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Abstract 
The GUIDe (Gaze-enhanced User Interface Design) 
project in the HCI Group at Stanford University 
explores how gaze information can be effectively used 
as an augmented input in addition to keyboard and 
mouse. We present three practical applications of gaze 
as an augmented input for pointing and selection, 
application switching, and scrolling. Our gaze-based 
interaction techniques do not overload the visual 
channel and present a natural, universally-accessible 
and general purpose use of gaze information to 
facilitate interaction with everyday computing devices.   
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ACM Classification Keywords 
H5.2. User Interfaces: Input devices and strategies, 
H5.2. User Interfaces: Windowing Systems, H5.m. 
Information interfaces and presentation (e.g., HCI): 
Miscellaneous. 

Introduction 
The keyboard and mouse have long been the dominant 
forms of input on computer systems. Eye gaze tracking 
as a form of input was primarily developed for disabled 
users who are unable to make normal use of a 
keyboard and pointing device. However, with the 
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increasing accuracy and decreasing cost of eye gaze 
tracking systems [1, 2, 6] it will soon be practical for 
able-bodied users to use gaze as a form of input in 
addition to keyboard and mouse – provided the 
resulting interaction is an improvement over current 
techniques. The GUIDe (Gaze-enhanced User Interface 
Design) project [9] in the HCI Group at Stanford 
University explores how gaze information can be 
effectively used as an augmented input in addition to 
keyboard and mouse. In this paper, we present three 
practical applications of gaze as an augmented input for 
pointing and selection, application switching, and 
scrolling. 

Motivation 
Human beings look with their eyes. When they want to 
point (either on the computer or in real life) they look 
before they point [8]. Therefore, using eye gaze as a 
way of interacting with a computer seems like a natural 
extension of our human abilities. However, to date, 
research has suggested that using eye gaze for any 
active control task is not a good idea. In his paper on 
MAGIC pointing [18] Zhai states that “to load the visual 
perception channel with a motor control task seems 
fundamentally at odds with users’ natural mental model 
in which the eye searches for and takes in information 
and the hand produces output that manipulates 
external objects. Other than for disabled users, who 
have no alternative, using eye gaze for practical 
pointing does not appear to be very promising.” 

In his paper in 1990, Jacob [7] states that: “what is 
needed is appropriate interaction techniques that 

incorporate eye movements into the user-computer 
dialogue in a convenient and natural way.” In a later 
paper in 2000, Sibert and Jacob [15] conclude that: 
“Eye gaze interaction is a useful source of additional 
input and should be considered when designing 
interfaces in the future.”  

For our research we chose to investigate how gaze-
based interaction techniques can be made simple, 
accurate and fast enough to not only allow disabled 
users to use them for standard computing applications, 
but also make the threshold of use low enough that 
able-bodied users will actually prefer to use gaze-based 
interaction. 

Related Work 
Researchers have tried numerous approaches to gaze 
based pointing [3, 7, 10-13, 16-18]. However, its use 
outside of research circles has been limited to disabled 
users who are otherwise unable to use a keyboard and 
mouse. Disabled users are willing to tolerate 
customized interfaces, which provide large targets for 
gaze based pointing. The lack of accuracy in eye-based 
pointing and the performance issues of using dwell-
based activation have created a high enough threshold 
that able-bodied users have preferred to use the 
keyboard and mouse over gaze based pointing [8]. 

The use of eye gaze for window management was 
discussed as far back as 1981 by Bolt [4]. In 
EyeWindows [5], Fono and Vertegaal explored two 
gaze-based window management techniques with the 
constraint that all windows be non-overlapping.  
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Gaze-based scrolling is fraught with Midas Touch1 [7] 
issues and therefore there hasn’t been much in the 
literature regarding gaze-based scrolling to date. 

EyePoint: Pointing and Selection 
EyePoint provides a practical gaze-based solution for 
everyday pointing and selection using a combination of 
gaze and keyboard. EyePoint works by using a two-
step, progressive refinement process that is fluidly 
stitched together in a look-press-look-release cycle.  

To use EyePoint, the user simply looks at the target on 
the screen and presses a hotkey for the desired action - 
single click, double click, right click, mouse over, or 
start click-and-drag2. EyePoint displays a magnified 
view of the region the user was looking at. The user 
looks at the target again in the magnified view and 
releases the hotkey. This results in the appropriate 
action being performed on the target (sidebar). 

