context and information to computing systems has

Figure 1. Logo for the Gaze-enhanced User Interface Design (GUIDe) research project.

 3

the potential to improve traditional forms of human-computer interaction. This

dissertation provides the first steps in that direction.

1.1 Thesis Statement

The keyboard and mouse have long been the dominant forms of input.

Contemporary computer systems are still plagued by the asymmetrical bandwidth

problem [52], where the bandwidth from the computer to the user is far greater than

the bandwidth from the user to the computer.

In this dissertation we build upon the insight presented by Jacob in [52] to

investigate the possibility of introducing the movements of a user’s eyes as an

additional input medium. We posit that gaze information, i.e. information about what

the user is looking at, can be used as a practical form of input i.e. a way of

communicating information from the user to the computer. The thesis statement of

this work is:

“Gaze information can be used as a practical form of input.”

In this research, we explore the design space of interaction techniques that

use gaze information for everyday computing tasks. While some of the interaction

techniques presented have the potential to supplant traditional input devices such as

the mouse (Chapter 3), our goal is not to replace traditional input devices but to

provide viable alternatives which users may choose to use depending upon their

tasks abilities and preferences. Other sections of this dissertation explore

augmenting existing interaction techniques with eye gaze. In particular, using gaze in

conjunction with the keyboard and the mouse to design effective interaction

techniques.

We chose the realm of desktop interactions, since they are broadly applicable

to all types of computer users. In addition, the technology for desktop eye tracking

systems has improved sufficiently to make it a viable input modality. The cost of

these systems remains an issue, but current technology and economic trends

indicate that low cost eye tracking should be possible in the near future.

 4

1.2 Contributions

This dissertation presents a series of novel prototypes we built and

experiments we conducted as a basis for the formulation of design guidelines for

improving the usability and utility of gaze-based interaction techniques. The major

contributions presented in this thesis are:

Gaze-based interaction techniques: We present several novel interaction

techniques which explore the use of gaze as an augmented input to perform

everyday computing tasks. In particular, we explore the use of gaze-based input for

pointing and selection, scrolling and document navigation, application switching,

password entry, zooming and other applications. We present the results of user

experiments which compare the gaze-based interaction techniques with traditional

mechanisms and show that the resulting interaction is either comparable to or an

improvement over existing input methods. These results show that it is indeed

possible to devise novel interaction techniques that use gaze as a form of input

without overloading the visual channel and while minimizing false activations.

Technologies for gaze input: We discuss some of the problems and

challenges of using gaze information as a form of input and propose solutions which,

as discovered over the course of the research, can be used to mitigate these issues. In

particular, we present techniques for filtering and smoothing gaze data, improving

eye-hand coordination for gaze plus trigger activated interaction techniques and the

providing focus points to help improve the accuracy of eye tracking and the user

experience for using gaze-based interaction techniques. This dissertation also

introduces some ideas for improving eye tracking technology and systems.

Design guidelines for gaze-based interaction: Based on our experiences in

designing, implementing, and evaluating gaze-based interaction techniques, we

identify key design challenges for supporting effective gaze-based interaction. We

formulate design guidelines relating to these challenge areas, including appropriate

uses for gaze-based interaction.

 5

1.3 Dissertation Roadmap

The remainder of this dissertation is organized as follows:

 In Chapter 2, we discuss the motivation for this work and provide

some background information including the history of eye tracking, how state of the

art eye trackers work and the challenges for using gaze as a form of input.

 Chapters 3-8 present the gaze-based interaction techniques developed

as part of this dissertation. Each chapter provides a self-contained section on using

eye–gaze for a particular task.

 Chapter 3, on pointing and selection, describes the design, evolution

and evaluation of a new pointing technique which uses a combination of eye gaze

and keyboard.

 Chapter 4, on gaze-enhanced scrolling techniques, presents several

different techniques for gaze-based scrolling including augmenting manual scrolling

techniques with gaze information and automatic scrolling techniques, which control

the onset and speed of scrolling based on the user’s gaze and the use of off-screen

targets for gaze-based document navigation and control.

 Chapter 5, on application switching, describes the design and

evaluation of a gaze-based technique for switching between applications. This

technique extends Apple’s concept of Exposé by using gaze-based selection of the

desired application window rather than clicking on it with a mouse.

 In Chapter 6, we discuss the use of a gaze-based password entry to

reduce the risks of shoulder surfing.

 Chapter 7, on zooming, presents the results of our attempts to

implement gaze-contingent semantic zooming and explains why the obvious

implementations of such a system fail to work.

 Chapter 8 discusses a number of other smaller gaze-based

applications, which have interesting uses, but are too small to merit a chapter for

themselves. We also introduce new ideas for gaze-based interfaces in this section.

 Chapter 9, on improving gaze input, discusses some of the challenges

for using gaze-input and presents solutions to these challenges. In particular it

presents a saccade detection and fixation smoothing algorithm, discusses approaches

 6

to mitigate eye-hand coordination problems when using a combination of gaze plus

trigger based input and discusses the use of focus points to help focus the users gaze

and improve the user experience for gaze-based interaction.

 In Chapter 10, we present a discussion on why current eye tracking

systems are prohibitively expensive for mass-market use and propose technology

and business model changes to enable the emergence of low-cost, mass-market eye

trackers. We conclude with a summary of the design challenges for gaze input and a

corresponding set of design guidelines which help to mitigate these challenges.

 7

2 Background

This chapter presents the background material and related work relevant to

this dissertation. It specifically looks at the motivation behind our research, the

history of eye tracking, current state of the art in eye tracking and the challenges for

using gaze as a form of input. It should be noted that we do not present a detailed

analysis of related work in this section. Related work that is relevant to each

interaction technique is presented at the beginning of the corresponding chapter.

2.1 Motivation

Computers have become an integral component of our lives. Whether at

work, home or anywhere in between, we spend increasing amounts of time with

computers or computing devices. Computers have not been around for a very long

time – the origins of the Personal Computer can be traced back to the early 1980s

when Xerox, IBM and Apple introduced their respective personal computers.

However, even in this short time span increasing amounts of repetitive strain

injuries (RSI) [7, 33] have emerged from overuse of the keyboard and mouse.

Repetitive strain injuries develop over periods of long and continuous

overuse often extending over several years. The surge in computer-related RSI

amongst technology professionals has been recognized in recent years. As more and

more professions adopt computers as a primary tool, the number of cases of

repetitive strain injuries is expected to increase dramatically. While the keyboard

and mouse both contribute to computer-related RSI, most people suffering from RSI

find that mouse use causes more strain and pain than using the keyboard [86]

(Figure 2).

 8

Figure 2. Tendonitis: a form of repetitive strain injury (RSI) caused by excessive use of
the keyboard and particularly the mouse.

This impending epidemic of computer-related repetitive strain injuries

coupled with the author’s personal desire to develop new forms of interaction which

would help to alleviate some of the stress and pain of RSI became one of the key

motivators for exploring alternative forms of input for computer systems.

Alternative input modalities such as speech, which do not rely solely on the

use of the hands, have been in use for a long time. However, while speech recognition

may be suitable for some tasks, it is not a silver bullet for all tasks. In particular,

using speech for a pointing task does not provide provides users with much useful

functionality [85]. In addition, the accuracy, privacy, and social issues surrounding

the use of speech interfaces make them less than optimal for use in everyday

computing scenarios.

For our research, we chose to investigate the possibility of using a more

subtle form of input — eye gaze.

2.2 Gaze as a Form of Input

Jacob [53] and Zhai [116] present an overview of why one would want to use

eye movements for interactive input. We synthesize some of their comments in the

list below:

 The eyes are a fast, convenient, high bandwidth source of information.

Eye movements have been shown to be very fast and very precise.

 9

 The eyes require no training – it is natural for the users to look at the

object of interest. In other words, the control-display relationship is

already well established in the brain.

 A user’s eye gaze serves as an effective proxy for his or her attention

and intention. Since we typically look at what we are interested in or

look before we perform an action, eye gaze is the best non-invasive

indicator for our attention and intention. In fact the problem of lack of

eye-contact in video conferencing [29] shows just how much humans

perceive by observing the eyes of others.

 The eyes provide the context within which our actions take place.

 The eyes and the hands work well in coordination.

Jacob in his 1990 paper What You Look at Is What you Get [52] introduced

several gaze-based interaction techniques for object selection, continuous attribute

display, moving an object, eye controlled scrolling text, menu commands and listener

window. In this paper Jacob states that “what is needed is appropriate interaction

techniques that incorporate eye movements into the user-computer dialog in a

convenient and natural way.” In a later paper, in 2000, Sibert and Jacob [98] conclude

that: “Eye gaze-interaction is a useful source of additional input and should be

considered when designing interfaces in the future.” Jacob’s seminal work in eye

tracking laid the foundation for this research on the use of gaze as a form of input.

In his paper on MAGIC pointing [118] Zhai states that “to load the visual

perception channel with a motor control task seems fundamentally at odds with users’

natural mental model in which the eye searches for and takes in information and the

hand produces output that manipulates external objects.” By his statement Zhai

affirms that the eyes should be used for the purpose of looking and should not be

overloaded with the unnatural task of doing actions, since that is counter to the

evolutionary function of the eyes. By contrast, the hands are meant for performing

actions. Zhai goes on to state that: “Other than for disabled users, who have no

alternative, using eye gaze for practical pointing does not appear to be very

promising.” Zhai et al. address this challenge with their MAGIC techniques, which use

 10

a conventional input device within the small area of the eye-gaze to accomplish

pointing. We wanted to extend this approach of using gaze in conjunction with

conventional input devices and determine if it is possible to devise other practical

gaze-based interaction techniques by focusing on interaction design.

For our research we chose to investigate how gaze-based interaction can be

made simple, accurate, and fast enough to not only allow disabled users to use it for

standard computing applications, but also make the threshold of use low enough that

able-bodied users will actually prefer to use gaze-based interaction to traditional

input techniques.

2.3 History of Eye Tracking

The history of eye tracking can be traced as far back as the late 19th century

and early 20th century [115]. Javal used direct visual observation to track eye

movements in 1879. Ohm used mechanical techniques to track eye movements by

attaching a pencil at the end of a long lever which was positioned on the cornea such

that each time the eye moved the pencil would make a mark. The first recorded effort

for eye tracking using a reflected beam of light was done by Dodge and Cline in 1901.

Marx and Trendelenburg used a mirror attached to the eye to view the reflected

beam of light. Judd, McAllister and Steel used motion picture photography for eye

tracking as far back as 1905. They inserted a white speck into the eye which was

then tracked in the motion picture recording of the eye.

Buswell [26] used eye tracking studies to examine how people look at

pictures. Yarbus [115] in his pioneering work in the fifties used suction caps attached

to the eye to measure eye movements. Yarbus shows several different designs of

suction caps in his book and his work laid the foundation for the research in the field

of eye movements.

Figure 3 shows a scleral coil contact lens which was inserted in the eye of the

subject. The scleral contact lens contains an induction coil embedded in the

periphery of the lens. The subject’s head is kept stationary inside a magnetic cage.

The changes in the magnetic field are then used to measure the subject’s eye

movements.

 11

Figure 3. A scleral coil contact lens
being inserted into a subject’s eye.

Figure 5. SRI Dual Purkinje Eye Tracker uses
corneal reflections to track eye movements.

Figure 6. A head mounted eye tracker
which fixes the position of the camera
relative to the motion of the head.

Figure 4 shows a picture of a subject whose eyes are being tracked using

electro-oculography (EOG) which measures the potential difference between

muscles of the eye.

The approaches to eye tracking have evolved significantly over the years.

Fortunately, eye trackers today have become less invasive that their predecessors.

Corneal reflection eye tracking was first introduced by the Dual Purkinje Eye Tracker

developed at the Stanford Research Institute. This eye tracker used the reflection of

light sources on the cornea as a frame of reference for the movement of the pupil.

Figure 5 shows an image of a subject using the SRI eye tracker. It should be noted that

this unit required the subject’s head to be held stationary.

Head mounted eye trackers have been developed to fix the frame of reference

for the eyes relative to the motion of the head (Figure 6). Some head mounted eye

Figure 4. Electro-oculography (EOG)
approach for eye tracking measures the
potential difference between eye muscles.

 12

Figure 7. IBM BlueEyes Project
prototype eye tracker which uses
infra-red illumination.

Figure 8. The Tobii 1750 eye tracker.

trackers provide higher accuracy and frame rate than remote eye trackers since they

are able to get a close up image of the eye by virtue of using the head mounted

camera.

The BlueEyes project [4] at IBM Almaden developed remote video based eye

trackers which used infra-red illumination as shown in Figure 7. Several commercial

systems [67, 107, 108] have now been developed which use a similar approach for

eye tracking and provide non-encumbering, remote, video-based eye tracking

(Figure 8).

2.4 State of the Art in Eye Tracking

The state of the art systems for desktop eye tracking use remote video based

eye tracking as described above. Unlike their historical counterparts, these eye

trackers allow for some range of free head movement, do not require the user to use

a chin-rest or bite bar or to be tethered to the eye tracker in any way. These systems

work by measuring the motion of the center of the pupil relative to the position of

one or more glints or reflection of infra-red light sources on the cornea. These

systems provide an accuracy of about 0.5˚ - 1˚ of visual angle. While some systems

 13

Figure 9. Trace of eye movements when subjects are asked to follow the lines of the
figures as smoothly as possible. Source: Yarbus, 1967.

boast frame rates as high as 1000 Hz, most commercially available systems provide a

frame rate of about 50 Hz.

For our research we use a Tobii 1750 eye tracker shown in Figure 8. This unit

costs approximately $30,000, however, based on current technology and economic

trends it is conceivable to have a similar unit incorporated into everyday computing

devices.

2.5 Challenges for Gaze Input

The eyes are fast, require no training and eye gaze provides context for our

actions [36, 52, 53, 116]. Therefore, using eye gaze as a form of input is a logical

choice. However, using gaze input has proven to be challenging for three major

reasons.

2.5.1 Eye Movements are Noisy

As noted by Yarbus [115], eye movements are inherently noisy. The two main

forms of eye movements are fixations and saccades. Fixations occur when a subject is

looking at a point. A saccade is a ballistic movement of the eye when the gaze moves

from one point to another. Yarbus, in his pioneering work in the 1960’s, discovered

that eye movements are a combination of fixations and saccades even when the

 14

Figure 10. Fixation jitter due to drifts, tremors and
involuntary micro-saccades, Source: Yarbus, 1967.

Figure 11. Confidence interval of eye tracker
accuracy. Inner circle is 0.5˚. Outer circle is 1.0˚.

subjects are asked to follow the

outlines of geometrical figures

as smoothly as possible (Figure

9).

Yarbus, also points out

that while fixations may appear

to be dots in Figure 9, in reality,

the eyes are not stable even

during fixations due to drifts,

tremors and involuntary micro-

saccades (Figure 10).

2.5.2 Eye Tracker Accuracy

Modern day eye

trackers, especially remote video based eye trackers, claim to be accurate to about

0.5˚ - 1˚ of visual angle. This corresponds to a spread of about 16-33 pixels on a

1280x1024, 96 dpi screen viewed at a normal viewing distance of about 50 cm [13,

107]. In practice this implies that the confidence interval for a point target can have a

spread of a circle of up to 66 pixels in diameter (Figure 11), since if the user is

looking at a point (1x1 pixel) target, the reading from the eye tracker can be off by up

to 33 pixels in any direction. In addition, current eye trackers require calibration

(though some require only a one-time calibration). The accuracy of the eye-tracking

data usually deteriorates due to

a drift effect caused by changes

in eye characteristics over time

[105]. Users’ eyes may become

drier after viewing information

on a screen several minutes.

This can change the shape and

the reflective characteristics of

the eyes. Users’ posture also

 15

changes over time as they begin to slouch or lean after some minutes of sitting. This

results in the position/angle of their head changing. The accuracy of an eye tracker is

higher in the center of the field of view of the camera. Consequently, the tracking is

most accurate for targets at the center of the screen and decreases for targets that

are located at the periphery of the screen [20]. While most eye trackers claim to

work with eye glasses, we have observed a noticeable deterioration in tracking

ability when the lenses are extra thick or reflective.

Current eye trackers are capable of generating data at 50Hz to 1000Hz

depending upon the device and the application. However, eye trackers also introduce

latency since they need computing cycles to processing data from the camera and

compute the current position of the user’s eye gaze. The Tobii eye tracker used in our

research has a maximum latency of 35 ms.

2.5.3 The Midas Touch Problem

Mouse and keyboard actions are deliberate acts which do not require

disambiguation. The eyes, however, are a perceptual organ meant for looking and are

an always-on device [53]. It is therefore necessary to distinguish between visual

search/scanning eye movements and eye movements for performing actions such as

pointing or selection. This effect is commonly referred to as the “Midas Touch”

problem [52].

Even if the noise from eye movements could be compensated for and if the

eye trackers were perfectly accurate, the Midas Touch problem would still be a

concern. This challenge for gaze as a form of input necessitates good interaction

design to minimize false activations and to disambiguate the user’s intention from

his or her attention.

2.6 Summary

This chapter discussed the motivation for using gaze as a form of input,

provided a historical background of eye tracking and introduced the current state of

the art in eye tracking. While using gaze as a form of input is appealing, the

challenges of interpreting noisy eye movements, eye tracker accuracy issues and the

 16

Midas Touch problem must be addressed. In the following chapters of this

dissertation we present several gaze-based interaction techniques for everyday

computing tasks.

 17

Portions of this chapter were originally published by the author, Andreas Paepcke and Terry Winograd
in [61] and by the author and Terry Winograd in [63].

3 Pointing and Selection

We began our research by observing how able-bodied users use the mouse

for pointing and selection in everyday computing tasks. While there are large

individual differences in how people interact with the computer, nearly everyone

used the mouse rather than the keyboard to select links while web browsing. Other

tasks for which people used the mouse included launching applications either from

the desktop or the start menu, navigating through folders, minimizing, maximizing

and closing applications, moving windows, positioning the cursor when editing text,

opening context-sensitive menus and hovering over buttons/regions to activate

tooltips.

The basic mouse operations being performed to accomplish the above actions

are the well-known single-click, double-click, right-click, mouse-over, and click-and-

drag. Ideally a gaze-based pointing technique should support all of the above

fundamental operations.

It is important to note that our aim is not to replace or beat the mouse. Our

intent is to design an effective gaze-based pointing technique which can be a viable

alternative for users who choose not to use a mouse depending on their abilities,

tasks, or preferences. Such a technique need not necessarily outperform the mouse

but must perform well enough to merit consideration (such as other alternatives like

the trackball, touchpad, or trackpoint).

 18

3.1 Related Work

Considerable prior research [13, 23, 38, 40, 52, 66, 74, 96, 114, 118] has been

done to implement gaze-based pointing techniques. However, a practical technique

for pointing and selection is still an open problem. The commonly accepted approach

to using gaze-based pointing and selection relies on the use of large targets in custom

applications [52, 67, 106]. Other approaches have used speech [74], keyboard [23]

and mouse [118] for doing target refinement; used zoomed views [13, 66] or

leveraged semantic information [96] about the location of potential targets to

improve gaze-based pointing. We discuss each of these in more detail below. It

should be noted that we chose not to leverage semantic information in our work

since we wanted to have a general purpose pointing technique that does not rely on

any additional information from the application or the operating system.

Jacob [52] introduces gaze-based interaction techniques for object selection,

continuous attribute display, moving an object, eye-controlled scrolling text, menu

commands and listener window. This work laid the foundation for eye-based

interaction techniques. It introduced key-based and dwell-based activation, gaze-

based hot-spots, and gaze-based context-awareness for the first time. Issues of eye

tracker accuracy were

overcome by having

sufficiently large targets in

custom applications.

Zhai et al. [118]

presented the first gaze-

enhanced pointing technique

that used gaze as an

augmented input. In MAGIC

pointing, the cursor is

automatically warped to the

vicinity of the region in which

the user is looking. The

Figure 12. Zhai et al.’s illustration of the MAGIC
pointing technique.

 19

MAGIC approach leverages Fitts’ Law [39] by reducing the distance that the cursor

needs to travel. Though MAGIC uses gaze as an augmented input, pointing is still

accomplished using the mouse.

Salvucci and Anderson [96] also use gaze as an augmented input in their

work and emphasize that all normal input device functionality is maintained. Their

system incorporates a probabilistic model of user behavior to overcome the issues of

eye tracker accuracy and to assist in determining user intent. Furthermore, Salvucci

and Anderson prefer the use of key based activation as opposed to dwell-based

activation. The probabilistic model relies on the use of semantic information

provided by the underlying operating system or application about click target

locations and hence is not conducive to general use on commercially available

operating systems and applications.

Yamato et al. [114] also propose an augmented approach, in which gaze is

used to position the cursor, but selection is still performed using the mouse button.

Their approach used automatic and manual adjustment modes for target refinement.

However, the paper claims that manual adjustment with the mouse was the only

viable approach, rendering their technique similar to MAGIC, with no additional

advantages.

Lankford [66] introduced a dwell-based technique for pointing and selection.

The target provides visual feedback when the user’s gaze is directed at it. The user

has the ability to abort activation by looking away before the dwell period expires.

Lankford also uses zooming to overcome eye tracker accuracy measures. The

approach requires one dwell to activate the zoom (which always appears in the

center of the screen) and an additional dwell to select the target region and bring up

a palette with different mouse action options. A third dwell on the desired action is

required to perform the action. This approach does implement all the standard

mouse actions and while it is closest to our technique (described below), the number

of discrete steps required to achieve a single selection and the delays due to dwell-

based activation make it unappealing to users for whom a traditional pointing device

is a viable alternative. By contrast, our approach innovates on the interaction

techniques to make the interaction fluid and simple for all users.

 20

Follow-on work to MAGIC at IBM by Beymer, Farrell and Zhai [38] proposes a

technique that addresses the other dimension of Fitts’ Law, namely target size. In

this approach the region surrounding the target is expanded based on the user’s gaze

point to make it easier to acquire with the mouse. In another system by Farrell and

Zhai [23], semantic information is used to predictively select the most likely target

with error-correction and refinement done using cursor keys.

Ashmore and Duchowski et al. [13] present an approach using a fish-eye lens

to magnify the region the user is looking at to facilitate gaze-based target selection by

making the target bigger. They compare approaches in which the fish-eye lens is

either non-existent, slaved to the eye movements, or dynamically appearing after a

fixation. However, as stated in their paper, the visual distortion introduced by a fish-

eye view is not only confusing to users but also creates an apparent motion of objects

within the lens’ field of view in a direction opposite to that of the lens’ motion.

