

GUIDe: Gaze-enhanced UI Design

Abstract
The GUIDe (Gaze-enhanced User Interface Design)
project in the HCI Group at Stanford University
explores how gaze information can be effectively used
as an augmented input in addition to keyboard and
mouse. We present three practical applications of gaze
as an augmented input for pointing and selection,
application switching, and scrolling. Our gaze-based
interaction techniques do not overload the visual
channel and present a natural, universally-accessible
and general purpose use of gaze information to
facilitate interaction with everyday computing devices.

Keywords
Pointing and Selection, Eye Pointing, Application
Switching, Automatic Scrolling, Scrolling, Eye Tracking.

ACM Classification Keywords
H5.2. User Interfaces: Input devices and strategies,
H5.2. User Interfaces: Windowing Systems, H5.m.
Information interfaces and presentation (e.g., HCI):
Miscellaneous.

Introduction
The keyboard and mouse have long been the dominant
forms of input on computer systems. Eye gaze tracking
as a form of input was primarily developed for disabled
users who are unable to make normal use of a
keyboard and pointing device. However, with the

Copyright is held by the author/owner(s).

CHI 2007, April 28–May 3, 2007, San Jose, California, USA.

ACM 978-1-59593-642-4/07/0004.

Manu Kumar

Stanford University, HCI Group

Gates Building, Room 382

353 Serra Mall

Stanford, CA 94305-9035

sneaker@cs.stanford.edu

Terry Winograd

Stanford University, HCI Group

Gates Building, Room 388

353 Serra Mall

Stanford, CA 94305-9035

winograd@cs.stanford.edu

 2

increasing accuracy and decreasing cost of eye gaze
tracking systems [1, 2, 6] it will soon be practical for
able-bodied users to use gaze as a form of input in
addition to keyboard and mouse – provided the
resulting interaction is an improvement over current
techniques. The GUIDe (Gaze-enhanced User Interface
Design) project [9] in the HCI Group at Stanford
University explores how gaze information can be
effectively used as an augmented input in addition to
keyboard and mouse. In this paper, we present three
practical applications of gaze as an augmented input for
pointing and selection, application switching, and
scrolling.

Motivation
Human beings look with their eyes. When they want to
point (either on the computer or in real life) they look
before they point [8]. Therefore, using eye gaze as a
way of interacting with a computer seems like a natural
extension of our human abilities. However, to date,
research has suggested that using eye gaze for any
active control task is not a good idea. In his paper on
MAGIC pointing [18] Zhai states that “to load the visual
perception channel with a motor control task seems
fundamentally at odds with users’ natural mental model
in which the eye searches for and takes in information
and the hand produces output that manipulates
external objects. Other than for disabled users, who
have no alternative, using eye gaze for practical
pointing does not appear to be very promising.”

In his paper in 1990, Jacob [7] states that: “what is
needed is appropriate interaction techniques that

incorporate eye movements into the user-computer
dialogue in a convenient and natural way.” In a later
paper in 2000, Sibert and Jacob [15] conclude that:
“Eye gaze interaction is a useful source of additional
input and should be considered when designing
interfaces in the future.”

For our research we chose to investigate how gaze-
based interaction techniques can be made simple,
accurate and fast enough to not only allow disabled
users to use them for standard computing applications,
but also make the threshold of use low enough that
able-bodied users will actually prefer to use gaze-based
interaction.

Related Work
Researchers have tried numerous approaches to gaze
based pointing [3, 7, 10-13, 16-18]. However, its use
outside of research circles has been limited to disabled
users who are otherwise unable to use a keyboard and
mouse. Disabled users are willing to tolerate
customized interfaces, which provide large targets for
gaze based pointing. The lack of accuracy in eye-based
pointing and the performance issues of using dwell-
based activation have created a high enough threshold
that able-bodied users have preferred to use the
keyboard and mouse over gaze based pointing [8].

The use of eye gaze for window management was
discussed as far back as 1981 by Bolt [4]. In
EyeWindows [5], Fono and Vertegaal explored two
gaze-based window management techniques with the
constraint that all windows be non-overlapping.

 3

Gaze-based scrolling is fraught with Midas Touch1 [7]
issues and therefore there hasn’t been much in the
literature regarding gaze-based scrolling to date.