To abort an action the user can look away or anywhere 
outside of the zoomed region and release the hotkey, 
or press the Esc key on the keyboard. 

The region around the user’s initial gaze point is 
presented in the magnified view with a grid of orange 
dots overlaid. These orange dots are called focus points 
and may aid in focusing the user’s gaze at a point 

                                                 

1 Unintentional activation of a command when a user is looking 
around. 

2 We provide hotkeys for all standard mouse actions in our 
research prototype; a real world implementation may use 
alternative activation techniques such as dedicated buttons 
located below the spacebar.  

within the target. Focusing at a point reduces the jitter 
and improves the accuracy of the system. 

Single click, double click and right click actions are 
performed as soon as the user releases the key. Click 
and drag is a two-step interaction. The user first selects 
the starting point for the click and drag with one hotkey 
and then the destination with another hotkey. 

Technical Details 
The eye tracker constantly tracks the user’s eye- 
movements3. A modified version of Salvucci’s 
Dispersion Threshold Identification fixation detection 
algorithm [14] is used along with our own smoothing 
algorithm to help filter the gaze data. When the user 
presses and holds one of the action specific hotkeys on 
the keyboard, the system uses the key press as a 
trigger to perform a screen capture in a confidence 
interval around the user’s current eye-gaze. The default 
settings use a confidence interval of 120 pixels square 
(60 pixels in all four directions from the estimated gaze 
point). The system then applies a magnification factor 
(default 4x) to the captured region of the screen. The 
resulting image is shown to the user at a location 
centered at the previously estimated gaze point but 
offset to remain within screen boundaries.  

The user then looks at the desired target in the 
magnified view and releases the hotkey. The user’s eye 
gaze is recorded when the hotkey is released. Since the 
view has been magnified, the resulting eye-gaze is 

                                                 

3 If the eye tracker were fast enough, it would be possible to 
begin tracking when the hotkey is pressed, alleviating long-
term use concerns for exposure to infra-red illumination. 

1. Look at the desired target 

 
2. Press and hold the hotkey 

3. Look at target in the 
    magnified view 

 
4. Release hotkey 

 
Figure 1. EyePoint fluidly combines a 
two-step progressive refinement of 
the target into a Look-Press-Look-
Release action 
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more accurate by a factor equal to the magnification. A 
transform is applied to determine the location of the 
desired target in screen coordinates. The cursor is then 
moved to this location and the action corresponding to 
the hotkey (single click, double click, right click etc.) is 
executed. EyePoint therefore uses a secondary gaze 
point in the magnified view to refine the location of the 
target. 

Evaluation 
A quantitative evaluation of EyePoint shows that the 
performance of EyePoint is similar to the performance 
of a mouse, though with slightly higher error rates. 
Users strongly preferred the experience of using gaze-
based pointing over the mouse even though they had 
years of experience with the mouse. 

EyeExposé: Application Switching 
EyeExposé, combines a full-screen two-dimensional 
thumbnail view of the open applications with gaze-
based selection for application switching.  

Figure 2 and Figure 3 show how EyeExposé works - to 
switch to a different application, the user presses and 
holds down a hotkey. EyeExposé responds by showing 
a scaled down view of all the applications that are 
currently open on the desktop. The user simply looks at 
the desired target application and releases the hotkey. 

The use of eye gaze instead of the mouse for pointing 
is a natural choice. The size of the tiled windows in 
Exposé is usually large enough for eye-tracking 
accuracy to not be an issue. Whether the user relies on 
eye gaze or the mouse for selecting the target, the 
visual search task to find the desired application in the 
tiled view is a prerequisite step. By using eye gaze with 

an explicit action (the release of the hotkey) we can 
leverage the user’s natural visual search to point to the 
desired selection.  

Evaluation 
A quantitative evaluation showed that EyeExposé was 
significantly faster than using Alt-Tab when switching 
between twelve open applications. Error rates in 
application switching were minimal, with one error 
occurring in every twenty or more trials. In a 
qualitative evaluation, where subjects ranked four 
different application switching techniques (Alt-Tab, 
Task bar, Exposé w/mouse and EyeExposé), EyeExposé 
was the subjects choice for speed, ease of use, and the 
technique they said they would prefer to use if they had 
all four approaches available. Subjects felt that 
EyeExposé was more natural and faster than other 
approaches. 