Fono and Vertegaal [40] also use eye input with key activation. They show

that key activation was preferred by users over automatic activation. Finally,

Miniotas et al. [74] present a speech-augmented eye-gaze interaction technique in

Figure 13. Ashmore et al.’s implementation of a fish eye lens
for gaze-based pointing.

 21

which target refinement after dwell based activation is performed by the user

verbally announcing the color of the correct target. This again requires semantic

information and creates an unnatural interaction by requiring the user to correct

selection errors using an additional modality.

3.2 EyePoint

Our system, EyePoint, uses a two-step progressive refinement process that is

fluidly stitched together in a look-press-look-release action (Figure 14). This two-

step approach compensates for the accuracy limitations of current state-of-the-art

eye trackers, enabling users to achieve accurate pointing and selection without

having to rely on a mouse.

EyePoint requires a one-time calibration. In our case, the calibration is

performed using the APIs provided in the Software Development Kit for the Tobii

1750 Eye Tracker [107]. The calibration is saved for each user and re-calibration is

only required in case there are extreme variations in lighting conditions or the user’s

position in front of the eye tracker.

To use EyePoint, the user looks at the desired target on the screen and

presses a hotkey for the desired action — single-click, double-click, right-click,

mouse-over, or start click-and-drag. EyePoint displays a magnified view of the region

the user was looking at. The user looks at the target again in the magnified view and

releases the hotkey. This results in the appropriate action being performed on the

target (Figure 14).

Figure 14. Using EyePoint for a progressive refinement of target using look-press-look-
release action. The user first looks at the desired target. Pressing and holding down a
hotkey brings up a magnified view of the region the user was looking in. The user then
looks again at the target in the magnified view and releases the hotkey to perform the
mouse action.

 22

Figure 15. Focus points - a grid of orange dots overlaid on the magnified
view helps users focus their gaze.

To abort an action, the user can look anywhere outside of the zoomed region

and release the hotkey, or press the Esc key on the keyboard.

The region around the user’s initial gaze point is presented in the magnified

view with a grid of orange dots overlaid (Figure 15). These orange dots are called

focus points and aid in focusing the user’s gaze at a point within the target. This

mechanism helps with more fine-grained selections. Further detail on focus points is

provided in the following section.

Single-click, double-click and right-click actions are performed when the user

releases the key. Click and drag, however, is a two-step interaction. The user first

selects the starting point for the click and drag with one hotkey and then the

destination with another hotkey. While this does not provide the same interactive

feedback as click-and-drag with a mouse, we preferred this approach over slaving

movement to the user’s eye-gaze, based on the design principles discussed below.

 23

3.2.1 Design Principles

We agreed with Zhai [25] that overloading the visual channel for a motor

control task is undesirable. We therefore resolved to determine if there was an

interaction technique for using eye gaze in practical pointing without overloading the

visual channel for motor control.

Another basic realization was that larger targets are easier to acquire using

eye gaze. Therefore, to use eye gaze for pointing it would be ideal if all the targets

were large enough to not be affected by the accuracy limitations of eye trackers and

the jitter inherent in eye gaze tracking. A similar rationale was adopted in [38].

As recognized in prior work [13, 40, 66, 73, 117] for gaze-based pointing

zooming and magnification help to increase accuracy in pointing and selection. We

sought ways in which zooming and magnification could be used in a unobtrusive way

and unlike [13], would not cause any visual distortion of their context.

As previously stated, our goal was to devise an interaction technique that

would be universally applicable – for both users for whom the mouse is a viable

alternative and for those for whom it is not.

We concluded that it is important to a) avoid slaving any of the interaction

directly to eye movements (i.e. not overload the visual channel for pointing), b) use

zooming/ magnification in order to overcome eye tracker accuracy issues c) use a

fixation detection and smoothing algorithm in order to reduce tracking jitter and d)

provide a fluid activation mechanism that is fast enough to make it appealing for

able-bodied users and simple enough for disabled users.

3.2.2 EyePoint Implementation

With EyePoint, the eye tracker constantly tracks the user’s eye- movements1.

A modified version of Salvucci’s Dispersion Threshold Identification fixation

detection algorithm [97] is used to determine the location of the current fixation.

1 If the eye tracker were fast enough, it would be possible to begin tracking only when the hotkey is

pressed. This would also alleviate any concerns about long-term exposure to infra-red from the eye

tracker.

 24

When the user presses and holds one of four action-specific hotkeys on the keyboard,

the system uses the key press as a trigger to perform a screen capture in a confidence

interval around the user’s current eye-gaze. The default settings use a confidence

interval of 120 pixels square (60 pixels in all four directions from the estimated gaze

point). The system then applies a magnification factor (default 4x) to the captured

region of the screen. The resulting image is shown to the user at a location centered

at the previously estimated gaze point, but offset when close to screen boundaries to

keep the magnified view fully visible on the screen.

EyePoint uses a secondary gaze point in the magnified view to refine the

location of the target. When the user looks at the desired target in the magnified view

and releases the hotkey, the user’s gaze position is recorded. Since the view has been

magnified, the resulting gaze position is more accurate by a factor equal to the

magnification. A transform is applied to determine the location of the desired target

in screen coordinates. The cursor is then moved to this location and the action

corresponding to the hotkey (single-click, double-click, right-click etc.) is executed.

EyePoint therefore overcomes the accuracy problem of eye trackers by using

magnification and a secondary gaze fixation. The secondary gaze-fixation is achieved

by using a fluid look-press-look-release action. As explained by Buxton [27], the two

steps refinement in EyePoint would be considered a compound task. The “glue,” in

Buxton’s words, that ties the steps together is the tension of holding the hotkey

down, which gives constant feedback to the user that we are in a temporary state, or

mode. Explicit activation by the hotkey means that it does not suffer from the Midas

Touch problem. Additionally, EyePoint does not overload the visual channel as the

eyes are only used for looking at the target.

The user must perform a secondary visual search to refocus on the target in

the magnified view necessitating one or more saccades in order to locate the target

in the magnified view. To facilitate the secondary visual search we added animation

to the magnified view such that it appears to emerge from the initially estimated

gaze point.

We tested our initial design by conducting pilot studies, which showed that

the gaze data from the fixation on the target in the magnified view was noisy for

 25

Figure 16. EyePoint configuration screen.

some users. We found that this occurred when the user was looking at the target as a

whole (a gestalt view) rather than focusing at a point within the target. Focusing at a

point reduced the jitter and improved the accuracy of the system. This led to the

introduction of focus points in the design – a grid pattern of dots overlaid on the

magnified view. Focus points assist the user in making more fine grained selections.

Focus points are most helpful in selecting small targets; users are of course free to

ignore them (Figure 15). We discuss a study of focus points in Section 9.3.

Some users in the pilot study wondered whether it would be useful to give

feedback on what the system thought they were looking at. While this went strongly

against our primary design principle of not slaving any visual feedback to eye

movements, we implemented a Gaze Marker to show the current gaze point as a blue

dot in the magnified view. When the same users tried the system with the gaze

marker turned on, they quickly concluded that it was distracting. The time to acquire

targets increased, since they were now trying to get the gaze marker in precisely the

 26

right position before releasing the hotkey (which is unnecessary since the

magnification allows some room for error). As a result, we turned off the gaze

marker by default, but decided to test it further in our evaluation.

The default keys for EyePoint are those on the numeric keypad of an

extended keyboard (Figure 14 Press) since they are not frequently used, are on the

right hand side of the keyboard (close to the typical location for a mouse), and

provide larger keys. The ideal placement for EyePoint hotkeys would allow the user’s

hands to always remain in the home position on the keyboard, perhaps by having

dedicated buttons directly below the spacebar. Eye Point allows users to customize

several options such as the selection of hotkeys, settings for the confidence interval,

the magnification factor, the number of animation steps and the animation delay. The

EyePoint configuration screen is shown in Figure 16.

3.2.3 Disabled & Able-bodied Users

EyePoint is designed to address the needs of disabled users and able-bodied

users like. In the context of this dissertation, we use the term disabled used to refer

to users who are unable to make use of a traditional pointing device, such as a

mouse. The hotkey-based triggering mechanism in EyePoint makes it possible for

able-bodied users to keep their hands on the keyboard to perform most pointing and

selection operations. For laptop users we have considered using gestures on a

touchpad where touching different parts of the touchpad would activate different

mouse actions.

For disabled users, the EyePoint hotkeys could be mapped to alternative

triggering devices such as foot-pedals, speech, gestures or even mouth-tube triggers

(breathe in to activate, breathe out to release). We hypothesize that these will be

more effective than dwell-based activation, but have not studied these alternatives.

Dwell-based activation is also possible in cases where the user does not have the

ability to use any alternative devices. In this case we would propose an approach

similar to [66], but with off-screen targets to first select the action/mode, followed

by dwell based activation (with audio feedback [71]) of the magnified view.

 27

3.3 Evaluation

We conducted three user studies with 20 able-bodied subjects. Subjects were

graduate students and professionals and were therefore experienced computer users

with an average of 15 years of experience with the mouse. Our subject pool had 13

males and 7 females with an average age of 28 years. Fourteen subjects did not

require any vision correction, 4 subjects used contact lenses and 2 wore eyeglasses.

None of the subjects were colorblind. Sixteen subjects reported that they were touch-

typists. None of the subjects had prior experience using an eye tracker.

We conducted a quantitative evaluation to measure performance and a

qualitative evaluation to measure users’ subjective opinion. The quantitative task

compared the speed and accuracy of three variations of EyePoint with that of a

standard mouse. The three variations of EyePoint were: a) EyePoint with Focus

Points b) EyePoint with Gaze Marker and c) EyePoint without Focus Points or Gaze

Marker. Our qualitative evaluation included the user’s subjective feedback on using

gaze-based pointing. Consistent with Norman’s views in Emotional Design [81], we

believe that speed and accuracy must meet certain thresholds. Once that threshold is

met, user preference may be dictated by other factors such as the subjective

experience or alternative utility of the technique.

It should be noted that while Ware et al. [110] show that gaze-based pointing

conforms to Fitts’ Law, the opinions of researchers in the eye tracking community

are mixed. Additionally, since EyePoint requires a secondary gaze fixation on the

target in the magnified view we chose to create tasks designed specifically for

measuring the speed and accuracy of EyePoint as opposed to a traditional Fitts’ Law

task.

3.3.1 Quantitative Evaluation

We tested speed and accuracy using three independent experiments: a) a web

browsing task b) a pointing task and c) a mixed typing and pointing task. The orders

of both the tasks and the techniques were varied to counterbalance and minimize

any learning effects. Subjects were first calibrated on the eye tracker and then

underwent a 5-10 minute training phase in which they were taught how to use

 28

Figure 17. EyePoint real-world web-surfing task. The music link in the navigation column
on the left has been highlighted in orange.

EyePoint. Subjects practiced by clicking on links in a web browser and also

performed 60 clicks in the EyePoint training application (Figure 18). Studies lasted a

total of 1 hour and included one additional task reported in a separate paper [60].

The spacebar key was used as the trigger key for all three EyePoint variations.

Animation of the magnified view was disabled as it introduces an additional delay

(user configurable, but generally about 60-100ms).

3.3.1.1 Web Study

For the first pointing and selection task we asked users to navigate through a

series of web pages. The pages were taken from popular websites such as Yahoo,

Google, MSN, Amazon, etc. To normalize effects of time for visual search and distance

from the target, we disabled all links on the page and highlighted exactly one link on

each page with a conspicuous orange highlight (Figure 17).

 29

Figure 18. EyePoint training/test application (used for Balloon Study). This screenshot
shows the magnified view with focus points.

Users were instructed to ignore the content of the page and simply select the

highlighted link. Each time they selected the link, a new web page appeared with

another highlighted link. The amount of time between presentation of a page and the

click was measured. A misplaced click was recorded as an error. Trials were

repeated in case of an error. Each subject was shown 30 web pages. The task was

repeated with the same set of pages for all four pointing techniques, with ordering

counterbalanced.

3.3.1.2 Balloon Study

To test raw pointing speed, we built a custom application that displayed a red

balloon on the screen. The user’s task was to select the balloon. Each time the balloon

was selected, it moved to a new location (Figure 18). If the user clicked, but missed

the target, this was recorded as an error and the trial was repeated. Users were

instructed to click on the balloon as quickly as they could. The application gathered

 30

Figure 19. Mixed task study for pointing and typing. When the user clicks on the red
balloon, a textbox appears below it. The user must type in the word shown above the
textbox.

timing data on how long users took to perform the click. The size of the balloon was

varied among 22 pixels (the default size of a toolbar button), 30 pixels and 40 pixels.

The resulting study is a 4 by 3 within-subjects study (4 techniques, 3 sizes).

3.3.1.3 Mixed Study

The third task was a mixed typing and pointing task. The goal of this task was

to force subjects to move their hands between the keyboard and the mouse. In this

study, subjects first clicked on the target (a red balloon of constant size) and then

typed a word in the text box which appeared after they clicked (Figure 19). We

measured the amount of time from the click to the first key pressed on the keyboard

and the time from the last character typed to clicking on the next balloon. Subjects

did not have to press Enter (unlike [34]). As soon as they had typed the correct word,

the system would show the next balloon. The amount of time to correctly type the

 31

Figure 20. EyePoint Web Study speed results.

word shown was not considered, because we were only interested in the subject’s

ability to point and not how well they could type. If the subject clicked but did not hit

the balloon, this was recorded as an error and the trial was repeated.

The sum of the two measured times is the round-trip time to move the hands

from the keyboard to the mouse, click on a target and then return back to the

keyboard. The Mixed Study compared the mouse with basic EyePoint, i.e. without a

gaze marker but with focus points.

3.3.2 Qualitative Evaluation

For the qualitative evaluation to measure users’ subjective opinion, users

were asked to fill out a questionnaire at the end of each study and to provide their

comments and opinions on the interaction techniques. They were asked to rank

gaze-based pointing and the mouse for speed, accuracy, ease of use, and preference.

In addition, subjects were also asked about which of the EyePoint variations (with

focus points, with gaze marker, or without focus points) they preferred.

 32

Figure 21. EyePoint Web Study accuracy results.

3.3.3 Web Study Results

Figure 20 shows the average time to click in the Web Study. A repeated

measures ANOVA for technique showed that the differences are significant

(F(3,57)=11.9, p<.01). Contrast analyses showed a significant difference for each eye-

based technique when compared to the mouse. Differences for the gaze marker

condition were also significant. However, there was no significant difference

between the focus points and no focus point conditions. The average time to click

with the mouse was 1576 milliseconds and 1915 milliseconds with EyePoint.

Figure 21 shows the accuracy results for the Web Study. A repeated measures

ANOVA analysis showed that the differences in error rate are significant

(F(3,57)=14.9, p<.01). Contrast analyses showed a significant difference in error rate

between each eye-based technique and the mouse. Differences among the three eye-

based variations were not significant. The mouse had an average error rate of 3%,

while the EyePoint error rate was 13%. The no focus points condition had an average

error rate of 10%.

 33

Figure 22. Balloon Study speed results.

Survey results for the Web Study showed that subjects’ opinions were evenly

split on which technique was faster (EyePoint or mouse) and which was easier to

use. Although all subjects felt that the mouse was more accurate, three quarters of

the subjects said they would choose to use EyePoint for this task over the mouse

since they felt it was faster, easier or just cooler. A majority of the subjects preferred

having focus points and felt that the focus points gave them something to “hold” on

to. We discuss the reasons users gave for the subjective opinions in Section 3.4.

3.3.4 Balloon Study Results

Figure 22 shows the average time to click in the Balloon Study. EyePoint

performs on average about 8.3% (100ms) slower than the mouse. A repeated

measures ANOVA for size and technique showed a significant effect for size (F(2,38)

= 26.8; p < .01), and for technique (F(3, 57) = 14.8; p <.01). We found no interaction

effect between size and technique. Contrast analyses showed that significant

differences existed for all pairs of sizes. For technique, contrasts showed a significant

 34

Figure 23. Balloon Study accuracy results.

difference between all pairs of techniques except EyePoint with no focus points vs.

mouse.

Figure 23 shows the error rates for the Balloon Study. In accordance with

Fitts’ Law, the size of the target did have an appreciable impact on the error rates.

Contrast analyses showed that the differences in error rates among the gaze-based

techniques were not significant. The differences between each of the gaze-based

techniques and the mouse were significant. It should be noted that the error rates for

gaze-based pointing techniques were considerably higher than in the web study. We

will discuss these results in the next section.

Survey results for the Balloon Study showed that subjects found the mouse to be

faster and more accurate. However, the gaze-based techniques were still perceived

to be easier to use, and three quarters of the subjects again said they would prefer to

use the gaze-based technique for this task. Subjects felt that moving the mouse was

fatiguing over time and that it was easier to click using the gaze-based methods

despite the speed disadvantage. We discuss the reasons users gave for the subjective

opinions in Section 3.4.

 35

Figure 24. Mixed Study performance/error results.

3.3.5 Mixed Study Results

Figure 24 shows the total round trip time to point to a target and return to

the keyboard for the Mixed Study. EyePoint is faster than the mouse in this task. A

paired sample two-tailed t-Test showed that the results are statistically significant

with p < .05.

Figure 24 also shows the accuracy results from the Mixed Study. It should be

noted that while the gaze-based technique had a lower time to point and return to

the keyboard, it had much lower accuracy than the mouse. A paired sample two-

tailed t-Test showed that the error results are statistically significant with p < .01.

Survey results for the Mixed Study showed a strong preference (>90%) for

EyePoint on the speed, ease of use and user preference dimensions — primarily

because users didn’t have to move their hands off the keyboard. The mouse was

preferred only on the accuracy dimension.

 36

3.4 Discussion

The above results present an incomplete picture without a deeper analysis. If

we isolate the actions the user must perform to point and click on a target with the

mouse, the total time would be:

Tmouse = tacquire target + tacquire mouse + tacquire cursor + tmove mouse + tclick mouse

where tacquire target is the amount of time it takes the user to conduct a visual search for

the target, tacquire mouse is the amount of time to move the hand from the keyboard to

the mouse (if the hands are not already on the mouse), tacquire cursor is the amount of

time to locate the cursor on the screen, tmove mouse is the amount of time to move the

mouse and tclick mouse is the amount of time to click the mouse button.

By contrast, the total time for selection using EyePoint would be:

Teyepoint = tacquire target + tacquire hotkey + tpress hotkey + treacquire target + trelease hotkey

where tacquire target is the again the amount of time it takes the user to conduct a visual

search for the target, tacquire hotkey is the amount of time to position the hand on the

hotkey, tpress hotkey is the amount of time to press the hotkey, treacquire target is the amount

of time it takes the user to conduct the secondary visual search and find the target in

the magnified view of EyePoint, and trelease key is the amount of time to release the

hotkey.

It can be reasonably expected that the time to acquire the target, i.e. perform

a visual search for the target is the same in both cases. The time to acquire the mouse

vs. the hotkey would depend on Fitts’ Law [28, 34]. In our studies, we found that

having a large hotkey such as the space bar, reduced the acquisition time for the

hotkey. The key performance difference between using the mouse and using the eye

arises from the second visual search to re-acquire the target in the magnified view.

We observed that subjects were able to parallelize tasks when using the mouse. For

instance, they would already have their hand on the mouse and begin moving it even

before they had performed the visual search. This may be the result of years of

practice with using the mouse. Due to the concurrent nature of the sub-tasks for

pointing with the mouse, the amount of time it takes the user to move the mouse and

the amount of time it takes the user to perform a secondary visual search when using

 37

gaze are similar (assuming the time to

click the mouse and release the key are

similar).

Based on the empirical results

and the model proposed above, we find

that the pointing speed of EyePoint is

similar to the performance of the mouse

and can actually be faster than the

mouse for mixed pointing and typing

tasks.

The analysis of error rates is a

little more complex. While the results

shown in the previous section suggest

that the error rates when using gaze-

based pointing are considerably higher

than those when using the mouse, the

graphs do not tell the complete story. A deeper analysis of the error data showed that

the error rates varied significantly across subjects. The eye-gaze tracker works

better for some subjects than others. The accuracy of the eye-tracking depends not

only on the individual, but on the quality of the calibration and the posture of the

subject over the course of the experiments.

If we partition the error data from the Web Study into subjects for whom the

eye tracker worked well and subjects for whom the eye tracker didn’t work as well,

the average error rate for the first group is 6% while that for the second group is

20% (Figure 25).

In the case of the balloon studies, we observed that since the task required

subjects to click on the balloons in rapid succession, some subjects would press the

EyePoint hotkey prematurely, in anticipation of the next balloon, before they even

actually looked at it. This resulted in a significantly higher error rate. In practice, we

can reasonably expect that subjects will look at the target before activating the

hotkey.

Figure 25. Breakdown of error rates from
the web study into two groups: users for
whom the eye tracker worked well and
users for whom the eye tracker didn't
work as well.

 38

The implementation of EyePoint uses a fixation detection algorithm that

expects the subject’s gaze to be within a certain region for at least 25-50 ms before it

updates the current gaze coordinate. This resulted in timing issues in the balloon

studies. Subjects would see the balloon in their peripheral vision and press the

hotkey before their foveal vision fixated on the target. To reduce such errors, we

propose measuring the initial fixation during a window of time that extends slightly

beyond the hotkey activation time, thereby giving the subject the ability to focus on

the target before the gaze-point is determined. We present details of this technique

in Chapter 9.

Our observation of the subjects while they performed the study also revealed

other interesting details. One subject, for instance, laughed and smiled a lot, which

caused the subject’s eyes to squint and resulted in a loss of eye-tracking accuracy

(sometimes no data at all). Our pilot studies included a subject with astigmatism and

weighted contact lenses which reduced the accuracy of the eye tracker, possibly due

to the differential movement of the weighted contact lenses. For subjects with

glasses we found that large frames with work better than narrow frames because the

rim of the frame doesn’t occlude the view of the camera. Similarly, this lenses work

better than thick lenses since thick lenses introduce a distortion of the eyes as seen

by the camera in the eye tracker.

Experimental effects also contributed to an increased error rate. In particular,

since we instructed subjects to complete the task as fast as possible, they optimized

their behavior for speed and thereby the accuracy of the system was compromised.

We verified this effect in following work which is discussed in Chapter 9. While we

randomized trials in order to compensate for learning effects, we did observe other

effects which affected the results. For instance, if the subject is first introduced to the

EyePoint with no focus points condition and then later to the EyePoint condition, by

the time they begin the test for the EyePoint condition, they already feel confident

about the technique and therefore tend to try to speed up, thereby increasing the

error rate. In addition, for real-life usage one might expect an improvement over

time as users adapt to using gaze-based pointing. This would also reduce the

cognitive load of pressing the right hotkey for the desired action.