EyePoint: Pointing and Selection
EyePoint provides a practical gaze-based solution for
everyday pointing and selection using a combination of
gaze and keyboard. EyePoint works by using a two-
step, progressive refinement process that is fluidly
stitched together in a look-press-look-release cycle.

To use EyePoint, the user simply looks at the target on
the screen and presses a hotkey for the desired action -
single click, double click, right click, mouse over, or
start click-and-drag2. EyePoint displays a magnified
view of the region the user was looking at. The user
looks at the target again in the magnified view and
releases the hotkey. This results in the appropriate
action being performed on the target (sidebar).

To abort an action the user can look away or anywhere
outside of the zoomed region and release the hotkey,
or press the Esc key on the keyboard.

The region around the user’s initial gaze point is
presented in the magnified view with a grid of orange
dots overlaid. These orange dots are called focus points
and may aid in focusing the user’s gaze at a point

1 Unintentional activation of a command when a user is looking
around.

2 We provide hotkeys for all standard mouse actions in our
research prototype; a real world implementation may use
alternative activation techniques such as dedicated buttons
located below the spacebar.

within the target. Focusing at a point reduces the jitter
and improves the accuracy of the system.

Single click, double click and right click actions are
performed as soon as the user releases the key. Click
and drag is a two-step interaction. The user first selects
the starting point for the click and drag with one hotkey
and then the destination with another hotkey.

Technical Details
The eye tracker constantly tracks the user’s eye-
movements3. A modified version of Salvucci’s
Dispersion Threshold Identification fixation detection
algorithm [14] is used along with our own smoothing
algorithm to help filter the gaze data. When the user
presses and holds one of the action specific hotkeys on
the keyboard, the system uses the key press as a
trigger to perform a screen capture in a confidence
interval around the user’s current eye-gaze. The default
settings use a confidence interval of 120 pixels square
(60 pixels in all four directions from the estimated gaze
point). The system then applies a magnification factor
(default 4x) to the captured region of the screen. The
resulting image is shown to the user at a location
centered at the previously estimated gaze point but
offset to remain within screen boundaries.

The user then looks at the desired target in the
magnified view and releases the hotkey. The user’s eye
gaze is recorded when the hotkey is released. Since the
view has been magnified, the resulting eye-gaze is

3 If the eye tracker were fast enough, it would be possible to
begin tracking when the hotkey is pressed, alleviating long-
term use concerns for exposure to infra-red illumination.

1. Look at the desired target

2. Press and hold the hotkey

3. Look at target in the
 magnified view

4. Release hotkey

Figure 1. EyePoint fluidly combines a
two-step progressive refinement of
the target into a Look-Press-Look-
Release action

 4

more accurate by a factor equal to the magnification. A
transform is applied to determine the location of the
desired target in screen coordinates. The cursor is then
moved to this location and the action corresponding to
the hotkey (single click, double click, right click etc.) is
executed. EyePoint therefore uses a secondary gaze
point in the magnified view to refine the location of the
target.

Evaluation
A quantitative evaluation of EyePoint shows that the
performance of EyePoint is similar to the performance
of a mouse, though with slightly higher error rates.
Users strongly preferred the experience of using gaze-
based pointing over the mouse even though they had
years of experience with the mouse.

EyeExposé: Application Switching
EyeExposé, combines a full-screen two-dimensional
thumbnail view of the open applications with gaze-
based selection for application switching.

Figure 2 and Figure 3 show how EyeExposé works - to
switch to a different application, the user presses and
holds down a hotkey. EyeExposé responds by showing
a scaled down view of all the applications that are
currently open on the desktop. The user simply looks at
the desired target application and releases the hotkey.

The use of eye gaze instead of the mouse for pointing
is a natural choice. The size of the tiled windows in
Exposé is usually large enough for eye-tracking
accuracy to not be an issue. Whether the user relies on
eye gaze or the mouse for selecting the target, the
visual search task to find the desired application in the
tiled view is a prerequisite step. By using eye gaze with

an explicit action (the release of the hotkey) we can
leverage the user’s natural visual search to point to the
desired selection.

Evaluation
A quantitative evaluation showed that EyeExposé was
significantly faster than using Alt-Tab when switching
between twelve open applications. Error rates in
application switching were minimal, with one error
occurring in every twenty or more trials. In a
qualitative evaluation, where subjects ranked four
different application switching techniques (Alt-Tab,
Task bar, Exposé w/mouse and EyeExposé), EyeExposé
was the subjects choice for speed, ease of use, and the
technique they said they would prefer to use if they had
all four approaches available. Subjects felt that
EyeExposé was more natural and faster than other
approaches.

