
Emergent, Crowd-scale Programming Practice in the IDE

Ethan Fast1, Daniel Steffee1, Lucy Wang1, Joel Brandt2, Michael S. Bernstein1

Stanford University1, Adobe Research2

{ethan.fast, dsteffee, lucywang, msb}@cs.stanford.edu, joel.brandt@adobe.com

Figure 1. Codex draws on millions of lines of open source code to create software engineering interfaces that integrate emergent programming practice.
Here, Codex’s pattern annotation calls out popular idioms that appear in the user’s code.

ABSTRACT
While emergent behaviors are uncodified across many do-
mains such as programming and writing, interfaces need ex-
plicit rules to support users. We hypothesize that by codifying
emergent programming behavior, software engineering inter-
faces can support a far broader set of developer needs. To ex-
plore this idea, we built Codex, a knowledge base that records
common practice for the Ruby programming language by in-
dexing over three million lines of popular code. Codex en-
ables new data-driven interfaces for programming systems:
statistical linting, identifying code that is unlikely to occur in
practice and may constitute a bug; pattern annotation, auto-
matically discovering common programming idioms and an-
notating them with metadata using expert crowdsourcing; and
library generation, constructing a utility package that encap-
sulates and reflects emergent software practice. We evalu-
ate these applications to find Codex captures a broad swatch
of programming practice, statistical linting detects problem-
atic code snippets, and pattern annotation discovers nontriv-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI 2014, April 26–May 1, 2014, Toronto, Ontario, Canada.
Copyright c© 2014 ACM 978-1-4503-2473-1/14/04..$15.00.
http://dx.doi.org/10.1145/2556288.2556998

ial idioms such as basic HTTP authentication and database
migration templates. Our work suggests that operationaliz-
ing practice-driven knowledge in structured domains such as
programming can enable a new class of user interfaces.

Author Keywords
Programming tools, data mining

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: Graphical
user interfaces

INTRODUCTION
The way people adapt to a system can be just as informative
as its original design. In software engineering systems, user
practice and designer intention differ across several levels of
abstraction: programmers use library APIs in undocumented
and unexpected ways [26], language idioms evolve over time
[34], and programmers repurpose source code for new tasks
[3, 9]. Norms emerge for programming systems that aren’t
codified in documentation or on the web. What is the best
idiom or library to use for a task? Does my code follow com-
mon practice? How is a language being used today?

We can examine the ecosystem of open source software to
find answers to these practice-driven questions. The infor-
mal rules and conventions of programming languages and li-
braries are implicitly present in open source projects, which,

when analyzed, illuminate the ways people code that are too
complex or uncommon to appear in official forms of docu-
mentation. We can operationalize this knowledge to support
everyday programming practice.

Here we present Codex, a knowledge base that models
practice-driven knowledge for the Ruby programming lan-
guage. Codex provides a living corpus of how programmers
write code, informed by popular open source Ruby projects.
The system normalizes program abstract syntax trees (ASTs)
to collapse similar idioms and identifiers, filters these idioms
and annotates them using paid crowd experts, and then al-
lows applications to query its database in support of new data-
driven programming interfaces.

In the domain of programming, emergent practice develops
at both the high-level of programming idioms, for example
code that initializes a nested hash, and at the low-level of
code syntax, for example blocks that return the result of an
addition operation. Codex seeks to capture both higher-level
patterns of reuseable program components and lower-level
combinations and chains of more basic programming units.
Through the pattern finding module, Codex identifies com-
monly reused Ruby idioms. This module uses typicality anal-
ysis to identify idioms (e.g., Hash.new { |h,k| h[k] = {}
}, the most accepted way to initialize a nested hash table).
Expert crowds then attach metadata to these idioms, such as a
title, description, and measure of recommended usefulness.
Alternatively, using the statistical analysis module, Codex
can compute the frequencies of AST node combinations (e.g.,
the number of times one function has been chained with an-
other), describing the uniqueness of syntatical patterns.

We present three applications that demonstrate how Codex
supports programming practice and software engineering in-
terfaces. First, pattern annotation automatically annotates
Ruby idioms inside the IDE and presents these annotated
snippets through a search interface. Second, statistical linting
identifies problematic syntax by checking code features (e.g.,
the kinds of AST nodes used as function signatures or return
values) against a large database of trusted and idiomatic snip-
pets; more generally, these statistics give programmers a tool
to quantify the uniqueness of their code. Finally, library gen-
eration pulls particularly common Ruby idioms into a new
standard library — authored not by individual developers but
by emergent software practice — helping programmers avoid
the redefinition of common program components.

This paper makes the following primary contributions:

• Codex: a knowledge base that codifies how developers use
programming languages in practice.

• An algorithm for finding common idioms using typicality
analysis and expert crowdsourcing; an interface for calling
out the idioms and metadata in the Codex IDE.

• CodexLint: an approach for unlikely code detection that
identifies potentially undesirable syntax; an interface for
displaying these warnings in the Codex IDE.

• CodexLib: An open source Ruby Gem that encapsulates
common code patterns into a new library.

Codex enables new software engineering applications that are
supported by large-scale programming behavior rather than
sets of special-cased rules. While other projects have crowd-
sourced documentation for existing library functions [28, 8],
mined code to enable query-based searching for patterns or
examples [26, 33], or embedded example-finding tools into
an IDE [5, 7, 15, 29], Codex augments traditional data min-
ing techniques with crowds, presenting a broad data-driven
window into programming convention. We demonstrate how
these kinds of emergent behavior can inform new design op-
portunities for user interfaces.