 39

Survey results showed that subjects strongly preferred EyePoint over using the

mouse even though the mouse was more accurate and faster. This is contrary to our

empirical findings. When we asked subjects why this was so, they reported that they

felt that EyePoint was more natural since they were already looking at the target

when they wanted to point. Some subjects stated that they felt it was a more

“lightweight” pointing technique than the mouse. It also allowed them to keep their

hands on the keyboard and was therefore much faster for mixed tasks that involved

typing and pointing. They also felt that EyePoint reduced the risk of repetitive stress

injury from using the mouse.

In the qualitative evaluation subjects also reported that they found that the gaze-

based techniques required more “focus” and more “concentration” and therefore

found the studies to be fatiguing over time. It should be noted that each subject

participated in the study for one hour during which they had to click on

approximately 500 targets with their eyes and about 100 targets with the mouse. In

standard use, we do not expect users to be engaging is such intense usage, which

should alleviate any fatigue issues. However, the fatigue, if any, caused by a gaze-

based pointing technique would need to be analyzed in more depth in a long term

study with normal use patterns.

3.5 Summary

EyePoint presents a practical and innovative interaction technique that

combines the use of gaze- and key-based activation into a single look-press-look

release action. This transforms a two-step refinement process into a single fluid

action and prevents overloading the visual channel while still using gaze-based

target refinement. EyePoint makes gaze-based pointing equally compelling for use by

both disabled and able-bodied users.

 40

 41

Portions of this chapter were originally published by the author, Andreas Paepcke and Terry Winograd
in [64], and by the author and Terry Winograd in [63] and [62] (submitted to UIST 2007).

4 Scrolling

Scrolling is an essential part of our everyday computing experience. It is

essential for viewing information on electronic displays, which provide a limited

viewport to a virtually unlimited amount of information. Contemporary scrolling

techniques rely on the explicit initiation of scrolling by the user. Considerable prior

work [30, 46, 65, 109, 119] has been done in evaluating various techniques and

devices for scrolling.

The act of scrolling is tightly coupled with the user’s ability to absorb

information via the visual channel, i.e. the user initiates a scrolling action to inform

the system that he/she is now ready for additional information to be brought into

view. We therefore posit that gaze information can be an invaluable source of

contextual information making it a natural choice for enhancing scrolling techniques.

By understanding the characteristics of reading patterns and how users

consume visual information [24, 87, 89] it is possible to devise new techniques for

scrolling, which can either use gaze-information to automatically control the onset

and the speed of scrolling or use gaze information passively to augment manual

scrolling techniques.

Individual differences in reading and scanning patterns may result in no one

technique being suitable for all users. We therefore explore a range of techniques in

this chapter that may satisfy different user preferences. We designed and

implemented techniques for both manual and automatic scrolling on a Tobii 1750

 42

[107] eye tracker. We also introduce the use of off-screen gaze-actuated buttons or

hotspots that allow users to explicitly control document navigation.

4.1 Manual Scrolling

Manual scrolling techniques such as the use of the Page Down key can be

improved by using gaze information as an augmented input for the scrolling action.

In this section we first identify a common problem with the use of the Page Down

action and propose a gaze-enhanced solution to this problem.

4.1.1 The Page Up / Page Down Problem

The implementation of Page Up and Page Down on contemporary systems is

based on the expectation that the user will press the page down key when he or she

is looking at the last line on the page. However, observing users revealed that users

often initiate scrolling in anticipation of getting towards the end of the content in the

viewport. This results in users pressing page down before reaching the last line of

the text. Consequently, the text the user was looking at scrolls out of view off the top

of the viewport. This necessitates a fine-tuning of the scrolling movement to bring

A. The user’s gaze position right

before pressing the Page Down Key.

B. When the user presses the Page

Down Key, the region below the user’s

eye gaze is highlighted with a

GazeMarker and scrolled to the top of

the viewport.

C. The motion of the GazeMarker

directs the user’s gaze up to the top of

the page keeping it positioned where

the user was reading. The GazeMarker

slowly fades away over a couple of

seconds.

Figure 26. The Gaze-enhanced Page Up / Page Down approach addresses the limitations of
current Page Up and Page Down Techniques by Positioning the region under the user’s
gaze at the bottom or top of the page respectively.

GazeMarker

 43

the text back into view. In addition, most users tend to lose track of where they were

reading once the page scrolls and must reacquire their position in the text.

4.1.2 Gaze-enhanced Page Up / Page Down

We propose a new approach for a gaze-enhanced page-down which uses a

GazeMarker to always keep user’s eyes on the text they were reading even through

page transitions. In this approach, the user’s eye gaze on the screen is tracked. When

the user presses the page down key, the region where the user was looking

immediately before pressing the page down key is highlighted. We call this highlight

a "GazeMarker". The page is then scrolled such that the highlighted region becomes

the topmost text shown in the viewport (Figure 26). Since the highlight appears

immediately before the page scrolls and then moves up in the viewport, the user’s

gaze naturally follows the highlight. This ensures that the user’s gaze is kept on the

text he or she was reading and minimizes the need to reacquire the text after

scrolling. The GazeMarker slowly fades away within a few seconds.

This technique ensures that the content the user is looking at is brought to

the top of the page. By implication, the amount of the page that is scrolled is also

controlled by the position of the user’s gaze when the Page Down key is pressed. In

addition the scrolling motion of the page is controlled so that the GazeMarker is

animated up towards the top of the page (as opposed to a discrete jump) in order to

smoothly carry the user’s eyes to the new reading location.

4.2 Automatic Scrolling

The design of any automatic scrolling techniques must overcome two main

issues: a) the Midas Touch problem, b) controlling the speed at which the content is

scrolled. We address each of these problems below.

4.2.1 Explicit Activation/Deactivation

PC keyboards include a vestigial Scroll Lock key, which the vast majority of

users have never used. The historical function of the Scroll Lock key was to modify

the behavior of the arrow keys. When the scroll lock mode was on, the arrow keys

 44

would scroll the contents of a text window instead of moving the cursor. The Scroll

Lock key is a defunct feature in most modern programs and operating systems.

To overcome the Midas Touch problem we chose to use explicit activation of

the automatic scrolling techniques by putting the Scroll Lock key back into use. The

user toggles the automatic scrolling on and off by pressing the Scroll Lock key on the

keyboard.

4.2.2 Estimation of Reading Speed

For several of the techniques presented in this chapter, it is useful to be able

to measure the user’s vertical reading speed. Previous work [24, 89] has shown that

the typical eye movements (fixations and saccades) for a subject reading text

conforms to Figure 27. Beymer et al. [24] present an estimate of reading speed based

on forward-reads. For our use – to control scrolling — it is more interesting to

measure the speed at which the user is viewing vertical pixels. This can be estimated

by measuring the amount of time for the horizontal sweep of the user’s eye gaze (Δt)

and the delta in the number of vertical pixels during that time (Δy). The delta in the

vertical pixels divided by the amount of time for the horizontal sweep (Δy/Δt)

provides an instantaneous measure of “reading speed” (Figure 27). A smoothing

algorithm is applied to the instantaneous reading speed to account for variations in

column sizes and the presence of images on the screen. The resulting smoothed

Figure 27. Estimation of reading speed. Vertical pixels viewed per second = Δy/Δt
(base image of gaze pattern while reading taken from wikipedia.org).

 45

reading speed provides a best guess estimate of the rate at which the user is viewing

information on the screen.

We present three scrolling techniques that start and stop scrolling

automatically, depending upon the user’s gaze position. The techniques differ in the

details of whether the content is scrolled smoothly or discretely. The automatic

scrolling techniques presented in this chapter, scroll text only in one direction. This

was a conscious design choice to overcome the Midas Touch problem. Scrolling

backwards or navigating to a particular section of the document can be achieved

either by using manual methods or by using off-screen navigation buttons.

4.2.3 Eye-in-the-middle

The eye-in-the middle technique for automatic scrolling measures the user’s

reading speed while dynamically adjusting the rate of the scrolling to keep the user’s

gaze in the middle third of the screen (Figure 28). This technique relies on

accelerating or decelerating the scrolling rates to match the user’s instantaneous

reading speed. It is best suited for reading text-only content since the user’s scanning

patterns for images included with the text may vary. This technique requires that the

user read text while it is scrolling smoothly, similar to a teleprompter.

4.2.4 Smooth scrolling with gaze-repositioning

This automatic scrolling approach relies on using multiple invisible threshold

lines on the screen (Figure 29). When the user’s gaze falls below a start threshold, the

document begins to scroll slowly. The scrolling speed is set to be slightly faster than

the user’s reading speed so as to gradually move the user’s gaze position towards the

top of the screen. When the user’s gaze reaches a stop threshold, scrolling is stopped

(text is stationary) and the user can continue reading down the page normally. If the

user’s gaze falls below a faster threshold, the system begins to scroll the test more

rapidly. The assumption here is that either the scrolling speed is too slow or the user

is scanning and therefore would prefer that the content scroll faster. Once the user’s

gaze rises above the start threshold, the scrolling speed is reduced to the normal

 46

scrolling speed. The scrolling speed can be adjusted based on each individual’s

reading speed.

In our implementation, the position of the threshold lines was determined

based on user feedback. In particular, placing the stop threshold line higher on the

screen resulted in subjects in our pilot study worrying that the text would “run

away” before they would have the chance to finish reading it. We therefore lowered

the stop threshold to one-third the height of the screen so that scrolling would stop

before the users became anxious. In addition, whenever scrolling is started or

stopped, it is done by slowly increasing or decreasing the scrolling rate respectively.

This is done to make the state transitions from continuous and fluid.

This approach allows for both reading and scanning, however, in this

approach while the user is reading, sometimes the text is moving and other times the

text is stationary.

4.2.5 Discrete scrolling with gaze-repositioning

The discrete scrolling with gaze-repositioning approach leverages the gaze-

enhanced Page Up / Page Down technique for manual scrolling and extends it by

Figure 28. The eye-in-the-middle
automatic scrolling technique adjusts the
scrolling speed to match the user’s
reading speed and tries to keep the user’s
eyes in the middle third of the screen.

 Figure 29. The smooth scrolling with gaze-
repositioning technique allows for reading
and scanning of content. Scrolling starts
and stops depending on the position of
the user’s gaze with respect to invisible
threshold lines on the screen.

 47

adding an invisible threshold line towards the bottom of the screen. When the user’s

eyes fall below the threshold the system issues a page down command which results

in the GazeMarker being drawn and the page being scrolled (Figure 30). The user’s

gaze must stay below the threshold for a micro-dwell duration (~150-200ms) before

the event triggers. This minimizes the number of false activations from just looking

around at the page and disambiguates scanning the screen from reaching the end of

the content on the screen while reading. The scrolling motion happens smoothly to

keep the user’s eyes on the GazeMarker, but fast enough for the scrolling to appear as

if it occurred a page at a time.

This approach ensures that users read only when the content is stationary (in

contrast to the previous automatic scrolling approaches).

4.3 Off-Screen Gaze-Actuated Buttons

The Tobii eye-tracker provides sufficient field of view and resolution to be

able to clearly identify when the user is looking beyond the edges of the screen at the

bezel. This provides ample room to create gaze-based hotspots for navigation

A. The user’s gaze position when the

eye gaze drops below the scrolling

threshold.

B. If the user’s gaze stay below the

threshold for the duration of a micro-

dwell (~150-200ms) the system issues

a Page Down command, which results

in the GazeMarker being drawn.

C. The motion of the GazeMarker

directs the user’s gaze up to the top of

the page keeping it positioned where

the user was reading. The

GazeMarker slowly fades away over a

couple of seconds.

Figure 30. The discrete scrolling with gaze-repositioning leverages the gaze-enhanced
Page Up / Page down and triggers a Page Down event when the users gaze falls below a
threshold line for a specified duration.

 48

controls. We implemented several variations of off-screen gaze-actuated buttons for

document navigation as seen in Figure 31.

Figure 31A shows the use of off-screen targets for document navigation

commands such as Home, End, Page Up and Page down. Figure 31B and Figure 31C

show two alternative placements of scroll bar buttons. Figure 31D shows the

A. Home, End, Page Up and Page Down buttons

activated by dwell (400-500 ms)

 B. Scrolling buttons activated by a micro-dwell (150-

200ms) provide continuous input while the user is looking

at them.

C. Scrolling buttons located in the center to be aligned

with the user’s gaze direction.

 D. 8-way panning regions activated by looking slightly off-

screen for a micro-dwell duration (150-200ms)

Figure 31. Off-screen gaze-actuated buttons/hotspots for document navigation and
control. Buttons which trigger discrete events (Home, Page Down etc.) use a dwell-based
activation. Hotspots that have a more continuous action (scroll up etc.) use a micro-dwell
based activation.

 49

placement of hotspots for an eight-way panning approach. We used this approach to

implement a prototype of a gaze-controlled virtual screen where the total available

screen real-estate exceeds the visible portion of the screen (See .Chapter 8).

4.3.1 Dwell vs. Micro-Dwell based activation

Document navigation requires either a discrete one time activation (such as

Home, End, Page Up and Page Down buttons), or a more continuous or repetitive

action (such as the cursor keys or the controls on a scroll bar). To accommodate the

different forms of these actions we implement two different activation techniques.

The first, dwell-based activation, triggers only once, when the user has been staring

at the target for at least 400-500 ms. For actions that require continuous input, we

chose to use a micro-dwell based activation when the user has been staring at the

target for at least 150-200 ms. The dwell based activation triggers the event just

once. The micro-dwell based activation repeats the command or action till the user

stops looking at the associated hot-spot.

4.4 Evaluation

We conducted informal user studies to gauge user reaction to the gaze-

enhanced scrolling techniques described above. Feedback from the user studies was

used to help refine the techniques and motivated key design changes (such as the

introduction of micro-dwell). Detailed comparative quantitative evaluation of the

each of the scrolling techniques was not performed since any such evaluation would

be plagued by differences in subjects’ reading style and speed. In addition, users may

prefer one approach over another depending upon their subjective preferences.

4.4.1 Gaze-enhanced Page Up / Page Down

Informal user studies with 10 users indicated that subjects unanimously

preferred the gaze-enhanced Page Up/Page Down technique over the normal Page

Up / Page Down. Subjects reported that the system eliminated the need to reposition

the text after pressing page down, consistently highlighted the region that they were

looking at and kept their eyes on the content even after it scrolled.

 50

4.4.2 Smooth-scrolling with Gaze-Repositioning

To evaluate the smooth scrolling with gaze-repositioning technique we

conducted a two part study with 10 subjects (6 male, 4 female). The average age of

the subjects was 22 years. None of the subjects wore eye-glasses, though two did use

contact lenses. None of the subjects were colorblind. English was the first language

for all but two of the subjects. On average, subjects reported that they did two-thirds

of all reading on a computer. The scroll-wheel was the most-favored technique for

scrolling documents when reading online, followed by scroll bar, spacebar, page up /

page down or arrow keys.

In the first part of the study, subjects were told that they would be trying a

new gaze-based automatic scrolling technique to read a web page. For this part of

the study, subjects were given no explanation on how the system worked. To ensure

that subjects read each word of the document, we requested them to read aloud. We

did not test for comprehension of the reading material since we were only interested

in the subjects being able to view the information on the screen. Once subjects had

finished reading the page, they were asked to respond to questions on a 7-point

Likert scale.

In the second part of the study, we explained the technique’s behavior to the

subjects and showed them the approximate location of the invisible threshold lines

(Figure 2). Subjects were allowed to practice and become familiar with the approach

and then asked to read one more web page. At the conclusion of this part subjects

again responded to the same set of questions as before.

Figure 32 summarizes the results from the study showing the subjects’

responses in each of the two conditions (without explanation and with explanation).

Subjects’ feeling that scrolling started when they expected it to, and that they

were in control show increases in the with-explanation condition. For all other

questions regarding comfort, fatigue and user preference there was no significant

change in the subjects’ responses across the two conditions. Subjects’ response on

the reading speed was mostly neutral, suggesting that they felt the scrolling speed

was reasonable. While the differences in the results for reading speed in the two

conditions are not significant, results do show that subjects were more comfortable

 51

(more neutral) in the with-explanation

condition since they were more familiar

with the operation and less worried about

the content running off the screen.

Several subjects commented that

they found reading text while it was

scrolling to be disconcerting at first, but

then became more comfortable with it once

they realized that the text would not scroll

off the screen and would stop in time for

them to read. It is conceivable that, like a

teleprompter, subjects may be comfortable

with reading moving text with practice.

4.4.3 Discrete scrolling with Gaze-

repositioning

In informal user studies with 10

subjects, users indicated that they preferred

the discrete scrolling with gaze

repositioning approach over other

automatic scrolling techniques since it

required them to read only when the text was stationary.

4.5 Summary

We presented several techniques for gaze-enhanced scrolling which include

augmenting existing manual scrolling techniques with gaze input and variations of

automatic gaze-based scrolling techniques. We also introduced the use of off-screen

gaze-actuated buttons or hotspots.

Gaze enhanced scrolling has the potential to radically reduce the number of

scrolling actions users need to perform in order to surf the web or consume other

information displayed in electronic form. With the inclusion of cameras into current

Scale: 1-7 (Disagree-Agree)

Scrolling started when you expected it to

The scrolling speed was too slow

I felt that I was in control

I was able to read comfortably

My eyes felt tired when using the automatic

scrolling

I would use this approach to read a

paper/text on a website

Figure 32. Subjective evaluation results
for Smooth scrolling with gaze-
repositioning in two conditions (with and
without explanation of how the system
works). Error bars show Standard Error.

 52

display devices [2] and the impending reduction in cost of eye-tracking technology

(Chapter 10), gaze-based scrolling techniques will increase in importance and

provide users with a natural alternative to current approaches.

 53

Portions of this chapter were originally published by the author, Andreas Paepcke and Terry Winograd
in [60] and by the author and Terry Winograd in [63].

5 Application Switching

Application switching is an integral part of our daily computing experience.

Users are increasingly engaged in multiple tasks on their computers. This translates

into a larger number of open windows on the desktop. On average, users have 8 or

more windows open 78.1% of the time [49]. While there has been extensive research

in the area of window managers and task management [9, 35, 44, 90, 91, 100], few of

these innovations have been adopted by commercially available desktop interfaces.

Clicking on the iconic representation of the application in the taskbar/dock or using

Alt-Tab/Cmd-Tab have been the de facto standard for application switching for

several years. Probably the most notable advance has been the introduction of the

Exposé [1] feature in Apple’s Mac OS X operating system.

Exposé allows the user to press a key (default F9) on the keyboard to

instantly see all open windows in a single view (Figure 33). The windows are tiled,

scaled down and neatly arranged so that every open application is visible on the

screen. To switch to an application the user moves the mouse over the application

and then clicks to bring that application to the foreground. Every open application

window is restored to its original size and the window clicked upon becomes the

active window.

Windows Vista includes new application switching features. The taskbar in

Windows Vista displays live thumbnail views of open applications when the user

hovers the mouse on the taskbar. Alt-Tab functionality has been updated with

 54

Windows Flip and Flip3D [8]. Flip allows users to view live thumbnails of the

applications as they press Alt-Tab. Flip3D shows a stacked 3-D visualization of the

applications with live previews and allows users to cycle through applications with

the scroll wheel or the keyboard.

In this chapter we introduce and evaluate a technique that uses eye gaze for

the selection of the desired window in conjunction with Exposé-like visualization of

the open application windows.

5.1 Background and Related Work

Application switching has been necessary ever since computers were able to

multi-task. In the days of command-line UNIX this was achieved with the commands

bg, fg and jobs. With the advent and ubiquity of graphical interfaces and the desktop

metaphor, application switching has become commonplace.

The techniques for application switching can be categorized into three

approaches: Temporal, Spatial and Hybrid. Temporal approaches sort windows based

Figure 33. Exposé view of open applications (image from wikipedia.org).

 55

on their time of last access, and therefore the order in which the windows are shown

to the user changes depending on which application was last used. Spatial

approaches may use an initial ordering based on when the application was launched

or where it is located on the screen. The relative order of applications in the

application switching view does not change unless there is a change in the number of

open applications or the spatial location of an application. Hybrid approaches use a

combination of spatial and temporal characteristics of the open application windows.

Alt-Tab is a temporal approach. It organizes applications in the order in

which they were last used. Users are able to cycle through the list of applications by

sequentially stepping through the list until they arrive at the application they desire.

Such techniques make best use of the user’s temporal memory and make switching

among a limited number of tasks very efficient.

The organization of window buttons on the Taskbar or in the dock follows the

spatial approach. The user can access any open application directly by clicking on a

button/iconic representation of the application. The location of the iconic

representation of the application on the Taskbar is fixed and therefore this approach

takes advantage of the user’s spatial memory.

Exposé uses a spatial layout to arrange the open application windows in a

visual representation. It also uses heuristics to keep the current application in the

center of the visualization and to arrange windows based on their relative spatial

position [54]. While the location of the windows in the Exposé view may change, it is

relative to the spatial locations of the open applications.

Hybrid approaches, which use a temporal ordering but allow for random

access (as opposed to the sequential access of Alt-Tab) are becoming more popular.

The Windows XP PowerToy TaskSwitch [5] shows a thumbnail of the current

application and allows users to either cycle through the open applications by

repeatedly pressing Alt-Tab or to use the mouse to click on the icon for the desired

application. This functionality is also embodied in the implementation of Flip and

Flip3D in Windows Vista.

In EyeWindows [40], Fono and Vertegaal explore two window management

techniques for non-overlapping windows which use the elastic windowing algorithm

 56

to spatially lay out application windows. The EyeWindows approach suffers from

two major drawbacks. First, the technique is limited to use with non-overlapping

windows (all techniques described previously allow overlapping windows).

Secondly, switching between applications in EyeWindows requires windows to be

zoomed in and out, which can be visually distracting for the user.

Several research systems [9, 35, 44, 90, 91, 100] have been proposed with

novel window management and task switching techniques. Our gaze-based selection

technique can complement the techniques in other research systems. For this

chapter we focus on task/window switching techniques in commercially available

and commonly used operating systems.