EyeScroll: Reading mode and Scrolling
EyeScroll allows computer users to automatically and
adaptively scroll through content on their screen. When
scrolling starts or stops and the speed of the scrolling is
controlled by the user's eye gaze and the speed at
which the user is reading. EyeScroll provides multiple
modes for scrolling – specifically, a reading mode and
off-screen dwell-based targets.

Reading Mode
The EyeScroll reading mode allows users to read a web
page or a long document, without having to constantly
scroll the page manually. The reading mode is toggled
by using the Scroll Lock key – a key which has
otherwise been relegated to having no function on the
keyboard. Once the reading mode is enabled by
pressing the Scroll Lock key, the system tracks the

Figure 2. Pressing and holding the EyeExposé
hotkey tiles all open applications on the
screen. The user simply looks at the desired
target application and releases the hotkey.

Figure 3. Releasing the hotkey restores the
windows to their original size and brings the
selected application to the foreground.

 5

user’s gaze. When the user’s gaze location falls below a
system-defined threshold (i.e. the user looks at the
bottom part of the screen) EyeScroll starts to slowly
scroll the page. The rate of the scrolling is determined
by the speed at which the user is reading and is usually
slow enough to allow the user to continue reading even
as the text scrolls up. As the user’s gaze slowly drifts
up on the screen and passes an upper threshold, the
scrolling is paused. This allows the reader to continue
reading naturally, without being afraid that the text will
run off the screen.

The reading speed is estimated by measuring the
amount of time t it takes the user to complete one
horizontal sweep from left to right and back. The delta
in the number of vertical pixels the user’s gaze moved
(accounting for any existing scrolling rate) defines the
distance d in number of vertical pixels. The reading
speed can then be estimated as d/t.

In order to facilitate scanning the scrolling speed can
also take into account the location of the user’s gaze on
the screen. If the user’s gaze is closer to the lower
edge of the screen, the system can speed up scrolling
and if the gaze is in the center or the upper region of
the screen the system can slow down scrolling
accordingly. Since the scrolling speed and when the
scrolling starts and stopped are both functions of the
user’s gaze, the system adapts to the reading style and
patterns of each individual user.

By design the page is always scrolled only in one
direction. This is because while reading top to bottom is
a fairly natural activity that can be detected based on
gaze patterns, attempting to reverse scrolling direction
triggers too many false positives. Therefore, we chose

to combine the reading mode with explicit dwell-based
activation for scrolling up in the document (see below).

The user can disengage the reading mode by pressing
the Scroll-Lock key on the keyboard.

Off-screen dwell-based targets
We placed multiple off-screen targets as seen in Figure
4 on the bezel of the screen. The eye-tracker’s field of
view is sufficient to detect when the user looks at these
off-screen targets. A dwell duration of 400-450ms is
used to trigger activation of the targets which are
mapped to Page Up, Page Down, Home and End keys
on the keyboard.

The off-screen dwell-based targets for document
navigation complement the automated reading mode
described above. Since the reading mode only provides
scrolling in one direction, if the user wants to scroll up
or navigate to the top of the document he/she can do
that by using the off-screen targets.

Evaluation
Pilot studies showed that subjects found the EyeScroll
reading mode to be natural and easy to use. Subjects
particularly liked that the scrolling speed adapted to
their reading speed. Additionally, they felt in control of
the scrolling and did not feel that the text was running
away at any point. Formal evaluation of EyeScroll is
currently underway and results will be presented at a
future conference.

Conclusion
We will demonstrate several practical examples of using
gaze as an augmented input for interaction with
computers. Our approach uses gaze as an input without
overloading the visual channel and consequently
enables interactions which feel natural and easy to use.

Figure 4. Eye-tracker (Tobii 1750) with
off-screen targets for scrolling actions
such as Home, End, Page Up, Page
Down, Up/Down and Left/Right.

 6

The true efficacy and ease of use of these techniques
can only be experienced and description in words does
not do them justice. We look forward to having CHI
attendees try the techniques for themselves!

Acknowledgements
We would also like to acknowledge Stanford Media X
and the Stanford School of Engineering matching funds
grant for providing the funding for this work.