EyeScroll: Reading mode and Scrolling 
EyeScroll allows computer users to automatically and 
adaptively scroll through content on their screen. When 
scrolling starts or stops and the speed of the scrolling is 
controlled by the user's eye gaze and the speed at 
which the user is reading. EyeScroll provides multiple 
modes for scrolling – specifically, a reading mode and 
off-screen dwell-based targets.  

Reading Mode 
The EyeScroll reading mode  allows users to read a web 
page or a long document, without having to constantly 
scroll the page manually. The reading mode is toggled 
by using the Scroll Lock key – a key which has 
otherwise been relegated to having no function on the 
keyboard. Once the reading mode is enabled by 
pressing the Scroll Lock key, the system tracks the 

Figure 2. Pressing and holding the EyeExposé
hotkey tiles all open applications on the
screen. The user simply looks at the desired
target application and releases the hotkey. 

Figure 3. Releasing the hotkey restores the
windows to their original size and brings the
selected application to the foreground. 
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user’s gaze. When the user’s gaze location falls below a 
system-defined threshold (i.e. the user looks at the 
bottom part of the screen) EyeScroll starts to slowly 
scroll the page. The rate of the scrolling is determined 
by the speed at which the user is reading and is usually 
slow enough to allow the user to continue reading even 
as the text scrolls up. As the user’s gaze slowly drifts 
up on the screen and passes an upper threshold, the 
scrolling is paused. This allows the reader to continue 
reading naturally, without being afraid that the text will 
run off the screen. 

The reading speed is estimated by measuring the 
amount of time t it takes the user to complete one 
horizontal sweep from left to right and back. The delta 
in the number of vertical pixels the user’s gaze moved 
(accounting for any existing scrolling rate) defines the 
distance d in number of vertical pixels. The reading 
speed can then be estimated as d/t. 

In order to facilitate scanning the scrolling speed can 
also take into account the location of the user’s gaze on 
the screen. If the user’s gaze is closer to the lower 
edge of the screen, the system can speed up scrolling 
and if the gaze is in the center or the upper region of 
the screen the system can slow down scrolling 
accordingly. Since the scrolling speed and when the 
scrolling starts and stopped are both functions of the 
user’s gaze, the system adapts to the reading style and 
patterns of each individual user. 

By design the page is always scrolled only in one 
direction. This is because while reading top to bottom is 
a fairly natural activity that can be detected based on 
gaze patterns, attempting to reverse scrolling direction 
triggers too many false positives. Therefore, we chose 

to combine the reading mode with explicit dwell-based 
activation for scrolling up in the document (see below). 

The user can disengage the reading mode by pressing 
the Scroll-Lock key on the keyboard. 

Off-screen dwell-based targets 
We placed multiple off-screen targets as seen in Figure 
4 on the bezel of the screen. The eye-tracker’s field of 
view is sufficient to detect when the user looks at these 
off-screen targets. A dwell duration of 400-450ms is 
used to trigger activation of the targets which are 
mapped to Page Up, Page Down, Home and End keys 
on the keyboard. 

The off-screen dwell-based targets for document 
navigation complement the automated reading mode 
described above. Since the reading mode only provides 
scrolling in one direction, if the user wants to scroll up 
or navigate to the top of the document he/she can do 
that by using the off-screen targets. 
 
Evaluation 
Pilot studies showed that subjects found the EyeScroll 
reading mode to be natural and easy to use. Subjects 
particularly liked that the scrolling speed adapted to 
their reading speed. Additionally, they felt in control of 
the scrolling and did not feel that the text was running 
away at any point. Formal evaluation of EyeScroll is 
currently underway and results will be presented at a 
future conference.   
 
Conclusion 
We will demonstrate several practical examples of using 
gaze as an augmented input for interaction with 
computers. Our approach uses gaze as an input without 
overloading the visual channel and consequently 
enables interactions which feel natural and easy to use.  

 
Figure 4. Eye-tracker (Tobii 1750) with 
off-screen targets for scrolling actions 
such as Home, End, Page Up, Page 
Down, Up/Down and Left/Right. 
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The true efficacy and ease of use of these techniques 
can only be experienced and description in words does 
not do them justice. We look forward to having CHI 
attendees try the techniques for themselves! 
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