5.2 Design Rationale

We hypothesized that it would be preferable to switch between applications

simply by looking at the application the user wants to switch to – a concept similar to

EyeWindows. Exposé in Mac OS X provides a well established and highly usable

technique for switching between applications. Unfortunately, the research literature

is lacking a scientific evaluation of different application switching techniques (Alt-

Tab/Cmd-Tab vs. Taskbar/Dock vs. Exposé vs. Flip/Flip3D). Anecdotal evidence,

however, suggests that the Exposé approach is preferred by users for random access

Figure 34. Fono et al.’s EyeWindows technique for switching between non-overlapping
windows using eye gaze. When the user looks at a particular window, it is restored to its
full dimension while all other windows are distorted using an elastic windowing
algorithm.

 57

Figure 35. Using EyeExposé – Pressing and holding the EyeExposé hotkey tiles all open
applications on the screen. The user simply looks at the desired target application and
releases the hotkey to switch applications.

to open applications, while the Alt-Tab/Flip approach is preferred for access to the

last used application.

To use Exposé, users press a hotkey (F9) and then use the mouse to point at

and click on the desired application. Using this approach requires both the keyboard

and the mouse, whereas with the Alt-Tab approach, the user can switch applications

using only the keyboard. Exposé does allow users to activate application switching

by moving the mouse to a designated hotspot (one corner of the screen) and then

clicking on the desired application. This still requires users to move their hands from

the keyboard to the pointing device.

As discussed in Section 2.5, the accuracy of eye trackers is insufficient to be

able to point to small targets. In Chapter 3, we presented a technique that overcomes

this limitation of eye trackers by using a secondary gaze fixation in a magnified view.

By contrast, for the purpose of application switching, the size of the tiled windows in

Exposé is usually large enough for eye-tracking accuracy to not be an issue.

Therefore, direct selection of the target window using gaze is possible.

5.3 EyeExposé

Our system, EyeExposé, combines a full-screen two-dimensional thumbnail

view of the open applications with gaze-based selection. EyeExposé has been

implemented on Microsoft Windows using a Tobii 1750 eye gaze tracker for the

gaze-based selection.

 58

Figure 35 show how EyeExposé works. To switch to a different application,

the user presses and holds down a hotkey. EyeExposé responds by showing a scaled

view of all the applications that are currently open on the desktop. The user simply

looks at the desired target application and releases the hotkey.

Whether the user relies on eye gaze or the mouse, the visual search task to

find the desired application in the tiled view is a required prerequisite step. By using

eye gaze with an explicit action (the release of the hotkey) we can leverage the user’s

natural visual search to point to the desired selection. If we analyze the actions

needed by the user to select a target window using the mouse, the total time would

be:

Tmouse = tactivation + tvisual search + tacquire mouse

+ tacquire cursor + tmove mouse + tclick mouse

where tactivation is the time for the user to press the hotkey or move the mouse to a

corner of the screen to activate application switching; tvisual search is the amount of time

it takes the user to locate the target on the screen; tacquire mouse is the amount of time it

takes the user to move the hands from the keyboard to the mouse; tacquire cursor is the

amount of time to locate the cursor on the screen and tmove mouse and tclick mouse are the

times to move and click the mouse button respectively.

We assume here that the visual search only needs to happen once since short

term spatial memory enables the user to remember where the mouse needs to be

moved. By contrast, the total time for selection using EyeExposé should be:

Teyeexposé = tactivation + tvisual search + trelease

where trelease is the time to release the hotkey. We expect trelease to be considerably

lower than (tacquire mouse + tacquire cursor + tmove mouse + tclick mouse). Gaze-based application

switching can therefore result in time savings by eliminating several of the cognitive

and motor steps and replacing them with the single action of releasing the

hotkey/trigger.

However, efficiency is not the only measure of the success of a particular

interaction. The affect generated by that interaction and the subjective user

experience is a key measure of the success and factor for adoption [81]. We

hypothesized that users would like using EyeExposé since it provides a very simple

 59

and natural way of switching between applications. Therefore, we also chose to

evaluate the user’s subjective experience when using the gaze-based application

switching.

5.4 Evaluation

To evaluate EyeExposé, we conducted a user study with 20 subjects. Subjects

were mostly graduate students and professionals and as such were experienced

computer users who used various ways of switching applications. When asked which

application switching technique they used the most, subjects reported that 46% used

Alt-Tab, 38% used the Taskbar, 13% used Exposé and 4% used some kind of Virtual

Desktop. Our subject pool had 13 males and 7 females with an average age of 28

years. 14 subjects did not require any vision correction. Four subjects wore contact

lenses and 2 wore eyeglasses. None of the subjects were colorblind. Subjects had an

average of 15 years of experience using the mouse.

5.4.1 Quantitative Evaluation

We tested speed and accuracy for 4 different application switching

techniques — the Taskbar, Alt-Tab, an Exposé-clone with mouse based selection and

EyeExposé in a 4 by 3 within-subjects experiment (4 techniques, 3 number of

windows). For each application switching technique (Taskbar, Alt-Tab, Exposé and

EyeExposé) we conducted trials with 4, 8 and 12 open windows to account for the

number of windows being below, at and above average [49]. The order of the trials

for each combination of technique and number of windows was varied to

counterbalance and minimize learning effects.

Our original experiment design used real application windows such as Word,

Excel and PowerPoint as the target windows. We believed that subjects would be

easily able to recognize real application windows. However, our pilot studies

revealed that subjects found it difficult to recognize applications in a testing

environment, which was not based on their own work context. We therefore chose to

use colored windows to reduce the cognitive load and the search time for subjects to

identify the right target window.

 60

Each window was a unique color and the name of the window matched the

color of the window. Colors were carefully chosen to maximize recognition of the

color by name (Figure 36). We verified that subjects were able to easily identify

windows by the name of the color in our pilot studies. The window icon that

appeared on the Taskbar and in the Alt-Tab view matched the color of the window.

Maintaining the color consistency on window icons and names ensured that the

Taskbar and Alt-Tab techniques also benefited from the use of colors. The final

design used a unique icon and color for each window and was therefore biased in

favor of the Taskbar and Alt-Tab since there were no applications with the same icon

repeated – a condition that happens often in normal use. In addition, the use of

colored windows does not provide any additional contextual information that may

otherwise be available in a real-use scenario. This also biases against Exposé and

Figure 36. Exposé/EyeExposé view of 12 open windows, each window being a distinct
color (yellow, white, red, purple, light green, light blue, grey, pink, orange, dark green,
dark blue and brown).

 61

EyeExposé, since those techniques have the ability to display more context than just

color when the visualization is activated.

We used our implementation of an Exposé clone to perform the tests in a

Windows environment and to instrument the code to capture timing data. Our

implementation differs from the Mac OS X implementation in that EyeExposé uses a

simpler layout algorithm, ordering windows heuristically based on the height, width

or area of the window. EyeExposé does not optimize window placement based on the

spatial location of windows (not a variable in the study since all the applications

were full-screen). The eye-based selection and mouse-based selection both used the

same underlying code and layout algorithm and therefore the only difference in the

setup was the selection technique used.

In the Exposé and EyeExposé conditions the placement of windows was

randomized for half of the subjects: each time the user activated the view, the order

Figure 37. Instructions for which window to switch to next were shown on a second
monitor.

 62

Figure 39. Alt-Tab view of 12 open application windows.

of the windows changed. For the other half of the subjects, the order of the windows

remained the same as in previous trials.

In the Taskbar condition, users had to click on the application button on the

Taskbar and then click on a randomly placed “Next” button. This was done to force

users to move the mouse away from the Taskbar before the subsequent trial. For all

other techniques, users were prompted with the name of the next target window as

soon as they completed the current trial. The number of windows on the Taskbar

never exceeded a threshold that would cause it to add a second line with a scroll

button (Figure 38).

The experiment used a Tobii 1750 (17” LCD) eye gaze tracker as the primary

display. The screen resolution was set to 1280x1024 pixels. The test environment

presented a window on a second monitor placed to the right of the primary screen,

which displayed the instructions for the user (Figure 37).

We recorded the amount of time it took a user to select the target window,

Figure 38. Taskbar in each of the 4, 18 and 12 window conditions.

 63

starting from the time the instruction appeared on the screen. If the user switched to

an incorrect window, we recorded an error. In each of the 12 conditions (technique x

number of windows), users were asked to switch windows until they had completed

20 successful trials.

5.4.2 Qualitative Evaluation

At the end of the study, subjects completed a questionnaire in which they

ranked each of the four techniques on dimensions of perceived speed, accuracy, ease

of use, and preference.

5.5 Results

Figure 40 shows the time to switch between applications in the quantitative

evaluation. A repeated measures ANOVA for number of windows and technique

showed a significant effect for number of windows (F(2,38)=55.07, p < .01), for

technique (F(1.9,36.9)=5.29, p < .01, Greenhouse-Geisser corrected) and interactions

between number of windows and technique (F(6, 114) = 22.22, p < .01). Contrast

Figure 40. Quantitative evaluation results – time to switch between applications.

 64

analyses showed no significant difference between the Exposé and EyeExposé

techniques. For the 4-window condition, as we expected, Alt-Tab was faster than

Exposé and EyeExposé. For 8 windows, switching times for all four techniques were

about the same, with the Taskbar showing a slight (but significant) advantage over

Exposé. For the 12 window condition, EyeExposé had the lowest switching time

(significant compared to Alt-Tab only).

Figure 41 shows the error rates from the study. It should be noted that the

maximum error was less than 5%, or 1 error in over 20 trials. Several subjects

performed the trials with no errors at all. The error rate distributions were highly

non-normal. We therefore performed a Friedman’s (non-parametric) ANOVA to

compare participants’ error rates. Results are shown in Table 1. The first row shows

the ANOVA results. The second row shows the result of Bonferroni corrected pair-

wise comparisons between the conditions. Only the listed condition pairs exhibited

significant differences in error rates. As expected, the error rates for Exposé were the

smallest since it provides large, easily recognizable targets, which are clicked on with

a mouse.

Figure 41. Quantitative study results - error rate.

 65

Figure 42 shows a summary of the results from the qualitative evaluation

where subjects ranked the four techniques for speed, accuracy, ease of use and

preference. EyeExposé was the subjects’ choice for speed, ease of use, and the

technique they would prefer to use most if they had all four approaches available.

Exposé was the subjects’ choice for accuracy.

5.6 Discussion

The results from our user survey show that users have a strong preference

for EyeExposé for switching between applications. Subjects reported that they felt

 Number of Windows

 4 8 12

Friedman

ANOVA

Χ2(3)=13.1;

p<.01

Χ2(3)=18.0;

p<.01

Χ2(3)=11.7;

p<.01

Significant

Differences

(pairs)

EyeExposé

Exposé

Exposé

Taskbar

EyeExposé

Alt-Tab

EyeExposé

Exposé

EyeExposé

Exposé

Exposé

Taskbar

Table 1. Result of Friedman’s ANOVA on errors.

Figure 42. Qualitative evaluation results - survey ranking data.

 66

that EyeExposé was “natural,” “faster” and “less annoying” when compared to other

approaches. They also reported that they liked not having to move their hands off the

keyboard to use the mouse when compared to using Exposé.

5.6.1 Performance Results

We expected the performance of EyeExposé to show a clear advantage over

using the mouse in the Exposé condition. However, the results did not show a strong

advantage in the time to switch and EyeExposé had a higher or comparable error

rate to most other techniques.

We suspect that there are two reasons for this. First, the experimental design

was such that users could keep one hand on the keyboard and the other hand on the

mouse in the Exposé condition. Therefore, the cost of acquiring the mouse was zero.

Furthermore, since the users already knew the location of the cursor on the screen

from previous trials, the cost of acquiring the cursor was also negligible. In real-

world usage, users may undertake other actions and may not remember the location

of the cursor. The time to acquire the cursor in these cases would not be negligible.

As discussed in Section 3.4, we observed during the study that users could

successfully parallelize some of the tasks required for pointing with the mouse. We

noticed that users moved the mouse concurrently with visual search on the screen.

This may be a result of the years of practice users have had with using the mouse as

their primary pointing device. Therefore, the theoretical model for the time to switch

we proposed earlier, which assumes a sequential ordering of the tasks is flawed due

to the concurrent nature of some of the intermediate steps.

Card et al. [28] measured the device switching time from the keyboard to the

pointing device to be around 360 ms. In real world use, users will incur this

additional cost of acquiring the pointing device when using the Exposé technique.

EyeExposé would then have a clear advantage over mouse-based selection.

Our implementation of the Exposé and EyeExposé technique took longer to

show the visualization than the Alt-Tab condition or the Taskbar (always visible) due

to the sluggishness of painting the screen in Windows. In the ideal scenario, the

 67

application switching technique would be integrated into the operating system and

be optimized for drawing performance.

5.6.2 Accuracy Results

The error results exhibit high variance because most subjects were able to

complete the task in a given condition with zero errors. The low number of errors

suggests that the performance and the user preference may dominate as factors in

the decision choice for which technique users choose to use.

A closer analysis of the errors in task switching suggests that Alt-Tab is prone

to errors where the user overshoots or undershoots the target window. This is

because Alt-Tab’s temporal window ordering strategy reorders the display of open

applications each time the user selects a new application. Only 4 subjects (20%) used

the Shift key in order to cycle backwards when using Alt-Tab.

For the Taskbar, errors usually stemmed from clicking on a neighboring

window button or missing the Taskbar. This was especially true in the case of the 12

window condition where the size of the target decreased. This reaffirms the

advantage of an Exposé like approach which provides large targets by using the

transitional whole screen view as opposed to a permanently visible dedicated region

of the screen. It should be noted that the number of windows was always low enough

to show all the windows on the Taskbar without having to click the scroll button on

the Taskbar.

Most errors in the EyeExposé condition occurred due to subjects picking the

incorrect color (the brown color was initially confused with red by some users). The

error counts therefore include both perceptual error and motor error. One reason

the error rates for EyeExposé were higher than those of Exposé is because when

using the mouse for selection, subjects have to first find the target and then move the

mouse; the latter action of moving the mouse the target provides a second

opportunity for subjects to correct any perceptual error before they click (i.e. if they

were going to select the wrong color). By contrast in the case of EyeExposé, subjects

can release the hotkey as soon as they think they are looking at the target.

Additionally, as noted in Section 3.4, the eye tracker requires user to focus on the

 68

target to provide an accurate reading. If the user had not focused on the target

window and was only relying on peripheral vision, the data from the eye tracker will

not be accurate enough to make a selection. We propose the introduction of focus

points (see Section 9.3) on the EyeExposé visualization which will provide users with

a visual anchor during gaze-based selection.

The Alt-Tab and Taskbar did not have as many errors since the name of the

window (color) is readily visible in those techniques. In the Alt-Tab condition

subjects would often notice that they had picked the incorrect target before releasing

the Alt key and would therefore be able to correct the error immediately. Correcting

errors in all other techniques requires subjects to repeat the trial. In the case of

EyeExposé timing was another issue. We observed that users looked away at the side

monitor in anticipation of instructions for the next target before they released the

trigger key.

5.6.3 Subjective Results

Subjects’ perception that EyeExposé was faster than other approaches (in

contrast to empirical data) is an interesting result. We hypothesize that users may

interpret the lower cognitive load of a technique like EyeExposé as speed in their

mind. Survey results also indicate that user preference for EyeExposé was strong.

While some of this could be attributed to demand effects, in our discussion with

subjects they expressed that EyeExposé “feels like the right way,” was “natural,” and

“simple to use.”

5.7 Summary

We found that using a combination of keyboard or other trigger to activate

the Exposé-like visualization of open applications and then using eye gaze for

selection was an effective technique for switching between applications quickly and

naturally. Our studies showed that users strongly preferred EyeExposé as the

application switching technique of choice.

 69

Portions of this chapter were originally published by the author, Tal Garfinkel, Dan Boneh and Terry
Winograd in [59].

6 Password Entry

Text passwords remain the dominant means of authentication in today’s

systems because of their simplicity, legacy deployment and ease of revocation.

Unfortunately, common approaches to entering passwords by way of keyboard,

mouse, touch screen or any traditional input device, are frequently vulnerable to

attacks such as shoulder surfing (i.e. an attacker directly observes the user during

password entry), keyboard acoustics [14, 22, 120], and screen electromagnetic

emanations [55].

Current approaches to reducing shoulder surfing typically also reduce the

usability of the systems; often requiring users to use security tokens [93], interact

with systems that do not provide direct feedback [92, 113] or they require additional

steps to prevent an observer from easily disambiguating the input to determine the

password/PIN [6, 41, 92, 103, 111, 113]. Previous gaze-based authentication

methods [47, 48, 69] do not support traditional password schemes.

We present EyePassword, an alternative approach to password entry that

retains the ease of use of traditional passwords, while mitigating shoulder-surfing

and acoustics attacks. EyePassword utilizes gaze-based typing, a technique originally

developed for disabled users as an alternative to normal keyboard and mouse input.

Gaze-based password entry makes gleaning password information difficult for the

unaided observer while retaining simplicity and ease of use for the user. As expected,

a number of design choices affect the security and usability of our system. We discuss

 70

these in Section 6.4 along with the choices we made in the design of EyePassword.

We implemented EyePassword using the Tobii 1750 [107] eye tracker and

conducted user studies to evaluate the speed, accuracy and user acceptance. Our

results demonstrate that gaze-based password entry requires marginal additional

time over using a keyboard, error rates are similar to those of using a keyboard and

users indicated that they would prefer to use the gaze-based approach when

entering their password in a public place.

6.1 Background and Related Work

Shoulder-surfing is an attack on password authentication that has

traditionally been hard to defeat. It can be done remotely using binoculars and

cameras, using keyboard acoustics [120], or electromagnetic emanations from

displays [55]. Access to the user’s password simply by observing the user while he or

she is entering a password undermines all the effort put in to encrypting passwords

and protocols for authenticating the user securely. To some extent, the human

actions when inputting the password are the weakest link in the chain.

Biometric methods, which identify individuals based on physiological or

behavioral characteristics, have the advantage that they are harder to replicate and

therefore are not susceptible to the risks of shoulder surfing. However, biometric

techniques suffer from the drawback that biometric characteristics are non-secret

and non-revocable. While it is easy for a user to change a password, it is a

considerably less convenient and presumably more painful procedure for the user to

change a fingerprint or retinal scan.

Physical token based approaches such as the RSA SecurID token [93]

overcome shoulder-surfing, but such devices require users to carry a physical access

token, which is prone to being lost or stolen.

In general, approaches to overcoming shoulder surfing rely on “increasing the

noise” for the observer so that it becomes difficult for the observer to disambiguate

the user’s actions/input. Roth et al. [92] present an approach for PIN entry which

uses the philosophy of increasing the noise for the observer. In their approach, the

PIN digits are displayed in two distinct sets colored black and white. For each digit

 71

the user must make a series of binary choices as to which set (black or white) the PIN

digit appears in. The correct PIN digit is identified by intersecting the user’s set

choices. The approach requires users to make multiple binary selections in order to

correctly input each digit of the PIN.

Wiedenbeck et al. [113] introduce a shoulder-surfing-resistant graphical

password scheme. The user selects a number of icons as his or her pass icons. When

logging in, the user is presented with a random assortment of icons. The user must

find the pass icons previously identified, create a mental image of the convex hull

formed by these icons and then click inside this convex hull. The scheme again relies

on multiple challenge response passes in order to successfully authenticate the user.

This approach requires the user to learn a new approach and also increases the

length of the authentication process.

PassFaces [6] relies on the user recognizing faces and pointing to recognized

faces as responses to a series of challenges. Hoanca et al. [48] extend PassFaces using

eye gaze for selecting the face from within the grid. Weinshall [111] introduces an

approach that uses a set of machine generated pictures as the user’s password. The

user must memorize the pictures. When presented with the login screen, the user

must mentally trace a path which includes the password pictures and answer a

multiple choice question. A series of challenge-response sets result in authentication.

Since only the user knows which path was traced, a human or software observer

(spy-ware) would be unable to determine the correct password. However, as the

author states, “the benefit is obtained at the cost of a relatively long login time of a

few minutes.” The approach has been shown to be insecure against an

eavesdropping adversary in [41].

Tan et al. [103] propose a spy-resistant keyboard, which uses a level of

indirection to prevent the observer from guessing the password. Their approach

adds sufficient ambiguity for the observer to be unable to determine the user’s

choice without remembering the layout of the entire keyboard. However, to enter the

password, users must use an unfamiliar keyboard layout and complex interaction

technique.

 72

Figure 43. On screen keyboard layout for ATM
PIN entry.

While there are other approaches to prevent shoulder surfing [47], it is

sufficient to note that all the approaches have the common theme of increasing the

noise/ambiguity for the observer. Usually this is achieved by increasing the number

of interactions the user must do to successfully log in.

Maeder et al. [69] present a gaze-based user authentication scheme in which

a user is presented with an image and must dwell upon previously specified points of

interest on the image in a predetermined order in order to log in. The authors do not

present an analysis of the ease with which a malicious user may guess the order of

the points of interest on the image. In addition, this scheme doesn’t support the use

of traditional passwords.

Other approaches to overcoming shoulder-surfing include the use of tactile

passwords [99] or more invasive techniques such as brain computer interfaces

[104].

6.2 Motivation for Eye Tracking

Devices such as Apple’s MacBook laptops include a built-in iSight camera [2]

and hardware trends indicate that even higher resolution cameras will be embedded

in standard display devices in the future. Using such a camera for eye tracking would

only require the addition of inexpensive IR illumination and image processing

software.

ATMs are equipped with

security cameras and the user

stands directly in front of the

machine. Since ATM pins typically

use only numbers, which need fewer

distinct regions on the screen, the

quality of the eye tracking required

for tracking gaze on an ATM keypad

does not need to be as high as the

current state-of-the-art eye trackers.

Current generation eye trackers

 73

require a one-time calibration for each user. We envision a system where the

calibration for each user can be stored on the system. Inserting the ATM card

identifies the user and the stored calibration can be automatically loaded.

Gaze-based password entry has the advantage of retaining the simplicity of

using a traditional password scheme. Users do not need to learn a new way of

entering their password as commonly required in the techniques described in the

previous section. At the same time, gaze-based password entry makes detecting the

user’s password by shoulder surfing a considerably harder task, thereby increasing

the security of the password at the weakest link in the chain – the point of entry.

Gaze-based password entry can therefore provide a pragmatic approach achieving a

balance between usability and security.