References
1. IPRIZE: a $1,000,000 Grand Challenge designed to

spark advances in eye-tracking technology through
competition, 2006. http://hcvl.hci.iastate.edu/IPRIZE/

2. Amir, A., L. Zimet, A. Sangiovanni-Vincentelli, and S.
Kao. An Embedded System for an Eye-Detection
Sensor. Computer Vision and Image Understanding,
CVIU Special Issue on Eye Detection and Tracking
98(1). pp. 104-23, 2005.

3. Ashmore, M., A. T. Duchowski, and G. Shoemaker.
Efficient Eye Pointing with a FishEye Lens. In
Proceedings of Graphics Interface. pp. 203-10, 2005.

4. Bolt, R. A. Gaze-Orchestrated Dynamic Windows.
Computer Grahics 15(3). pp. 109-19, 1981.

5. Fono, D. and R. Vertegaal. EyeWindows: Evaluation of
Eye-Controlled Zooming Windows for Focus Selection.
In Proceedings of CHI. Portland, Oregon, USA: ACM
Press. pp. 151-60, 2005.

6. Hansen, D. W., D. MacKay, and J. P. Hansen. Eye
Tracking off the Shelf. In Proceedings of ETRA: Eye
Tracking Research & Applications Symposium. San
Antonio, Texas, USA: ACM Press. pp. 58, 2004.

7. Jacob, R. J. K. The Use of Eye Movements in Human-
Computer Interaction Techniques: What You Look At is
What You Get. In Proceedings of ACM Transactions in
Information Systems. pp. 152-69, 1991.

8. Jacob, R. J. K. and K. S. Karn, Eye Tracking in Human-
Computer Interaction and Usability Research: Ready
to Deliver the Promises, in The Mind's eye: Cognitive
and Applied Aspects of Eye Movement Research, J.

Hyona, R. Radach, and H. Deubel, Editors. Elsevier
Science: Amsterdam. pp. 573-605, 2003.

9. Kumar, M., GUIDe: Gaze-enhanced User Interface
Design, 2006. Stanford.
http://hci.stanford.edu/research/GUIDe

10. Lankford, C. Effective Eye-Gaze Input into Windows.
In Proceedings of ETRA: Eye Tracking Research &
Applications Symposium. Palm Beach Gardens, Florida,
USA: ACM Press. pp. 23-27, 2000.

11. Majaranta, P. and K.-J. Räihä. Twenty Years of Eye
Typing: Systems and Design Issues. In Proceedings of
ETRA: Eye Tracking Research & Applications
Symposium. New Orleans, Louisiana, USA: ACM Press.
pp. 15-22, 2002.

12. Miniotas, D., O. Špakov, I. Tugoy, and I. S.
MacKenzie. Speech-Augmented Eye Gaze Interaction
with Small Closely Spaced Targets. In Proceedings of
ETRA: Eye Tracking Research & Applications
Symposium. San Diego, California, USA: ACm Press.
pp. 67-72, 2006.

13. Salvucci, D. D. Intelligent Gaze-Added Interfaces. In
Proceedings of CHI. The Hague, Amsterdam: ACM
Press. pp. 273-80, 2000.

14. Salvucci, D. D. and J. H. Goldberg. Identifying
Fixations and Saccades in Eye-Tracking Protocols. In
Proceedings of ETRA: Eye Tracking Research &
Applications Symposium. Palm Bech Gardens, Florida,
USA: ACM Press. pp. 71-78, 2000.

15. Sibert, L. E. and R. J. K. Jacob. Evaluation of Eye Gaze
Interaction. In Proceedings of CHI. The Hague,
Amsterdam: ACM Pres, 2000.

16. Wang, J., S. Zhai, and H. Su. Chinese Input with
Keyboard and Eye-Tracking - An Anatomical Study. In
Proceedings of CHI. Seattle, Washington, USA: ACM
Press. pp. 349-56, 2001.

17. Yamato, M., A. Monden, K.-i. Matsumoto, K. Inoue,
and K. Torii. Button Selection for General GUIs Using
Eye and Hand Together. In Proceedings of AVI.
Palermo, Italy: ACM Press. pp. 270-73, 2000.

18. Zhai, S., C. Morimoto, and S. Ihde. Manual and Gaze
Input Cascaded (MAGIC) Pointing. In Proceedings of
CHI. Pittsburgh, Pennsylvania, USA: ACM Press. pp.
246-53, 1999.