6.3 Threat Model

We model a shoulder surfer as an adversary who observes the user’s

keyboard and screen. Moreover, the adversary can listen to any sound emanating

from the system. Our goal is to build an easy to use password-entry system secure

against such adversaries. We assume the adversary can observe the user’s head

motion, but cannot directly look into the user’s pupils. A shoulder surfer looking at

the user’s eyes during password entry will surely arouse suspicion. We note that a

video recording of both the computer screen and the user’s eyes during password

entry could in theory defeat our system. The purpose of our system is to propose a

pragmatic interaction which eliminates the vast majority of the shoulder-surfing

attacks. It would indeed be difficult for a shoulder surfer to record both the screen

activity and a high resolution image of the user’s eyes and be able to cross-reference

the two streams to determine the user’s password.

6.4 Design Choices

The basic procedure for gaze-based password entry is similar to normal

password entry, except that in place of typing a key or touching the screen, the user

looks at each desired character or trigger region in sequence (same as eye typing).

The approach can therefore be used both with character-based passwords by using

 74

an on-screen keyboard and with graphical password schemes as surveyed in [102]. A

variety of considerations are important for ensuring usability and security.

6.4.1 Target Size

The size of the targets on the on-screen keyboard should be chosen to

minimize false activations. The key factor in determining the size of the targets is not

the resolution of the display, but the accuracy of the eye tracker. Since the accuracy is

defined in terms of degrees of visual angle, the target size is determined by

calculating the spread of the angle measured in pixels on the screen at a normal

viewing distance.

The vertical and horizontal spread of the 1 degree of visual angle on the

screen (1280x1024 pixels at 96 dpi) at a normal viewing distance of 50 cm is 33

pixels. This implies that when looking at a single pixel sized point, the output from

the eye-tracker can have an uncertainty radius of 33 pixels, or a spread of 66 pixels.

The size of the targets should be sufficiently greater than 66 pixels to prevent false

activations. We chose a target size of 84 pixels with a 12 pixel inter-target spacing to

minimize the chances of false activations when using gaze-based selection.

While it is certainly possible to use gaze-based password entry with eye

movements alone and no corresponding head movements, we observed that subjects

may move their head when looking at different parts of the screen. Though the head

movements are subtle they have the potential to reveal information about what the

Figure 44. On-screen keyboard layout for gaze-based password entry showing QWERTY,
Alphabetic layouts.

 75

user may have been looking at. For example, the attacker may deduce that the user is

looking at the upper right quadrant. Clearly, the smaller and more tightly spaced the

keys in the on-screen keyboard, the less information the attacker obtains from these

weak observations. This suggests a general design principle: the on-screen keyboard

should display the smallest possible keys that support low input error rates.

6.4.2 Keyboard Layout

Since muscle memory from typing does not translate to on-screen keyboard

layouts, the user’s visual memory for the spatial location of the keys becomes a more

dominant factor in the design of on-screen keyboards. The trade-off here is between

usability and security — it is possible to design random keyboard layouts that

change after every login attempt. These would require considerably more visual

search by the user when entering the passwords and therefore be a detriment to the

user experience, but would provide increased security. For this reason, we chose not

to use randomized layouts in our implementation.

6.4.3 Trigger Mechanism

There are two methods for activating character selection. In the first method,

dwell-based [70], the users fix their gaze for a moment. The second method is multi-

modal — the user looks at a character and then presses a dedicated trigger key.

Using a dedicated trigger key has the potential to reveal timing information between

consecutive character selections, which can enable an adversary to mount a

dictionary attack on the user’s password [101]. The dwell-based method hides this

timing information. Furthermore, our user studies show that dwell-based methods

have lower error rates than the multi-modal methods.

6.4.4 Feedback

Contrary to gaze-based typing techniques [71], gaze-based password entry

techniques should not provide any identifying visual feedback to the user (i.e. the key

the user looked at should not be highlighted). However, it is still necessary to provide

the user with appropriate feedback that a key press has indeed been registered. This

 76

can be done by sounding an audio beep or flashing the background of the screen to

signal the activation. Additional visual feedback may be incorporated in the form of a

password field that shows one additional asterisk for each character of the password

as it is registered. To reduce the amount of timing information leaked by the

feedback mechanism, the system can output a feedback event only in multiples of

100 ms. In either case, the feedback will leak information regarding the length of the

password.

6.4.5 Shifted Characters

Limits on screen space may prevent all valid password characters (e.g., both

lower and upper case) from being displayed in an on-screen layout. Our

implementation shows both the standard character and the shifted character in the

same target. To type a shifted character, the user activates the shift key once, which

causes the following character to be shifted. This approach reveals no additional

information to the observer. An alternative approach would be to show only the

standard character on-screen and change the display to show the shifted characters

once the user activates the shift mode. However, this approach would leak additional

information to the observer about the user’s password.

6.5 Implementation

We implemented EyePassword on Windows using a Tobii 1750 eye tracker

[107] set to a resolution of 1280x1024 pixels at 96 dpi. Figures 1 shows the

EyePassword on-screen keyboards using a QWERTY, alphabetic and ATM pin keypad

layout respectively. As discussed earlier, to reduce false activations we chose the size

of each target to be 84 pixels square. Furthermore, the keys are separated by a 12

pixel margin which further decreases the instances of false activations. We also show

a bright red dot at the center of each of the on-screen buttons. These “focus points”

(Figure 45) help users to focus their gaze at a point in the center of the target thereby

improving the accuracy of the tracking data [61].

It should be noted that our on-screen layout does not conform exactly to a

standard keyboard layout. A standard QWERTY layout has a maximum of 14 keys in

 77

Figure 45. Gaze-pattern when the user enters "password" as the password. Each key has a
bright red dot at the center of it. This focus point allows the user to focus their gaze at the
center of the target thereby increasing the accuracy of eye tracking data.

a row. At a width of 84 pixels it would be possible to fit all 14 keys and maintain a

QWERTY layout if we used all of the horizontal screen real-estate on the eye-tracker

(1280x1024 resolution). We chose to implement a more compact layout which

occupies less screen real-estate, keeping the regular layout for the alphabetical and

number keys

Previous research [70-72] has shown that the ideal duration for activation by

dwell is on the order of 400-500 ms. Consequently, we chose 450 ms for our

implementation, with an inter-dwell pause of 150 ms. An audio beep provides users

with feedback when a dwell-based activation is registered.

Our implementation shows both the standard characters and the shifted

characters on-screen and provides no visual feedback for the activation of the shift

key.

 78

Gaze data from the eye tracker is noisy due to errors in tracking and also due

to the physiology of the eye. We therefore implemented a saccade2 detection and

fixation smoothing algorithm [56] (discussed in Section 9.1) to provide more reliable

data for detecting fixations.

6.6 Evaluation

To evaluate EyePassword, we conducted user studies with 18 subjects, 9

males and 9 females with an average age of 21. Thirteen subjects did not require any

vision correction; 5 subjects used contact lenses3. Twelve subjects reported that they

were touch-typists. Subjects had an average of 12 years of experience using a

keyboard and mouse.

We compared the password entry speed and error rates of three approaches:

a standard keyboard for entering a password: (Keyboard) to provide a baseline;

using EyePassword with dwell-based activation (Gaze+Dwell); and using

EyePassword with trigger-based activation (Gaze+Trigger). In addition, we evaluated

two different on-screen layouts for the dwell case: QWERTY layout and alphabetic

layout.

6.6.1 Method

We implemented a test harness to capture timing and error data for users

entering passwords in a controlled environment. To minimize memory effects, the

users were shown the password in a dialog box immediately before they were asked

to enter it. Each subject was first trained on the four test conditions: Keyboard,

Gaze+Trigger (QWERTY layout), Gaze+Dwell (QWERTY layout) and Gaze+Dwell

(Alphabetic layout). Subjects were trained on using each of the techniques on a

practice set of four passwords which exercised the use of letters, numbers, upper-

case and lower-case characters and symbols. Once subjects were comfortable with

2 A saccade is a ballistic movement of the eye used to reposition the visual focus to a new location in

the visual environment.

3 The eye tracker does work with eye-glasses provided the glasses do not occlude/impair the camera’s

view of the eye. We have had subjects with eye-glasses in previous studies.

 79

each approach, they repeated the trials with the real password data set of ten

passwords shown below. Passwords were chosen to be representative of common

passwords with a length of 8-9 characters and included a combination of lowercase,

uppercase, numbers and symbols.

Training set: password, number1, capitalA, $symbol

Real set: computer, security, apple314, sillycat, Garfield, password,

$dollar$, GoogleMap, dinnertime, Chinatown.

The order of the techniques was varied for each subject in order to

counterbalance across subjects and to minimize learning effects. We measured the

amount of time it took the user to enter each password. If the password was entered

incorrectly, this was recorded as an error and the trial was repeated. Upon

completion of the study, subjects were asked fill out a questionnaire to provide their

subjective opinions on the techniques used.

6.6.2 Results

Figure 46 shows the average time to enter the password in each of the four

conditions. Figure 47 shows the percentage error in each condition.

A repeated measures analysis of variance (ANOVA) of the password entry

time shows that the results are significant (F(1.44,24.54)=117.8, p<.01, Greenhouse-

Geisser corrected). Contrast analyses between the four techniques showed that the

differences between the keyboard and all the gaze-based techniques are significant.

While the average typing time for the trigger-based approach was higher than the

dwell-based approach, this result was not significant — some users were faster using

dwell, others using the trigger. The differences between the QWERTY layout and the

alphabetic layout were significant indicating that users found the QWERTY layout

faster.

The error rates on Gaze+Dwell (QWERTY) and Gaze+Dwell (Alpha) were

similar to those on a keyboard. The trigger-based approach had a significantly higher

error rate.

 80

Our survey results showed that subjects unanimously preferred using the

QWERTY layout over the alphabetic layout. Subjects did not indicate that the time to

enter the password using the gaze-based approaches was a concern. The subjective

results for the trigger mechanism (dwell-based or trigger-based) were counter to the

results from our objective evaluation – a majority (63%) of subjects felt that the

trigger approach was faster and more accurate than using dwell. Subjects

overwhelmingly (83%) indicated that they would prefer to use a gaze-based

approach over using a traditional keyboard when entering their password in a public

place.

6.7 Discussion

While the speed difference between using dwell or trigger was not significant,

the results do show that the error rates with the trigger approach are significantly

higher (15% compared to 3-4%). We speculate this is because it is difficult for

P as s word E ntry T ime

2493 10671 9208 12093
0

2000

4000

6000

8000

10000

12000

14000

16000

K eyboard Gaz e+T rigger

(Q WE R TY)

Gaz e+D well

(Q WE R T Y)

Gaz e+D well

(Alpha)

T
im

e
 i

n
 m

il
li

s
e

c
o

n
d

s
 (

m
s

)

Figure 46. Average time for password entry across all users in each of the 4 conditions.
Differences between Gaze+Dwell and Gaze+Trigger are not significant. Differences between
QWERTY and alpha layouts are significant.

 81

humans to time their eye gaze and hand to coordinate perfectly (This was studied

further and is reported in Section 9.2). Most errors in the trigger condition occurred

because either the subjects had not yet focused on the target or had already moved

their eyes off the target by the time they pressed the trigger. While we suspect that

this behavior can probably be corrected for algorithmically (see Section 9.2), under

the current implementation the dwell based implementation is more robust.

The results also showed that the QWERTY layout outperformed the

alphabetic keyboard layout. This indicates that the visual search time for finding

characters on a QWERTY layout is lower than the visual search time for an alphabetic

layout, possibly due to the fact that people have extensive training on the QWERTY

layout. This is consistent with the findings in Norman [82].

The study for entering passwords using a keyboard did not account for the

increase in speed seen as a result of subjects developing muscle memory over time

E rror R ate

4% 15% 3% 4%
0%
2%

4%
6%

8%
10%
12%

14%
16%

18%
20%

K eyboard Gaz e+Trigger

(Q WE R T Y)

Gaz e+D well

(Q WE R T Y)

Gaz e+D well

(Alpha)

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Figure 47. Percentage error in password entry across all users in each of the four
conditions. Error rates in the Gaze+Dwell conditions were similar to those of the keyboard.
Gaze+trigger error rates were considerably higher presumably due to eye-hand
coordination.

 82

by entering their password repeatedly. We expect that similar to the muscle memory

for typing passwords, learning effects for visual search on the on-screen layout will

speed up password entry over time as subjects develop muscle memory in their eyes

to enter their password.

When compared to password-entry time with the keyboard, the gaze-based

approaches are about five times slower. However, it should be noted that even at an

average of a 10 second entry time, the gaze-based password entry is several times

faster than alternative techniques to prevent shoulder surfing [47, 48, 92, 103, 111,

113].

6.8 Future Work

We can strengthen a password by extracting a few additional bits of entropy

from the gaze path that the user follows while entering the password. In theory, the

user will follow a similar path, with similar dwell times, every time. A different user,

however, may use completely different dwell times. As a result, stealing the user’s

password is insufficient for logging in and the attacker must also mimic the user’s

spatiotemporal gaze path. A similar technique was previously used successfully to

enhance the entropy of passwords entered on a keyboard [75].

While our results showed that the trigger-based mechanism had considerably

higher error rates due to eye-hand coordination, it is conceivable that this can be

accounted for algorithmically by examining the historical gaze pattern and

correlating it with trigger presses.

6.9 Summary

Passwords possess many useful properties as well as widespread legacy

deployment. Consequently we can expect their use for the foreseeable future.

Unfortunately, today’s standard methods for password input are subject to a variety

of attacks based on observation, from casual eavesdropping (shoulder surfing), to

more exotic methods. We have presented an alternative approach to password entry,

based on gaze, which deters or prevents a wide range of these attacks. User studies

have demonstrated that this approach requires additional entry time, has accuracy

 83

similar to traditional keyboard input, and provides an experience preferred by a

majority of users.

 84

 85

7 Zooming

Zooming user interfaces have been a popular topic of research [18, 19, 79].

Zooming interfaces have the potential to provide an overview of the data or

information being visualized while at the same time to provide additional detail upon

demand by the user. The characteristic interaction of zooming interfaces requires the

user to pick the region of interest that should be zoomed in to. Typically this is

provided by the mouse or some form of pointing device. In this chapter we

investigate the possibility of using eye gaze to provide the contextual information for

zooming interfaces.

7.1 Background and Related Work

Fono and Vertegaal [40] use both the concept of zooming and gaze-based

interaction in their work on EyeWindows. They propose the use of elastic windows

which grow and shrink depending on the focus of the user’s eye gaze. In this work,

eye-gaze is used as a selection mechanism for switching between windows.

Bedersen introduced the concept of Zooming User Interfaces (ZUIs) with his

pioneering work on Pad++[18] and the Zooming Web Browser [19]. Both of these

interfaces and other examples of ZUIs all rely on the use to define their region of

interest by clicking and performing some kind of a mouse action.

Mapping applications such as Google Maps [3] are perhaps today the most

widely used application which makes extensive use of zooming. Mapping services by

Google and others all use semantic zooming to display additional detail once the user

zooms in to a region of interest. In the case of Google Maps, zooming can be

accomplished in a couple of different ways. The most common approach is to click

 86

upon the zoom control which displays a slider and + and – controls to zoom in and

zoom out respectively. When using this approach, the map is zoomed in based on the

center of the displayed image, i.e. the center of the displayed map is assumed to be

the region of interest that the user wants to zoom in to. This can often results in an

undesirable action since if the center of the map was not the region of interest, then

the actual region of interest may no longer be visible on the screen. This is illustrated

in Figure 48 and Figure 49.

Alternatively, the user may choose to zoom in to a region of the map by using

the scroll wheel on the mouse. In this case, the current position of the mouse is used

as the region of interest. This allows the user to position the mouse over the region

Figure 48. Google Map image before the user clicks on the + button to zoom in one
level. The region of interest (annotated by the orange circle) happens to be the Stanford
oval.

 87

of interest and then use the scroll wheel to zoom in. However, as the map zooms in,

the region of interest may be refined based on the new information that is exposed at

the new zoom level. Typically, this region of interest is no longer under the mouse

position and the user needs to constantly keep re-positioning the mouse in order to

zoom in to the right region of interest.

7.2 Gaze-contingent Semantic Zooming

In each of the scenarios described above the real region of interest is

indicated by the user’s gaze and therefore, we propose to use the user’s gaze to

indicate the region of interest for zooming. Since most zooming user interfaces use

Figure 49. Google Map image immediately after the user clicked the + button to zoom
in. Notice that the region of interest (annotated by the orange circle) is already outside
the visible region of the map.

 88

some form of semantic zooming, we call this approach gaze-contingent semantic

zooming. The object of gaze-contingent semantic zooming is to allow the user to

specify his or her region of interest, simply by looking at it and then activating the

zoom action. The zoom action may be activated by using any approach such as

pressing a key on the keyboard or using mouse buttons.

7.3 Prototype Implementations

We implemented several prototypes for gaze contingent semantic zooming as

described below and conducted pilot studies to test their efficacy.

7.3.1 Google Maps Prototype

We implemented a prototype which automatically moved an on-screen

cursor to the location where the user was looking. The scroll wheel on the mouse

was used to initiate zooming. In this prototype, since the mouse location moved to

follow the user’s eye gaze, we expected that the zooming would then happen based

on the user’s gaze position, thereby implementing the gaze-contingent zooming

described above.

Pilot studies with this prototype revealed that this approach is problematic

because the gaze-location returned by the eye tracker is not very accurate.

Therefore, if the user was looking at point P, chances are that the eye tracker may

think that the user is looking at the point P+ε, where ε is the error introduced by the

eye tracker. Once the user initiates a zoom action, the map is magnified. Therefore, if

the zoom factor is z, then the resulting error gets magnified to zε, which can be

considerably larger than the original error. In addition, Google Maps uses discrete,

non-continuous zooming, which made it difficult to use make small-grained

corrections as the eye adjusts to the new location of the region of interest after each

zoom step.

It should be noted here that this analysis presents a generalizable problem

with using gaze as a source of context for semantic zooming. In particular, zooming

based on gaze does not work well, since the error in eye tracking gets magnified with

each successive zoom level. This negative result for gaze-contingent semantic

 89

zooming is in line with this dissertation’s research on EyePoint for pointing and

selection (described in Chapter 3). EyePoint introduced a magnified view of the

region the user was looking at, thereby increasing the visible size of the target on the

screen. The secondary gaze position when the user looked at the target in the

magnified view helped to refine the target by a factor equal to the magnification, i.e.

we were now closer to the target by the amount of the magnification. In the case of

gaze-contingent semantic zooming, the error in tracking gets magnified and there is

no simple way to reduce this error, other than by introducing additional steps into

the interaction.

The Google Maps prototype illustrated a fundamental problem for gaze-

contingent semantic zooming. We considered several other approaches to try to

overcome this limitation.

7.3.2 Windows Prototype

One of the issues we encountered with the Google Maps prototype was the

discrete nature of the zooming. We felt that a more continuous zooming action, might

provide for the possibility of progressive refinement, i.e. the user’s gaze-position is

sampled multiple times during the zooming which may make it possible for the gaze

to adjust and adapt to the error being introduced by zooming.

To overcome the zooming granularity and speed issues, we implemented a

Windows application written in C#. However, the speed at which the interface would

repaint to do multiple zoom levels made the prototype unusable.

7.3.3 Piccolo Prototype

We therefore implemented a second prototype that used the Piccolo Toolkit

[17] for zooming user interfaces. Pilot studies with this prototype showed that while

we could now control the granularity of the zooming sufficiently to make small

corrections, the speed of the zooming with large canvases was still too slow for the

prototype to be usable for further analysis.

 90

7.4 Discussion

While the prototypes here do not demonstrate a clear performance win for

gaze-contingent semantic zooming on applications such as Google Maps, there are

several ZUIs [18, 19, 51] that use discrete, well-defined targets that are fairly large in

size. It is very plausible to use a gaze-plus-trigger activation for these applications.

For instance in the case of the Zooming Web Browser [19], the user can simply look

at the link he or she wishes to zoom into and press a key. Similarly in the case of

TimeQuilt [51] or Denim[79], selecting which collection to zoom into can easily be

specified using gaze. However, we do not consider these applications of gaze to be

examples of gaze-contingent semantic zooming since they can equally well be

classified as examples of gaze-based pointing – like the approaches we presented in

Chapter 2 and Chapter 3.

Although these explorations are preliminary, our prototyping did reveal a

fundamental problem with using gaze as part of zooming interfaces. Zooming

interfaces tend to magnify the error in the accuracy of the eye-tracker and therefore

using gaze to provide content for ZUIs does not seem to be a promising approach.

 91

8 Other Applications

Previous chapters presented an in-depth discussion of applications that use

gaze as a form of input. Using contextual information gained from the user’s gaze

enables the design of novel applications and interaction techniques, which can yield

useful improvements for everyday computing. We implemented several such

applications: a gaze-contingent screen and power saver, a gaze-enhanced utility for

coordination across multi-monitor screens, a gaze-controlled virtual screen and a

prototype for showing a deictic reference in a remote collaboration environment.

These applications were implemented on the Tobii 1750 eye tracker. While formal

usability analyses of these applications we not performed, pilot studies and personal

use have shown that these applications have utility for users. We also present the

concept of the no-nag IM windows and the focus plus context mouse.

8.1 Gaze-contingent screen and power saver

The eye tracker provides gaze-validity data for each eye. When the eye

tracker does not find any eyes in the frame, it returns a validity code indicating that

no eyes were found. It is therefore trivial to determine if and when a user is looking

at the screen.

We implemented EyeSaver as a simple application which can activate the

screen saver when the user has not been looking at the screen for a specified period

of time. This approach is more effective at determining when to activate the screen

saver than traditional approaches which rely on periods of keyboard and mouse

inactivity. Setting a short delay (10-15 seconds) for activating the screen saver when

relying on keyboard and mouse inactivity can yield numerous false positives, since

 92

the user may be reading something on the screen for that duration of time without

having typed or moved the mouse. Therefore, screen saver activation delays are

typically set to be in minutes rather than seconds when using traditional time out

based methods. With a gaze-based approach, the system can reliably determine

whether or not the user is looking at the screen before activating the screen saver

with a very short delay.

In addition, since the system can also detect when the user begins looking at

the screen again, it can automatically deactivate the screen saver as well.

It should be noted that the same approach that is used to activate and

deactivate the screen saver can also be used to conserve power by turning off the

screen when the user is not looking at it and turning it back on when the user looks

at it. This approach may be especially useful for mobile computers which run on

battery. This concept has been explored in depth by Dalton et al. in [32].

8.2 Gaze-enhanced Multi-Monitor Coordination

An increasing number of computer users and especially computer

professionals now use multiple displays. It is not uncommon to see two or even

sometimes three displays on a user’s desktop. However, while the increasing screen

real estate can lead to productivity gains [31], it also increases the distance that

needs to be traversed by the mouse. Multiple monitors have the potential to increase

the time required for pointing since users may need to move the mouse across

multiple screens. In addition, users often complain that they context switch between

different monitors and sometimes will begin typing when they look at the other

monitor, but before they have actively switched their application focus to the right

window.

We propose a solution to these problems using a gaze-enhanced approach to

multi-monitor coordination. In essence, since the system now can be aware of which

screen the user is looking at, it can automatically change the focus of the active

application depending on where the user is looking. Similarly, the mouse can also be

warped in the vicinity of the user’s gaze. Benko [21] proposed a Multi-Monitor

Mouse solution which uses explicit button based activation to warp the mouse

 93

between the screens in a multi-monitor setup. Our solution extends this approach by

leveraging the fact that we can detect which screen the user is looking at. This

effectively applies the same concept as in Zhai’s MAGIC pointing [118] to a multi-

monitor setup where the benefit of having the augmented pointing technique would

be greater than that on a single monitor.

The mudibo system proposed by Hutchings [50] overcomes the problem of

determining dialog placement on multiple monitor setups by replicating the dialog

on all screens. By contrast, a gaze-enhanced multi-monitor setup could position

dialogs depending on where the user is looking. In fact, it can also use attention-

based notification to place urgent dialogs directly in the user’s gaze and place non-

urgent dialogs in the periphery of the user’s vision.

8.3 Gaze-controlled virtual screens/desktops

As noted in Section 4.3, the eye tracker provides sufficient accuracy and field

of view to distinguish when the user is look off the screen at the bezel of the monitor.

Using this approach we implemented off-screen gaze-actuated buttons for document

navigation. Figure 31D shows how the eye tracker can be instrumented for 8-way

panning. We extended this prototype to create a gaze-controlled virtual screen —

where the available screen real-estate is more than the viewable region of the screen.

When the user’s gaze falls upon one of the gaze-activated hotspots for the duration of

a micro-dwell, the system automatically pans the screen in the appropriate direction.

Our prototype was implemented by using VNC to connect to a computer with a

higher resolution than the resolution of the eye tracker screen. Informal studies and

personal use of this prototype suggests that this technique can be effective when the

user only has a small display portal available, but needs to use more screen real-

estate.

The gaze-activated hotspots on the bezel of the screen can also be used to

summon different virtual desktops into view. In this scenario, each time the user

looks off screen at the bezel for the duration of a micro-dwell (150-200 ms) and then

back again, the display on the screen is changed to show the content of the virtual

desktop that would be in the same spatial direction as the users gaze gesture. This

 94

approach has the potential to allow for an infinite number of virtual desktops; the

practical limits would defined by the cognitive load of keeping track of the content

and the location of these desktops.

8.4 Deictic Reference in Remote Collaboration

Remote collaboration tools such as WebEx, Live Meeting, and Netspoke

provide users with the ability to share their desktop or specific applications with a

larger number of viewers on the web. However, when displaying an application or

document remotely, it is common for the presenter to be looking at a region of

interest on the screen while talking. Unfortunately, this deictic reference is lost in

most remote collaboration tools, unless the presenter remembers to actively keep

moving the mouse to point to what he or she is looking at. This problem can be

addressed easily by tracking the presenter’s gaze and highlighting the general area

that the presenter is looking at for the viewers of the remote collaboration session.

Duchowski [37] uses gaze as a deictic reference in a virtual environment and

has also done work on using gaze for training novices in an aircraft inspection task

[94]. Qvarfordt [88] also discusses the use of gaze as a deictic reference for

controlling the flow of conversation in a collaborative setting. The suggested

approach extends their work to apply it to remote collaboration environments, such

as web conferencing, to transfer the visual cues about what the user is looking at in a

co-located environment to a distributed collaboration environment.

8.5 No-Nag IM Windows

Instant messaging is being increasingly used by computer users at home and

at work. It is not uncommon to be busy working on something and to be interrupted

by an instant message window. Even if the user attempts to ignore the window and

continue working until a reasonable stopping point, most IM windows will continue

to flash in order to gain the users attention. The current solution is to interrupt the

task at hand in order to click on the IM window to acknowledge the alert.

Gaze could be leveraged to create a No-Nag IM window which can be context

aware: as soon as the user has looked at the window once, it stops flashing for some

 95

period of time (it may resume flashing at a later point to remind the user in case the

user has not attended to the message for a while). This concept has been suggested

by other researchers as well as an example of an attentive user interface.

8.6 Focus Plus Context Mouse

We consider here the case of those applications which require very fine-

grained mouse movements, such as image editing or drawing. These applications

require the user to perform fine-grained motor control tasks in order to gain the

necessary precision with the mouse. We propose a gaze-enhanced version of the

mouse cursor, where the control-to-display ratio of the mouse is modified to reduce

the acceleration and mouse movement within the user’s current gaze point, thereby

allowing for more fine-grained control within the current gaze region. This approach

allows the user to still move the mouse rapidly across the screen, but slows down the

movement of the mouse once it gets within range of target, which is typically where

the user is looking.

This approach is similar in theme to the Snap-and-Go work by Baudisch [16]

where the user is able to snap to grid by adjusting the control-display ratio of the

mouse when close to traditional snapping regions. Our approach can also be

considered to be an extension to Zhai’s MAGIC pointing [118] where the mouse is

allowed to warp or move rapidly in all parts of the screen, except with it is within the

user’s gaze point, to allow for finer control on the movement of the mouse. Further

research would be needed to evaluate if such a technique is useful.

8.7 Summary

The applications described in this chapter present several examples of how

gaze can be used to inform applications of the user’s attention and intention and help

to design novel interactions. The use of gaze as a sensory input expands the potential

for such attentive user interfaces. Application designers can design interfaces that

blend seamlessly with the user’s task flow by developing an interruption model of

the user that leverages gaze information, making it possible to design interactions

that are less intrusive and decrease cognitive load.

 96

 97

Portions of this chapter were originally published by the author, Jeff Klingner, Rohan Puranik, Terry
Winograd and Andreas Paepcke in [59] (submitted to UIST 2007).

9 Improving Gaze Input

In implementing EyePoint [61], we found that while the speed of a the gaze-

based pointing technique was comparable to the mouse, the error rates were

significantly higher. Our work on gaze-based password entry showed that dwell-

based activation had significantly lower error rates than trigger based activation.

These results encouraged us to conduct a series of studies to better understand the

source of these errors and to identify ways to improve the accuracy of gaze-plus-

trigger activation.

This chapter presents three methods we developed for improving the

accuracy and user experience of gaze-based pointing: an algorithm for real-time

saccade detection and fixation smoothing, an algorithm for improving eye-hand

coordination and the use of focus points. These methods boost the basic performance

for using gaze information in interactive applications. In our applications they made

the difference between prohibitively high error rates and practical usefulness of

gaze-based interaction.

9.1 Saccade Detection and Fixation Smoothing

As discussed in Section 2.5.1, basic eye movements can be broken down into

two types: fixations and saccades. A fixation occurs when the gaze rests steadily on a

single point. A saccade is a fast movement of the eye between two fixations.

However, even fixations are not stable and the eye jitters during fixations due to

drift, tremor and involuntary micro-saccades [115]. This gaze jitter, together with

 98

the limited accuracy of eye trackers, results in a noisy gaze signal.

The prior work on algorithms for identifying fixations and saccades [76, 95,

97, 115] has dealt mainly with post-processing previously captured gaze

information. For using gaze information as a form of input, it is necessary to analyze

eye-movement data in real time.

To smooth the data from the eye tracker in real-time, it is necessary to

determine whether the most recent data point is the beginning of a saccade, a

continuation of the current fixation or an outlier relative to the current fixation. We

use a gaze movement threshold, in which two gaze points separated by a Euclidean

distance of more than a given saccade threshold are labeled as a saccade. We chose a

saccade threshold of 40 pixels (slightly more than 1° of visual angle) for our

implementation. This is similar to the velocity threshold technique described in [97],

with two modifications to make it more robust to noise. First, we measure the

displacement of each eye movement relative to the current estimate of the fixation

Figure 50. Results of our real-time saccade detection and smoothing algorithm. Note that
the one measurement look-ahead prevents outliers in the raw gaze data from being
mistaken for saccades, but introduces a 20ms latency at a saccade thresholds.

 99

Figure 51. Pseudocode listing for Saccade Detection and Fixation Smoothing
algorithm.

location rather than to the previous measurement. Second, we look ahead one

measurement and reject movements over the saccade threshold that immediately

 100

return to the current fixation. This prevents single outliers of the current fixation

from being mislabeled as saccades. It should be noted that this look-ahead

introduces a one-measurement latency (20ms for the Tobii 1750 eye tracker [107])

at saccade thresholds (Figure 50).

The algorithm (Figure 51) maintains two sets of points: the current fixation

window and a potential fixation window. If a point is close to the current fixation

(within a saccade threshold), then it is added to the current fixation window. The

new current fixation is calculated by a weighted mean which favors more recent

points (described below). If the point differs from the current fixation by more than a

saccade threshold, then it is added to the potential fixation window and the current

fixation is returned. When the next data point is available, if it was closer to the

current fixation, then we add it to the current fixation and throw away the potential

fixation as an outlier. If the data point is closer to the potential fixation, then we add

the point to the potential fixation window and make this the new current fixation.

The fixation point is calculated as a weighted mean (a one-sided triangular

filter) of the set of points in the fixation window. The weight assigned to each point is

based on its position in the window. For a window with n points (P0, P1… Pn-1) the

mean fixation would be calculated by the formula:

)...21(

...21 110

n

nPPP
P n

fixation



 

The size of the fixation window (n) is capped to include only data points that

occurred within a dwell duration [70, 71] of 400-500ms (20 data points for the Tobii

eye tracker). We do this to allow the fixation point to adjust more rapidly to slight

drift in the gaze data.

Figure 50 shows the output from the smoothing algorithm for the x-

coordinate of the eye-tracking data. We also show a Kalman Filter [112] applied to

the entire raw gaze data and a Kalman Filter applied in parts to the fixations only. A

Kalman Filter applied over the entirety of the raw gaze data smoothes over saccade

intervals. The nature of eye movements, in particular the existence of saccades,

necessitates that the smoothing function only be applied to fixations, i.e. within

saccade boundaries. Applying the Kalman filter in parts to the fixations yields

 101

comparable results to our one-sided triangular filter discussed above. It is possible

that applying a non-linear variant of the Kalman filter [12], or a better process model

of eye movements for the Kalman filter may yield better smoothing results. The

advantage of our approach is that the algorithm is very simple and most of all it is

tailored to account for the different forms of eye movements and also tolerate the

noise in eye tracking data.

While there is still room for improvement in the algorithm above by taking

into account the directionality of the incoming data points, we found that our saccade

detection and smoothing algorithm improved the reliability of the results for

applications which rely on the real-time use of eye-tracking data. Simulation results

are presented in the .following section.

9.2 Eye-hand Coordination

Our research on using a combination of gaze and keyboard for performing a

pointing task [61] showed that error rates were very high. Additional work on using

gaze-based password entry [58] showed that the high error rates existed only when

the subjects used a combination of gaze plus a keyboard trigger. Using a dwell-based

trigger exhibited minimal errors. These observations led us to hypothesize that the

errors may be caused by a failure of synchronization between gaze and triggers.

To determine the cause and the number of errors we conducted two user

studies with 15 subjects (11 male, 4 female, average age 26 years). In the first study,

subjects were presented with a red balloon. Each time they looked at the balloon and

pressed the trigger key, the red balloon popped and moved to a new location

(Moving Target Study). In the second study, subjects were presented with 20

numbered balloons on the screen and asked to look at each balloon in order and

press the trigger key (Stationary Targets Study). Subjects repeated each study twice,

once optimizing for speed and trying to perform the task as quickly as possible and

the second time optimizing for accuracy and trying to perform the study as

accurately as possible. Study order was counter-balanced and trials were repeated in

case of an error.

 102

We performed an in-depth analysis of the data from the two studies by

manually plotting a graph showing the current target location, the gaze-position as

reported by the eye tracker and the trigger for each error. Errors were coded by two

independent coders and classified based on the following error types:

Tracking errors: caused due to the eye tracker accuracy. These include cases

in which the gaze data from the eye tracker is biased or when the location of the

target closer to the periphery of the screen results in lower accuracy from the eye

tracker [20].

Early-Trigger errors: caused because the trigger happened before the user’s

gaze was in the target area. Early triggers can happen because a) the eye tracker

introduces a sensor lag of about 33ms in processing the user’s eye gaze, b) the

smoothing algorithm introduces an additional latency of 20ms at saccade thresholds

c) in some cases (as in the Moving Target study) the users may have only looked at

Figure 52. Sources of error in gaze input. Shaded areas show the target region. Example
triggers are indicated by red arrows. The triggers shown are all different attempts to click
on the upper target region. The trigger points correspond to: a) early trigger error, b) raw
hit and smooth hit, c) raw miss and smooth hit, and d) late trigger error.

 103

the target in their peripheral vision and pressed the trigger before they actually

focused on the target.

Late-Trigger errors: caused because users had already moved their gaze on to

the next target before they pressed the trigger. Late triggers can happen only in cases

when multiple targets are visible on the screen, as in the Stationary Targets study or

in gaze-based typing.

Other errors: these include a) smoothing errors caused when the smoothed

data happened to be outside the target boundary, but the raw data point would have,

by chance, resulted in a hit, b) human errors where the subject just was not looking

at the right thing or the subject looked down at the keyboard before pressing the

trigger.

Figure 52 illustrates the different error types. Figure 53 shows how often

each type of error occurred in the two studies.

Figure 53. Analysis of errors in the two studies show that a large number of errors in the
Speed Task happen due to early triggers and late triggers – errors in synchronization
between the gaze and trigger events.

 104

To improve the accuracy of gaze-based pointing in the case of the speed task,

we implemented an Early Trigger correction (ETC) algorithm which delays trigger

points by 80ms to account for the systematic bias due to sensor lag, smoothing

latency and peripheral vision effects. We simulated this algorithm over the data from

the Moving Target study. Figure 54 shows the outcome from the simulated results. It

should be noted that applying smoothing and early-trigger correction alone actually

increased the error rate, because smoothing introduces a latency that the early

trigger would be correcting. The error rate in the speed task when using a

combination of smoothing and early trigger correction approaches the error rate of

the accuracy task — without compromising the speed of the task.

While our ETC algorithm used a fixed delay, it is conceivable to run a one-

time calibration program which measures, which uses known target locations and

trigger-based activation to measure the empirical temporal offset for triggers by

correlating the gaze position with the known target location at the time of the

Figure 54. Simulation of smoothing and early trigger correction (ETC) on the speed task for
the Moving Target Study shows that the percentage error of the speed task decreases
significantly and is comparable to the error rate of the accuracy task.

 105

trigger. The ETC algorithm can potentially increase errors in pathological situations

if the trigger is delayed beyond the current fixation, however, analysis of the results

from the simulations show that its benefits far exceed the costs. Our algorithm

represents preliminary work for resolving the problem of eye-hand coordination and

this remains an open area for additional research.

While we were able to identify late-trigger errors in the analysis of the data, it

is difficult to distinguish a late trigger from an early trigger or even an on-time

trigger without using semantic information about the location of the targets. Since

our approach has focused on providing generally applicable techniques for gaze-

input, which do not rely on application or operating system specific information, we

did not attempt to correct for late triggers. We note that the use of semantic

information about target locations has the potential to significantly improve the

accuracy of gaze-based input by allowing the current fixation to be applied to the

closest target.

9.3 Focus Points

In Section 3.2, we introduced the use of Focus Points—a grid pattern of dots

overlaid on the magnified view that contained the targets (see Figure 55). We

Figure 55. Magnified view for gaze-based pointing technique with and without focus
points. Using focus points provides a visual anchor for subjects to focus their gaze on,
making it easier for them to click in the text box.

 106

hypothesized that focus points assist the user in making a more fine-grained

selection by focusing the user’s gaze, thereby improving the accuracy of the eye

tracking. However, the studies presented in that chapter showed no conclusive effect

of an improvement in tracking accuracy when using focus points.

To test this hypothesis further, we conducted a user study with 17 subjects

(11 male, 6 female, average age 22. In the first part of the study, subjects were shown

a red balloon and asked to look at the center of the balloon. Once they had looked at

the balloon for a dwell duration (450ms) the balloon automatically moved to a new

location. In the second part, subjects repeated the study, but with the center point of

the balloon clearly marked with a focus point. The order was varied and each subject

was shown 40 balloons. The user’s raw and smoothed gaze positions were logged for

each balloon. At the end of the study users were presented with a 7-point Likert scale

questionnaire which asked them which condition was easier and whether they found

the focus point at the center of the balloon useful.

We computed the standard deviation of the Euclidean distance of each gaze

point from the center point of the target. The results from the study show that within

the bounds of the measurable accuracy of the eye tracker (33 pixels in any direction,

diameter of spread 66 pixels), the use of focus points did not have a significant

impact in concentrating the user’s gaze on the center of the target. The questionnaire

results however, indicate that subjects found the condition with the focus point

easier and found the focus point to be useful when trying to look at the center of the

target. These results are consistent with our findings in Section 3.4.

We conclude that while the use of focus points may not measurably improve

the accuracy of the raw gaze data from the eye tracker, they do indeed make pointing

easier and provide a better user experience. This is illustrated by Figure 55, which

shows two views of the magnified view from EyePoint. If the subject intends to click

in the text area in the bottom right of the magnified view, the task is easier for the

subject in the condition with focus points, since the focus points provide a visual

anchor for the subject to focus upon.

 107

9.4 Summary

In this Chapter we revisited and deepened the exploration of some common

underlying issues for using gaze as a form of input. The techniques presented above

improve the use of gaze input by addressing challenges in how the system interprets

gaze data from eye trackers (saccade detection and smoothing), how to match gaze

input with an external trigger (eye-hand coordination) and by introducing features

that make it easier for the user to look at the desired target (focus points). The above

techniques can be applied at an application layer to improve the use or gaze as a

form of input and are orthogonal to any improvement in the underlying tracking

technology that provides for more accuracy and range of head movement from the

eye tracker.

 108

 109

10 Low-cost Eye Tracking

Previous chapters have demonstrated several gaze-enhanced interaction

techniques and ways of improving the systems interpretation of gaze data. However,

one fundamental issue that needs to be addressed before gaze-based interfaces can

be widely used is cost. Eye trackers range in cost from US$5,000-US$40,000. As

mentioned in Section 2.4, the eye tracker used for our research costs US$30,000. The

high price tag of these systems has resulted in a limited adoption and use of the

technology.

The high cost of commercial systems forces has led to numerous efforts to

build home-brew eye-tracking systems, as seen in [15, 42, 43, 45, 68, 83, 84].

However, building an eye tracker and researching applications of eye gaze are two

very different tasks, which require different skill sets. The former requires in-depth

knowledge of Computer Vision, while the latter focuses on the design and evaluation

on gaze-based interactions.

This chapter examines the factors that contribute to the high costs of eye-

tracking systems and proposes several ideas and strategies that can be used to

reduce the costs of these systems, ultimately resulting in more widespread use of the

technology. This material complements our presentation of gaze-enhanced user

interfaces in the preceding chapters by discussing the prospects for the underlying

technology to be made affordable. The information presented in this chapter

represents the author’s opinions and is not presented as an academic contribution of

this dissertation.

 110

10.1 Market Background

Current markets for eye-tracking technologies include: disabled users,

usability analysis laboratories in the private sector and universities, and other

specialized research uses in the fields of psychology, marketing, defense, and

medicine. Unfortunately, while there have been significant advances in eye-tracking

technology, the cost of commercial systems remains prohibitive for broad use. Even

in the case of disabled users, the number of people who are able to afford such a

system is a small fraction of those who could benefit from the technology. Eye-

tracking is often not used simply because of the cost factor.

Eye-tracking vendors complain that the lack of “a killer application” has kept

the demand for the technology low and therefore, they have to charge the high prices

in order to recover their research and development cost and remain in business.

Users of eye-tracking complain that the high cost of eye-tracking systems limits the

research on the use of eye-gaze in applications and interfaces. Eye tracking is caught

in a vicious cycle of high cost and low demand.

10.2 Technology Background

We provide a brief background on eye-tracking, without going into technical

details which can be found in several papers including [45, 68, 77, 78, 83]. Remote

eye-tracking technology is a specialized application of computer vision. A camera is

used to track the location of the center of the pupil (p) with reference to the corneal

reflection (g) of one or more infrared glint sources (Figure 56). Since the surface

cornea is nearly spherical, the position of the glint remains more or less fixed as the

eye moves to focus on different points-of-regard. Eye-tracking systems use the

difference vector (p-g) between the pupil position and the corneal reflection to

determine the gaze vector. As is evident from Figure 56, it is critical to have sufficient

resolution on the subject’s eye to be able to get a reasonable estimate of the gaze

vector. This necessitates the need for high resolution imaging sensors in eye tracking

systems.

 111

Eye tracking may use either a bright-pupil approach — where a set of on-axis

illuminants cause a red-eye effect in the subjects eyes making the pupil glow, or a

dark-pupil approach — where a set of off-axis illuminants cause the pupil to show as

a dark circle. Computer vision techniques are used to locate the center of the pupil

and the corneal reflection (s). Research conducted in the BlueEyes project [4],

introduced the use of active illumination which uses a difference of the dark pupil

and the bright pupil to locate the pupil center. However, as noted by Nguyen [80],

there are differences in the bright pupil response of humans.

Once the system has determined the pupil and glint coordinates, a

mathematical transform [10, 36] is applied to compute the gaze position on screen.

The software for eye tracking must also accommodate the inherent noise in eye

movements as discussed in Chapter 2. Systems also need to be robust enough to

accommodate head movement and compensate between differences in head

Figure 56. An image of the eye showing the center of the pupil (p) and the
corneal reflection (g). The difference vector (p-g) is used to determine the
gaze vector. Source: Theory for Calibration-Free Eye Gaze Tracking by Amir
et al.

 112

movement and gaze direction. The use of infra-red light sources impacts the ability of

the system to operate under direct sunlight or other sources of high infrared light.

10.3 Cost Factors

We classify the costs associated with building a commercial eye-tracker into

a) Material costs, b) Research and development costs and c) Business costs. The

latter two comprise the dominant factors in the cost of current commercially

available eye-tracking systems.

10.3.1 Material Costs

The hardware components of an eye tracker include one or more high

resolution, high frame-rate, infrared capable camera(s), the camera lens, IR

illumination circuitry and IR illuminants (LEDs), and mechanical parts for housing

and creating a fixed frame of reference. Since eye-tracking relies on tracking the

corneal reflection which is very small relative to the size of the face, the camera

resolution needs to be sufficiently high to get enough pixels on the eye region. It is

possible to trade off resolution for field of view by using a zoom lens that focuses on

the eye. However, this would severely limit free head movement or require active

steering. Current commercial systems rely on using cameras which have a 1-2

megapixel resolution with a 50-60 Hz. frame rate. These cameras are estimated to be

in the price range of US$1,000-US$4,000.

10.3.2 Research and Development Costs

Reliable gaze-tracking requires the hardware and the software to work

perfectly in concert. The hardware required for the IR illumination varies depending

upon the approach used (dark pupil vs. light pupil). The timing of the IR illumination,

the camera optics (field of view and zoom), and the geometry of the system (camera

position, glint source position, screen position) all play a critical role in determining

the final accuracy of the system. The hardware development is explained in several

papers [15, 77, 83].

 113

Developing and fine-tuning the software for reliable gaze tracking, including

calibration routines, APIs and software for analyzing gaze patterns can take several

person-years of software development effort. Most commercial systems rely on

custom developed image processing and provide proprietary SDKs and APIs for

developing applications using their eye-tracking systems. The investment in research

and development dominates in the ultimate cost to users.

10.3.3 Business Costs

Given the current niche markets and low demand for eye trackers, vendors

must invest considerable time and resources on marketing and sales. The specialized

nature of current eye-tracking systems makes them suitable for use only by experts.

Vendors must therefore charge high prices on small volumes (typically tens of units

on an annual basis) to see a return on their investment. The high price of the systems

in turn requires a high-touch sales process, which requires vendors to have an

expensive sales force that needs to travel and do live demonstrations to close sales.

In addition, current systems are not robust enough to operate under all

conditions, creating the need for hands-on customer support. The combination of

technological issues (hardware and software development) and market/business

issues result in eye-tracking continuing as a boutique industry.

10.4 Technology Trends

 Higher resolution and higher frame rate cameras are becoming available at

lower prices. The advent of cell phone cameras and low cost web cameras has made

image sensors a commodity item which can be cheaply sourced. Furthermore, the

proliferation of the USB 2.0 standard now provides adequate bus bandwidth to

capture high resolution images at high frame rates. Moore’s law has made adequate

processing power available to perform complex image processing in real time and

still leave enough cycles for other applications. The cost of image processing

therefore becomes a smaller proportion of the CPU over time.

 114

10.5 Cost-Lowering Approaches

We present a series of ideas and strategies that may be used to lower the cost

of eye-tracking systems.

10.5.1 Use of Mass-market Image Sensors

Using commercial-over-the-shelf (COTS) cameras is the obvious cost-cutting

approach for reducing the material costs for eye-trackers. Megapixel resolution web

cameras are now available for a fraction of the cost of the expensive, custom cameras

used in machine vision applications. These cameras use standard USB or FireWire

interfaces, thereby eliminating the need for any special hardware and software for

image acquisition.

Consumer web cameras come equipped with an IR filter, which prevents

them from working in the IR spectrum. In addition, since COTS cameras are mostly

color cameras, the presence of the Bayer pattern on the CCD also reduces the

effective resolution of the camera when working in the infrared spectrum. However,

it is possible to perform minor modifications on consumer webcams to make them

work in the IR spectrum and we illustrate how to do so in [57]. Given the low cost of

consumer web cameras, it is conceivable to have high-resolution, high frame-rate,

grayscale, IR sensitive image sensor mass-produced at very low cost.

10.5.2 Use of Multiple cameras

Desktop eye-tracking systems suffer from the limited field of view of the

camera. As explained earlier, the image of the eye-region must be sufficiently

zoomed-in, in order to provide adequate pixels for processing. In most desktop use

scenarios, the majority of head motion occurs in the horizontal plane. Therefore, it is

possible to use a multi-camera (stereo) setup with a fixed geometry to increase the

horizontal field of view without sacrificing resolution. In addition, stereo cameras

can provide a more accurate depth estimate and account for a wider range of head

movement including head rotation. It is our expectation that current systems would

be limited to using a stereo setup with two cameras due to bus bandwidth and

processing limitations.

 115

10.5.3 Build on Existing Image Processing Libraries

To control the cost of software development, it is possible to build eye-

tracking software on top of existing computer vision libraries such as OpenCV [25],

which provide packaged functions for image processing and machine learning. The

openEyes [68] project uses OpenCV as its foundation.

10.6 Low-Cost Prototype

To test the feasibility of the ideas above we built our own low cost prototype.

We used the Logitech QuickCam Pro 4000 camera and modified the camera to work

in the infrared spectrum as described in [57]. Figure 1 shows an image of the

modified web cameras and the infrared glint source used for prototyping. We were

Figure 57. The low-cost prototype in development uses commercial-over-the-shelf cameras
modified to work in the infrared spectrum. The glint source pictured above uses IR LEDs
(invisible to the human eye).

 116

successfully able to capture both streams and verify the feasibility of a multi camera

solution using a regular desktop PC.

We prototyped software using the open source OpenCV library. The software

uses the HaarFaceDetector in OpenCV to identify faces in the captured image. To find

eye-regions, we trained a classifier set using over 3000 sample eye images. Once the

HaarFaceDetector finds a face within the captured image, the eye-models are used to

isolate eye-regions. Simple erosion, dilation followed by ellipse fitting makes it

possible to determine the location of the pupil center (p) and the corneal reflection

(g) which can then be used to estimate the point of regard.

Figure 58. A screenshot of prototype software built using open source Computer Vision
libraries (OpenCV) which uses machine learning to identify faces in the image. It then looks
within the face region to identify the eyes. Simple image processing (erosion/dilation)
helps to separate the pupil and glint images. Ellipse-fitting provides the center of the pupil
and the glint which can then be used to determine the point-of-regard.

 117

We were successfully able to identify the pupil centers and the location of the

glints using our prototype (Figure 58). It should be noted however, that the

resolution of the current consumer web cameras is insufficient for any reasonable

amount of tracking. The number of pixels between the pupil center and the glint do

not provide enough information for reliable eye tracking. Other solutions that have

used web cameras have placed the web camera close to the user’s eye, as in [43]. The

availability of the low-cost high resolution image sensor is an essential requirement.

10.7 Mass Market Strategy

The primary impediment to low-cost eye-tracking is not the technology but

the business issues relating to the supply and demand of eye-trackers. It is necessary

to innovate both the technology and the business models used by current eye-

tracking vendors.

Vendors must begin to use commodity parts in order to reduce the material

costs of the systems. The product must be designed to be usable by everyday users

and not only by experts. This means reducing the learning curve for using such

systems and making them robust enough to reduce the burden of customer support.

Research and development costs must be amortized over a longer period of time and

over a larger number of units.

 One novel approach as proposed by Amir et al.[11] takes part of the eye-

tracking system, specifically, eye-detection and embeds it in hardware making it

possible to have a simple USB peripheral (Figure 59). The device does all image

processing in hardware and therefore does not consume any significant CPU

resources. The output from the system is the low bandwidth eye position data, which

can be transmitted over USB. Innovative approaches, such as the one above, can be

instrumental in making the technology robust, simple, inexpensive and ultimately

more widely used.

While it is important for vendors to charge high prices to recoup their R&D

cost, a mass market strategy has the potential to grow the size of the market for eye

tracking.

 118

10.8 Summary

In this chapter we highlighted some of the factors that contribute to the high

costs of eye-tracking systems and proposed several ideas and strategies that can be

used to reduce the costs of these systems, ultimately resulting in more widespread

use of the technology. The drive towards low-cost eye tracking has been recognized

by the community and at the Eye Tracking Research and Applications Symposium

held in San Diego in March 2006 the community backed the IPRIZE [7] — a 1 million-

dollar grand challenge which aims to achieve a ten-fold improvement in eye-tracking

technology, while at the same time making it affordable for the average person.

Figure 59. Amir et al.’s prototype of a hardware eye-detection sensor. Image processing is
done on an on-board FPGA, making this a lightweight peripheral that can be connected
via USB.

 119

11 Conclusion

This chapter summarizes the contributions of this dissertation and

synthesizes the knowledge gained over the course of this research by identifying the

challenges in designing gaze-based interactions and presenting our guidelines for

addressing these challenges.

11.1 Summary of Contributions

This dissertation presented several novel interaction techniques that use

gaze information as a practical form of input. In particular, it introduced a new

technique for pointing and selection (Chapter 3) using a combination of eye gaze and

keyboard. This approach overcomes the accuracy limitations of eye trackers and

does not suffer from the Midas Touch problem. The pointing speed of this technique

is comparable to that of a mouse. The original results showed a higher error rate

than the mouse, which was addressed further in Chapter 9.

Chapter 4 introduced several techniques for gaze-enhanced scrolling,

including the gaze-enhanced page up / page down approach which augments manual

scrolling with additional information about the user’s gaze position. It also

introduced three techniques for automatic scrolling. These techniques are explicitly

activated by the user; they scroll text in only one direction and can adjust the speed

of the scrolling to match the user’s reading speed. Additionally, it introduces the use

of gaze-activated off-screen targets that allow the placement of both discrete and

continuous document navigation commands on the bezel of the screen.

This dissertation also introduces the use of eye gaze for application switching

(Chapter 5) and password entry (Chapter 6). It also revealed a fundamental problem

 120

with using gaze as part of a zooming interface — zooming interfaces tend to magnify

the error in the accuracy of the eye tracker (Chapter 7). Chapter 8 discussed several

additional applications and interaction techniques that use gaze as a form of input.

This dissertation also presented new technologies for improving the

interpretation of eye gaze as a form of input. In particular, Chapter 9 revisits and

deepens the exploration of some of the common underlying issues with eye tracking.

We presented an algorithm for saccade detection and fixation smoothing, identified

and addressed the problem of eye hand coordination when using gaze in conjunction

with trigger-based activation and explored the use of focus points to provide users

with a visual marker to focus on when using a gaze-based application.

Finally, Chapter 10 addresses the missing link by providing a discussion of

the prospects for eye tracking to be made affordable and available for widespread

use.

In keeping with the thesis statement in Chapter 1, the work of this

dissertation shows that gaze can indeed be used as a practical form of input. The

following sections of this concluding chapter synthesize the lessons learnt from this

research in the form of a list of challenges for design interaction and our proposed

guidelines for addressing these challenges.

11.2 Design Challenges for Gaze Interaction

The design of interactions that incorporate gaze poses some unique

challenges for interaction designers. In addition to overcoming the limitations of eye

tracker accuracy, designers also need to be wary of several other issues.

Eye movements are noisy: Eye movements occur in the form of fixations

and saccades. Even within fixations the eye jitters due to micro-saccades, drift and

tremors. Any application that relies on using gaze data must be robust enough to

tolerate this noise. The applications must have a robust model for interpreting gaze

information in order to extract the right information from the noisy signal. This

dissertation presented a saccade detection and fixation smoothing algorithm in

Chapter 9 that can help to address this challenge.

 121

Eye tracker accuracy: Eye trackers are only capable of providing limited

accuracy, which imposes limits on the granularity at which eye tracking data can be

used. The interaction design must account for this lack of eye tracker accuracy and

be able to overcome it in a robust manner. In addition, the tracking accuracy may

differ from person to person. Any application that uses gaze must provide sufficient

controls to customize the implementation for an individual user. The interaction

techniques described in this dissertation used several ways to overcome the

accuracy issue. EyePoint (Chapter 3) uses magnification, the scrolling techniques in

Chapter 4 use thresholds which are less sensitive to accuracy, EyeExposé (Chapter 5)

and EyePassword (Chapter 6) use large targets.

Sensor lag: It is virtually impossible for the eye tracker to provide true real-

time eye tracking. Since there will always be a lag between when the user looks at

something and when the eye tracker detects the new gaze location, applications must

accommodate this lag. In addition, algorithms that smooth and filter eye tracking

data may introduce additional processing delays, which also need to be accounted

for by the application designer. Section 9.2 of this dissertation explores this topic and

accommodates for the latency in gaze data in the simulation.

The Midas Touch problem: As discussed in Chapter 2, the Midas Touch

problem is the most critical design challenge when designing gaze-based

interactions. It necessitates the disambiguation of when the user is looking and when

the user intends to perform an action. Failure to do so can result in false activations

which are not only annoying to the user but can be dangerous since they can

accidentally trigger actions that the user may not have intended. By focusing on the

design of the interaction techniques presented, as seen in the preceding chapters, it

is possible to overcome the Midas Touch problem.

Maintaining the natural function of the eyes: The common misconception

for gaze-enhanced interactions is that users will be winking and blinking at their

computers. Such actions overload the normal function of the eyes and unless the user

has no alternatives, they can be both fatiguing and annoying for the user. It is

imperative for any gaze-based interaction technique to maintain the natural function

of the eyes and not overload the visual channel. Other than the dwell-based

 122

password entry and the use of off-screen targets, all the techniques presented in this

dissertation are designed to maintain the natural function of the eyes.

Feedback: Designers need to rethink how they provide feedback to the user

in the case of a gaze-based interaction. Providing visual feedback forces users to

move their gaze to look at the feedback. Such an approach could lead to a scenario

where the natural function of the eye is no longer maintained. This problem is

illustrated by the example of providing visual feedback in a language-model based

gaze typing system. The user must look at the keys to type, but must look away from

the keys in order to examine the possible word options. Designers must therefore

give careful thought to how the feedback is provided. Using an alternative channel

such as audio feedback or haptic feedback may be more suitable for some

applications which require the eyes to be part of the interaction technique.

EyePassword (Chapter 6) provided users with audio feedback.

11.3 Design Guidelines for Gaze Interaction

Based on our experience with the design and evaluation of gaze-based

interaction techniques, we would recommend the following guidelines for any

designers using gaze as a form of input:

Maintain the natural function of the eyes: As mentioned in the previous

work by Zhai, Jacob and others, it is imperative to maintain the natural function of

the eye when designing gaze-based interactions. Our eyes are meant for looking.

Using them for any other purpose overloads the visual channel and is generally

undesirable for any gaze-based application. There are exceptions to this rule, such as

when designing interfaces for disabled users who may not have the ability to use an

alternative approach. However, in general, all gaze-based interactions should try to

maintain the natural function of the eyes.

Augment rather than replace: Designers should consider using gaze as an

augmented input. Attempts to replace existing interaction techniques with a gaze-

only approach may not be as compelling as augmenting traditional techniques and

devices with gaze information. Using gaze to provide context and as a proxy for the

user’s attention and attention can enable the development of new interactions when

 123

used in conjunction with other modalities. In the techniques presented in this thesis,

we use gaze in conjunction with the keyboard or mouse.

Focus on interaction design: The design of the interaction when using gaze-

based applications is the most effective approach for overcoming the Midas Touch

problem. Designers must consider the natural function of the eyes, the number of

steps in the interaction, the amount of time it takes, the cost of an error/failure, the

cognitive load imposed upon the user and the amount of fatigue the interaction

causes among other things. The focus on interaction design was one of the key

insights for this dissertation.

Improve the interpretation of eye movements: Since gaze-data is at best a

noisy source of information, designers should carefully consider how to interpret

this gaze data to estimate the user’s attention and or intention. This may include

using algorithms to improve the classification and analysis of gaze data, pattern

recognition and using semantic information or additional sensor data to augment the

designer’s interpretation of the user’s gaze. Chapter 9 of this dissertation addresses

some of the issues with interpretation of eye gaze.

Task-oriented approach: Gaze may not be suitable for all applications! It is

important to consider the task at hand when designing the gaze-based interaction. In

some cases it is likely that other input modalities may be better suited. For example,

using gaze to change radio stations in a car may not be a very good idea for obvious

reasons. Using gaze-based pointing in applications such as Photoshop, which require

fine grained motor-control, would also be undesirable. Designers must consider the

task/use scenario before using gaze-based interaction.

Active vs. passive use of gaze information: Eye tracking as a form of input

can be used either in an active mode, where the gaze is used to directly

control/influence a certain task or in a passive way where the gaze is used to inform

the system but the effect of the user’s gaze may not be immediately apparent or may

be communicated indirectly. We illustrate this point with eye tracking in cars. Using

gaze to control the changing of radio station in the car would fall into the category of

an active use of gaze information, i.e. the user must actively look at the device to

perform the action. By contrast, using the user’s gaze to let the car know that the

 124

user is not looking at the road and then informing the user with a beep would be a

passive use of eye gaze since in this case the user did not need to consciously

perform an action. Designers should consider ways in which they can use gaze

information passively before attempting to use active gaze-based control since

passive use of gaze information has a better chance of maintaining the natural

function of the eyes.

Attentive User Interfaces: As previously noted, gaze serves as a proxy for

the user’s attention and intention. Consequently application designers can leverage

this information to design interfaces that blend seamlessly with the user’s task flow.

Gaze can be used to inform an interruption model of the user, making it possible to

design interactions that are less intrusive and decrease the cognitive load. Chapter 8

of this dissertation presents several examples of attentive user interfaces (Gaze-

contingent screen and power save, Gaze-enhanced multi-monitor coordination and

No-nag IM windows).

11.4 Concluding Remarks

It is the author’s hope and expectation that eye gaze tracking will soon be

Figure 60. Concept eye tracker — here the Apple MacBook Pro has been shown with
two black bars in the top bezel, which can conceal the infrared illuminants necessary
for eye tracking.

 125

available in every desktop and laptop computer and its use as a standard form of

input will be ubiquitous. As discussed in Chapter 10, technology and economic

trends may soon make it possible for this vision to become a reality. Figure 60 shows

a “concept” low-cost mass-market eye tracker, which could be easily incorporated

into the bezel of a contemporary laptop. The combination of low-cost eye tracking

and gaze-based interaction techniques has the potential to create the environment

necessary for gaze-augmented input devices to become mass-market.

As eye-tracking devices improve in quality and accuracy and decrease in cost,

interaction designers will have the ability to sense the user’s attention and intention.

This has the potential to revolutionize traditional keyboard-and-mouse-centric

interactions. The best form of human computer interaction is one that the user never

even notices. Using gaze information has the potential to propel interactions in this

direction.

 126

 127

Bibliography

[1] Apple Mac OSX Aqua User interface feature: Exposé, 2006.

http://www.apple.com/macosx/features/expose/

[2] Apple MacBook iSight camera. Apple Computer: Cupertino, California,

USA. http://www.apple.com/macbook/isight.html

[3] Google Maps. Google, Inc.: Mountain View, CA.

http://maps.google.com

[4] IBM BlueEyes Project. IBM: Almaden.

http://www.almaden.ibm.com/cs/BlueEyes/index.html

[5] Microsoft PowerToys for Windows XP: Alt-Tab Replacement -

TaskSwitch.

http://www.microsoft.com/windowsxp/downloads/powertoys/xppowert

oys.mspx

[6] PassFaces: patented technology that uses the brain's natural power to

recognize familiar faces. PassFaces Corporation.

http://www.passfaces.com/products/passfaces.htm

[7] RSI: Repetitive Strain Injury, 2007. Wikipedia.

http://en.wikipedia.org/wiki/Repetitive_strain_injury

[8] Windows Vista; The Features, 2006.

http://www.microsoft.com/windowsvista/features/default.mspx

http://www.apple.com/macosx/features/expose/
http://www.apple.com/macbook/isight.html
http://maps.google.com/
http://www.almaden.ibm.com/cs/BlueEyes/index.html
http://www.microsoft.com/windowsxp/downloads/powertoys/xppowertoys.mspx
http://www.microsoft.com/windowsxp/downloads/powertoys/xppowertoys.mspx
http://www.passfaces.com/products/passfaces.htm
http://en.wikipedia.org/wiki/Repetitive_strain_injury
http://www.microsoft.com/windowsvista/features/default.mspx

 128

[9] Agarawala, A. and R. Balakrishnan. Keepin' It Real: Pushing the

Desktop Metaphor with Physics, Piles and the Pen. In Proceedings of

CHI. Montréal, Québec, Canada: ACM Press. pp. 1283-92, 2006.

[10] Amir, A., M. Flickner, and D. Koons, Theory for Calibration Free Eye

Gaze Tracking. 2002, IBM Almaden Research.

[11] Amir, A., L. Zimet, A. Sangiovanni-Vincentelli, and S. Kao. An

Embedded System for an Eye-Detection Sensor. Computer Vision and

Image Understanding, CVIU Special Issue on Eye Detection and

Tracking 98(1). pp. 104-23, 2005.

[12] Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp. A Tutorial

on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian

Tracking. IEEE Transactions on Signal Processing 50(2). pp. 174,

2002.

[13] Ashmore, M., A. T. Duchowski, and G. Shoemaker. Efficient Eye

Pointing with a FishEye Lens. In Proceedings of Graphics Interface.

pp. 203-10, 2005.

[14] Asonov, D. and R. Agrawal. Keyboard Acoustic Emanations. In

Proceedings of IEEE Symposium on Security and Privacy. Oakland,

California, USA: IEEE. pp. 3-11, 2004.

[15] Babcock, J. S. and J. B. Pelz. Building a lightweight eyetracking

headgear. In Proceedings of ETRA: Eye Tracking Research &

Applications Symposium. San Antonio, Texas, USA: ACM Press. pp.

109-13, 2004.

[16] Baudisch, P., E. Cutrell, K. Hinkley, and A. Eversole. Snap-and-go:

Helping Users Align Objects Without the Modality of Traditional

 129

Snapping. In Proceedings of CHI 2005. Portland, Oregon: ACM Press.

pp. 301-10, 2005.

[17] Bederson, B. B., J. Grosjean, and J. Meyer. Toolkit Design for

Interactive Structured Graphics. IEEE Transaction on Software

Engineering 30(8). pp. 1-12, 2003.

[18] Bederson, B. B. and J. D. Hollan. Pad++: A Zoomable Graphical

Interface System. In Proceedings of CHI. Denver, Colorado, USA:

ACM Press. pp. 23-24, 1995.

[19] Bederson, B. B., J. D. Hollan, J. Stewart, D. Rogers, A. Druin, and D.

Vick. A Zooming Web Browser. Human Factors and Web

Development, 1997.

[20] Beinhauer, W. A Widget Library for Gaze-based Interaction Elements.

In Proceedings of ETRA: Eye Tracking Research and Applications

Symposium. San Diego, California, USA: ACM Press. pp. 53-53, 2006.

[21] Benko, H. and S. Feiner. Multi-Monitor Mouse. In Proceedings of CHI

2005 Extended Abstracts. Portland, Oregon: ACM Press. pp. 1208-11,

2005.

[22] Berger, Y., A. Wool, and A. Yeredor. Dictionary Attacks Using

Keyboard Acoustic Emanations. In Proceedings of Computer and

Communications Security (CCS). Alexandria, Virginia, USA, 2006.

[23] Beymer, D., S. P. Farrell, and S. Zhai. System and method for selecting

and activating a target object using a combination of eye gaze and key

presses. USA Patent 2005, International Business Machines

Corporation

[24] Beymer, D. and D. M. Russell. WebGazeAnalyzer: A System for

Capturing and Analyzing Web Reading Behavior Using Eye Gaze. In

 130

Proceedings of CHI. Portland, Oregon, USA: ACM Press. pp. 1913-16,

2005.

[25] Bradski, G. R. The OpenCV Library, Dr. Dobb's Software Tools for the

Professional Programmer, November 2000.

[26] Buswell, G. T., How People Look at Pictures: A Study of the

Psychology of Perception in Art: The University of Chicago Press pp.

1935.

[27] Buxton, W. Chunking and Phrasing and the Design of Human-

Computer Dialogues. In Proceedings of IFIP World Computer

Congress. Dublin, Ireland. pp. 475-80, 1986.

[28] Card, S. K., W. K. English, and B. J. Burr. Evaluation of mouse, rate-

controlled isometric joystick, step keys, and text keys, for text selection

on a CRT. Ergonomics 21(8). pp. 601-13, 1978.

[29] Chen, M. Leveraging the asymmetric sensitivity of eye contact for

videoconference. In Proceedings of CHI. Minneapolis, Minnesota:

ACM Press. pp. 49-56, 2002.

[30] Cockburn, A., J. Savage, and A. Wallace. Tuning and Testing Scrolling

Interfaces that Automatically Zoom. In Proceedings of CHI. Portland,

Oregon, USA: ACM Press. pp. 71-80, 2005.

[31] Czerwinski, M., G. Smith, T. Regan, B. Meyers, G. Robertson, and G.

Starkweather. Toward Characterizing the Productivity Benefits of Very

Large Displays. In Proceedings of INTERACT: IOS Press, 2003.

[32] Dalton, A. B. and C. S. Ellis. Sensing User Intention and Context for

Energy Management. In Proceedings of 9th Workshop on Hot Topics in

Operatings Systems (HotOS IX): USENIX Press, 2003.

 131

[33] Damany, S. and J. Bellis, It's Not Carpal Tunnel Syndrome! RSI Theory

and Therapy for Computer Professionals. Philadelphia: Simax pp.

2000.

[34] Douglas, S. A. and A. K. Mithal. The effect of reducing homing time

on the speed of a finger-controlled isometric pointing device. In

Proceedings of CHI: ACM Press. pp. 411-16, 1994.

[35] Dragunov, A. N., T. G. Dietterich, K. Johnsrude, M. McLaughlin, L.

Li, and J. L. Herlocker. TaskTracer: a desktop environment to support

multi-tasking knowledge workers. In Proceedings of IUI. San Diego,

California, USA: ACM Press. pp. 75-82, 2005.

[36] Duchowski, A. T., Eye Tracking Methodology: Theory and Practice:

Springer. 227 pp. 2003.

[37] Duchowski, A. T., N. Cournia, B. Cumming, D. McCallum, and A.

Grampadhye. Visual Diectic Reference in a Collaborative

Environment. In Proceedings of ETRA: Eye Tracking Research &

Applications Symposium. San Antonio, Texas, USA. pp. 35-40, 2004.

[38] Farrell, S. P. and S. Zhai. System and method for selectively expanding

or contracting a portion of a display using eye-gaze tracking. USA

Patent 2005, International Business Machines Corporation

[39] Fitts, P. M. The information capacity of the human motor system in

controlling the amplitude of movement. Journal of Experimental

Psychology 47(6). pp. 381-91, 1954.

[40] Fono, D. and R. Vertegaal. EyeWindows: Evaluation of Eye-Controlled

Zooming Windows for Focus Selection. In Proceedings of CHI.

Portland, Oregon, USA: ACM Press. pp. 151-60, 2005.

 132

[41] Golle, P. and D. Wagner, Cryptanalysis of a Cognitive Authentication

Scheme, International Association for Cryptologic Research, July 31

2006.

[42] Hansen, D. W. and J. P. Hansen. Eye Typing with Common Cameras.

In Proceedings of Eye Tracking Research and Applications (ETRA)

Symposium. San Diego, California: ACM Press. pp. 55, 2006.

[43] Hansen, D. W., D. MacKay, and J. P. Hansen. Eye Tracking off the

Shelf. In Proceedings of ETRA: Eye Tracking Research & Applications

Symposium. San Antonio, Texas, USA: ACM Press. pp. 58, 2004.

[44] Henderson, D. A., Jr. and S. K. Card. Rooms: The Use of Multiple

Virtual Workspaces to Reduce Space Contention in a Window-Based

Graphical User Interface. ACM Transactions on Graphics 5(3). pp.

211-43, 1986.

[45] Henessey, C., B. Noureddin, and P. Lawrence. A Single Camera Eye-

Gaze Tracking System with Free Head Motion. In Proceedings of

ETRA: Eye Tracking Research and Applications Symposium. San

Diego, California, USA: ACM Press. pp. 87-94, 2006.

[46] Hinckley, K., E. Cutrell, S. Bathiche, and T. Muss. Quantitative

analysis of scrolling techniques. In Proceedings of CHI. Minneapolis,

Minnesota, USA: ACM Press. pp. 65-72, 2002.

[47] Hoanca, B. and K. Mock. Screen Oriented Technique for Reducing the

Incidence of Shoulder Surfing. In Proceedings of International

Conference on Security and Management (SAM). Las Vegas, Nevada,

USA, 2005.

[48] Hoanca, B. and K. Mock. Secure Graphical Password System for High

Traffic Public Areas. In Proceedings of ETRA - Eye Tracking Research

 133

and Applications Symposium. San Diego, California, USA: ACM Press.

pp. 35, 2006.

[49] Hutchings, D. R., G. Smith, B. Meyers, M. Czerwinski, and G.

Robertson. Display Space Usage and Window Management Operation

Comparisons between Single Monitor and Multiple Monitor Users. In

Proceedings of AVI. Gallipoli (LE), Italy: ACM Press. pp. 32-39, 2004.

[50] Hutchings, D. R. and J. Stasko. mudibo: Multiple Dialog Boxes for

Multiple Monitors. In Proceedings of CHI. Portland, Oregon, USA:

ACM Press. pp. 1471-74, 2005.

[51] Huynh, D. F., S. M. Drucker, P. Baudisch, and C. Wong. Time Quilt:

Scaling up Zoomable Photo Browsers for Large, Unstructured Photo

Collections. In Proceedings of CHI. Portland, Oregon, USA: ACM

Press. pp. 1937-40, 2005.

[52] Jacob, R. J. K. The Use of Eye Movements in Human-Computer

Interaction Techniques: What You Look At is What You Get. In

Proceedings of ACM Transactions in Information Systems. pp. 152-69,

1991.

[53] Jacob, R. J. K. and K. S. Karn, Eye Tracking in Human-Computer

Interaction and Usability Research: Ready to Deliver the Promises, in

The Mind's eye: Cognitive and Applied Aspects of Eye Movement

Research, J. Hyona, R. Radach, and H. Deubel, Editors. Elsevier

Science: Amsterdam. pp. 573-605, 2003.

[54] Jobs, S. P. and D. J. Lindsay. Computer interface having a single

window mode of operation. USA Patent 2005, Apple Computer, Inc.

 134

[55] Kuhn, M. G., Electromagnetic Eavesdropping Risks of Flat-Panel

Displays, in 4th Workshop on Privacy Enhancing Technologies, LNCS.

Springer-Verlag: Berlin / Heidelberg. pp. 23–25, 2004.

[56] Kumar, M., GUIDe Saccade Detection and Smoothing Algorithm.

Technical Report CSTR 2007-03, Stanford University, Stanford 2007.

http://hci.stanford.edu/cstr/reports/2007-03.pdf

[57] Kumar, M., IRcam: Instructions for modifying a consumer web camera

to work in the infrared spectrum, 2006. Palo Alto, California.

http://www.sneaker.org/projects/IRcam/index.html

[58] Kumar, M., T. Garfinkel, D. Boneh, and T. Winograd, Reducing

Shoulder-surfing by Using Gaze-based Password Entry. Technical

Report CSTR 2007-05, Stanford University, Stanford 2007.

http://hci.stanford.edu/cstr/reports/2007-05.pdf

[59] Kumar, M., T. Garfinkel, D. Boneh, and T. Winograd. Reducing

Shoulder-surfing by Using Gaze-based Password Entry. In Proceedings

of Symposium on Usable Privacy and Security (SOUPS). Pittsburgh,

PA: ACM Press, 2007.

[60] Kumar, M., A. Paepcke, and T. Winograd, EyeExposé: Switching

Applications with Your Eyes. Technical Report CSTR 2007-02,

Stanford University, Stanford 2007.

http://hci.stanford.edu/cstr/reports/2007-02.pdf

[61] Kumar, M., A. Paepcke, and T. Winograd. EyePoint: Practical Pointing

and Selection Using Gaze and Keyboard. In Proceedings of CHI. San

Jose, California, USA: ACM Press, 2007.

http://hci.stanford.edu/cstr/reports/2007-03.pdf
http://www.sneaker.org/projects/IRcam/index.html
http://hci.stanford.edu/cstr/reports/2007-05.pdf
http://hci.stanford.edu/cstr/reports/2007-02.pdf

 135

[62] Kumar, M. and T. Winograd, Gaze-enhanced Scrolling Techniques.

Technical Report CSTR 2007-11, Stanford University, Stanford, CA

2007. http://hci.stanford.edu/cstr/reports/2007-11.pdf

[63] Kumar, M. and T. Winograd. GUIDe: Gaze-enhanced UI Design. In

Proceedings of CHI. San Jose, California, USA: ACM Press, 2007.

[64] Kumar, M., T. Winograd, and A. Paepcke. Gaze-enhanced Scrolling

Techniques. In Proceedings of CHI. San Jose, California, USA: ACM

Press, 2007.

[65] Laarni, J. Searching for Optimal Methods of Presenting Dynamic Text

on Different Types of Screens. In Proceedings of NordiCHI. Arhus,

Denmark: ACM Press. pp. 219-22, 2002.

[66] Lankford, C. Effective Eye-Gaze Input into Windows. In Proceedings

of ETRA: Eye Tracking Research & Applications Symposium. Palm

Beach Gardens, Florida, USA: ACM Press. pp. 23-27, 2000.

[67] LC Technologies, I., The EyeGaze Communication System, 2006. LC

Technologies: McLean, Virginia.

http://www.eyegaze.com/2Products/Disability/Disabilitymain.htm

[68] Li, D., J. Babcock, and D. J. Parkhurst. openEyes: A Low-Cost Head-

Mounted Eye-Tracking Solution. In Proceedings of ETRA; Eye

Tracking Research and Applications Symposium. San Diego,

California, USA: ACM press, 2006.

[69] Maeder, A., C. Fookes, and S. Sridharan. Gaze Based User

Authentication for Personal Computer Applications. In Proceedings of

International Symposium on Intelligent Multimedia, Video and Speech

Processing. Hong Kong: IEEE. pp. 727-30, 2004.

http://hci.stanford.edu/cstr/reports/2007-11.pdf
http://www.eyegaze.com/2Products/Disability/Disabilitymain.htm

 136

[70] Majaranta, P., A. Aula, and K.-J. Räihä. Effects of Feedback on Eye

Typing with a Short Dwell Time. In Proceedings of ETRA: Eye

Tracking Research & Applications Symposium. San Antonio, Texas,

USA: ACM Press. pp. 139-46, 2004.

[71] Majaranta, P., I. S. MacKenzie, A. Aula, and K.-J. Räihä. Auditory and

Visual Feedback During Eye Typing. In Proceedings of CHI. Ft.

Lauderdale, Florida, USA: ACM Press. pp. 766-67, 2003.

[72] Majaranta, P. and K.-J. Räihä. Twenty Years of Eye Typing: Systems

and Design Issues. In Proceedings of ETRA: Eye Tracking Research &

Applications Symposium. New Orleans, Louisiana, USA: ACM Press.

pp. 15-22, 2002.

[73] McGuffin, M. and R. Balakrishnan. Acquisition of Expanding Targets.

In Proceedings of CHI. Minneapolis, Minnesota, USA: ACM Press. pp.

57-64, 2002.

[74] Miniotas, D., O. Špakov, I. Tugoy, and I. S. MacKenzie. Speech-

Augmented Eye Gaze Interaction with Small Closely Spaced Targets.

In Proceedings of ETRA: Eye Tracking Research & Applications

Symposium. San Diego, California, USA: ACM Press. pp. 67-72, 2006.

[75] Monrose, F., M. K. Reiter, and S. Wetzel. Password hardening based

on keystroke dynamics. International Journal of Information Security

1(2). pp. 69-83, 2002.

[76] Monty, R. A., J. W. Senders, and D. F. Fisher, Eye Movements and the

Higher Psychological Functions. Hillsdale, New Jersey, USA: Erlbaum

pp. 1978.

 137

[77] Morimoto, C., D. Koons, A. Amir, and M. Flickner. Pupil Detection

and Tracking Using Multiple Light Sources. Image and Vision

Computing 18(4). pp. 331-36, 2000.

[78] Morimoto, C. H., A. Amir, and M. Flickner. Free Head Motion Eye

Gaze Tracking Without Calibration. In Proceedings of CHI.

Minneapolis, Minnesota, USA: ACM Press. pp. 586-87, 2002.

[79] Newman, M. W., J. Lin, J. I. Hong, and J. A. Landay. DENIM: An

Informal Web Site Design Tool Inspired by Observations of Practice.

18(3). pp. 259-324, 2003.

[80] Nguyen, K., C. Wagner, D. Koons, and M. Flickner. Differences in the

Infrared Bright Pupil Response of Human Eyes. In Proceedings of

ETRA: Eye Tracking Research & Applications Symposium. New

Orleans, Louisiana, USA: ACM Press. pp. 133-38, 2002.

[81] Norman, D. A., Emotional Design: Why we love (or hate) everyday

things. New York: Basic Books. 256 pp. 2004.

[82] Norman, D. A. and D. Fisher. Why alphabetic keyboards are not easy

to use: Keyboard layout doesn't much matter. Human Factors 25(5).

pp. 509-19, 1982.

[83] Ohno, T. and N. Mukawa. A Free-head, Simple Calibration, Gaze

Tracking System That Enables Gaze-Based Interaction. In Proceedings

of ETRA: Eye Tracking Research & Applications Symposium. San

Antonio, Texas, USA. pp. 115-22, 2004.

[84] Ohno, T., N. Mukawa, and S. Kawato. Just Blink Your Eyes: A Head-

Free Gaze Tracking System. In Proceedings of CHI. Ft. Lauderdale,

Florida, USA: ACM Press. pp. 950-51, 2003.

 138

[85] Oviatt, S. Ten Myths of Multimodal Interaction. Communications of

the ACM 42(11). pp. 74-81, 1999.

[86] Pascarelli, E. and D. Quilter, Repetitive Strain Injury: A Computer

User's Guide: John Wiley & Sons, Inc. 240 pp. 1994.

[87] Poynter Institute and Eyetools, Inc., Eyetrack III: Online News

Consumer Behavior in the Age of Multimedia, 2004.

http://poynterextra.org/eyetrack2004/index.htm

[88] Qvarfordt, P. and S. Zhai. Conversing with the User Based on Eye-

Gaze Patterns. In Proceedings of CHI. Portland, Oregon, USA: ACM

Press. pp. 221-30, 2005.

[89] Rayner, K. Eye Movments in Reading and Information Processing: 20

Years of Research. Psychological Bulletin 124(3). pp. 372-422, 1998.

[90] Robertson, G., et al. Scalable Fabric: Flexible Task Management. In

Proceedings of AVI. Gallipoli (LE), Italy: ACM Press. pp. 85-89, 2004.

[91] Robertson, G. G., et al. The Task Gallery: a 3D window manager. In

Proceedings of CHI. The Hague, Amsterdam: ACM Press. pp. 494-501,

2000.

[92] Roth, V., K. Richter, and R. Freidinger. A PIN-Entry Method Resilient

Against Shoulder Surfing. In Proceedings of CCS: Conference on

Computer and Communications Security. Washington DC, USA: ACM

Press. pp. 236-45, 2004.

[93] RSA Security, I., RSA SecurID Authentication.

http://www.rsasecurity.com/node.asp?id=1156

[94] Sadasivan, S., J. S. Greenstein, A. K. Gramopadhye, and A. T.

Duchowski. Use of Eye Movements as a Feedforward Training for a

http://poynterextra.org/eyetrack2004/index.htm
http://www.rsasecurity.com/node.asp?id=1156

 139

Synthetic Aircraft Inspection Task. In Proceedings of CHI. Portland,

Oregon, USA: ACM Press. pp. 141-49, 2005.

[95] Salvucci, D. D. Inferring Intent in Eye-Based Interfaces: Tracing Eye

Movements with Process Models. In Proceedings of CHI. Pittsburgh,

Pennsylvania, USA: ACM Press. pp. 254-61, 1999.

[96] Salvucci, D. D. Intelligent Gaze-Added Interfaces. In Proceedings of

CHI. The Hague, Amsterdam: ACM Press. pp. 273-80, 2000.

[97] Salvucci, D. D. and J. H. Goldberg. Identifying Fixations and Saccades

in Eye-Tracking Protocols. In Proceedings of ETRA: Eye Tracking

Research & Applications Symposium. Palm Bech Gardens, Florida,

USA: ACM Press. pp. 71-78, 2000.

[98] Sibert, L. E. and R. J. K. Jacob. Evaluation of Eye Gaze Interaction. In

Proceedings of CHI. The Hague, Amsterdam: ACM Pres, 2000.

[99] Simonite, T. Tactile passwords could stop ATM 'shoulder-surfing', New

Scientist, October 6, 2006.

[100] Smith, G., et al. Groupbar: The Taskbar Evolved. In Proceedings of

OZCHI: ACM Press. pp. 1-10, 2003.

[101] Song, D. X., D. Wagner, and X. Tian. Timing Analysis of Keystrokes

and Timing Attacks on SSH. In Proceedings of 10th USENIX Security

Symposium. Washington DC, USA: The USENIX Association, 2001.

[102] Suo, X. and Y. Zhu. Graphical Passwords: A Survey. In Proceedings of

Annual Computer Security Applications Conference. Tucson, Arizona,

USA, 2005.

[103] Tan, D. S., P. Keyani, and M. Czerwinski. Spy-Resistant Keyboard:

Towards More Secure Password Entry on Publicly Observable Touch

 140

Screens. In Proceedings of OZCHI - Computer-Human Interaction

Special Interest Group (CHISIG) of Australia. Canberra, Australia:

ACM Press, 2005.

[104] Thorpe, J., P. C. van Oorschot, and A. Somayaji. Pass-thoughts:

authenticating with our minds. In Proceedings of New Security

Paradigns Workshop. Lake Arrowhead, California, USA: ACM Press.

pp. 45-56, 2005.

[105] Tobii Technology, AB, Drift Effects, in User Manual: Tobii Eye

Tracker and ClearView Analysis Software. Tobii Technology AB. p.

15, 2006.

[106] Tobii Technology, AB, MyTobii Communication Software, 2006.

Tobii Technology AB: Danderyd, Sweden.

http://www.tobii.com//default.asp?sid=555

[107] Tobii Technology, AB, Tobii 1750 Eye Tracker, 2006. Sweden.

http://www.tobii.com

[108] Tobii Technology, A., MyTobii P10 - portable eye-controlled

communcation device, 2006. http://www.tobii.com

[109] Wallace, A., J. Savage, and A. Cockburn. Rapid Visual Flow: How

Fast Is Too Fast? In Proceedings of 5th AUIC: Australasian User

Interface Conference. Dunedin: Australian Computer Society, Inc. pp.

117-22, 2004.

[110] Ware, C. and H. H. Mikaelian. An Evaluation of an Eye Tracker as a

Device for Computer Input. In Proceedings of CHI + Graphics

Interface. Toronto, Ontario, Canada: ACM Press. pp. 183-88, 1987.

http://www.tobii.com/default.asp?sid=555
http://www.tobii.com/
http://www.tobii.com/

 141

[111] Weinshall, D. Cognitive Authentication Schemes Safe Against

Spyware (Short Paper). In Proceedings of IEEE Symposium on Security

and Privacy. Oakland, California, USA: IEEE, 2006.

[112] Welch, G. and G. Bishop, An Introduction to the Kalman Filter.

Technical Report TR 95-041, University of North Carolina, Chapel Hill

1995 (updated 2006).

[113] Wiedenbeck, S., J. Waters, L. Sobrado, and J.-C. Birget. Design and

Evaluation of a Shoulder-Surfing Resistant Graphical Password

Scheme. In Proceedings of AVI. Venezia, Italy: ACM Press. pp. 177-

84, 2006.

[114] Yamato, M., A. Monden, K.-i. Matsumoto, K. Inoue, and K. Torii.

Button Selection for General GUIs Using Eye and Hand Together. In

Proceedings of AVI. Palermo, Italy: ACM Press. pp. 270-73, 2000.

[115] Yarbus, A. L., Eye Movements and Vision. New York: Plenum Press

pp. 1967.

[116] Zhai, S. What's in the Eyes for Attentive Input, Communications of the

ACM, vol. 46(3): pp. 34-39, March, 2003.

[117] Zhai, S., S. Conversy, M. Beaudouin-Lafon, and Y. Guiard. Human

On-line Response to Target Expansion. In Proceedings of CHI. Ft.

Lauderdale, florida, USA: ACM Press. pp. 177-84, 2003.

[118] Zhai, S., C. Morimoto, and S. Ihde. Manual and Gaze Input Cascaded

(MAGIC) Pointing. In Proceedings of CHI. Pittsburgh, Pennsylvania,

USA: ACM Press. pp. 246-53, 1999.

[119] Zhai, S., B. A. Smith, and T. Selker. Improving Browsing Performance:

A study of four input devices for scrolling and pointing tasks. In

Proceedings of IFIP Interact. Sydney, Australia. pp. 286-92, 1997.

 142

[120] Zhuang, L., F. Zhou, and J. D. Tygar. Keyboard Acoustic Emanations

Revisited. In Proceedings of Computer and Communications Security

(CCS). Alexandria, Virgina, USA: ACM Press. pp. 373-82, 2005.