RELATED WORK
Codex draws on techniques from software repository mining
to extract patterns from a large body of open source code.
Other researchers have mined code for software patterns and
redundant code using code normalization or typicality [26,
3, 9, 20, 28, 8]. However, much of this research empha-
sizes the discovery of known design patterns and is oriented
towards applications such as refactoring of duplicate code,
while Codex discovers new patterns from the ground up. Fur-
ther, Codex combines typicality analysis with expert crowd-
sourcing to build its database — an approach independant of
any particular code normalization scheme.

Databases can also systematize knowledge about open source
code. However, these databases are usually designed to en-
able specific forms of code search [35, 33], example-finding
[22, 16, 29], or autocompletion [21], either query based or
automatic. While tools designed for specific use cases may
be highly optimized for their tasks, Codex enables a broader
set of applications, including pattern annotation and detecting
problematic code through statistical linting.

One of Codex’s core applications is to help programmers
avoid bugs. Much work has focused on tools for static and
dynamic analysis [2, 10]. Other work has focused on help-
ing users debug their programs through program analysis or
crowdsourced aggregation of user activities [18, 1, 14, 24,
28]. Codex does not explicitly try to discover bugs in pro-
grams; rather, it notifies users when code violates convention.
This is a subtle but important difference: code may be syntac-
tically correct but semantically unusual and error-prone.

Codex takes inspiration from prior research on code example
finding and reuse. Some of these tools rely on official forms
of documentation [5] and others focus on real code from the
web [29, 19, 32]. Codex generalizes this work — it covers a
broader set of examples than manually curated datasets and
can determine when an example is a one-off and when it rep-
resents more general practice. Codex also enables a more
powerful search over examples through AST analysis, ben-
efits from the human-powered filtering and annotation, and
makes possible many applications besides example-finding.

Researchers have also addressed how programmers make use
of example code, whether the code is copy-pasted [23] or
foraged from documentation or online examples [7, 6, 15].
By formalizing embedded software practice, Codex is able
to support programmers through a larger space of examples

and lower-level conventions. Many of these idioms and code
snippets may not have been formally discussed on the web.

Codex draws on insights from data-driven interfaces in non-
programming domains. Users can gain much through query-
ing and exploration. For example, Webzeigeist allows de-
signers to query a large corpus of rendered web sites [25].
Crowd data also allows interactive systems to transform a par-
tial sketch of the users intent into a complete state, for exam-
ple matching a sung melody against a large database of music
to produce an automatic backup band [31]. Algorithms can
then identify patterns in crowd behavior and percolate them
up to the interface, for example answering a wide variety of
user queries, demonstrating how a given feature is used in
practice [4, 11, 27], or predicting likely actions from past his-
tory [17]. Codex demonstrates that the more structured na-
ture of programming languages provides a platform for more
powerful interactive support such as error finding.

CODEX APPLICATIONS
To ground the opportunities that Codex creates, we begin by
introducing three software engineering applications that draw
on the Codex data model and high or low level code analysis.
In general, Codex enables interfaces and applications that are
supported by emergent programming behavior rather than a
set of special-cased rules. Following this section, we discuss
the techniques behind these applications in more detail.

Statistical Linting
Sometimes, developers program badly: they write code that
performs in unexpected ways or violates language conven-
tions. Poorly written code causes significant damage to soft-
ware projects; bugs tax programmers’ time and energy, and
code written in an abstruse or non-idiomatic style is more
difficult to maintain [30, 13]. Given the complexity of pro-
gramming languages, rule-based linters can’t catch much of
this unusual or non-idiomatic code.

Codex operates on the insight that poorly written code is often
syntactically different from well written code. For example,
functions might be used in the wrong combination or order.
So if we collect and index a set of code that is representative
of best practices, bad code will often diverge syntactically
from the code in this index. Not all syntactically divergent
code is bad — the space of well written Ruby programs is
very large — but by applying high-precision detectors to a
few general AST patterns, Codex can detect syntactically di-
vergent code that is likely to be problematic.

Function Chaining and Composition
Programmers frequently chain and compose functions and
operators to create complex algorithmic pipelines, but chain-
ing the wrong kinds of functions together will often cause
subtle program bugs. For example, bugs might arise from
functions chained in the wrong order, or variables added or
assigned in ways they should not be. Codex helps program-
mers find potential bugs in function chains by identifying un-
likely combinations of functions.

For example, if Ava is querying a database that has been nor-
malized to lower case, she needs to convert a string held by

the variable name to lower case form. She intends to assign the
lower case variant of name to the variable lower case name

and use this new varible in her query. The Ruby methods
downcase and downcase! will both convert a string variable
to lower case, and without thinking too deeply, Ava codes:
lower case name = name.downcase!

Unfortunately, Ava has forgotten that downcase! has a side-
effect: it changes the variable name in place and returns it-
self. The function she ought to have used is downcase,
which returns a new lower cased string and does not change
name. When Ava later uses name elsewhere in her program, it
doesn’t hold the value she expects.

Codex indicates that the line of code is statistically un-
likely: downcase! is not commonly chained with an assign-
ment statement (although such code is not technically incor-
rect). Codex notifies Ava that it has observed downcase!

57 times, and the abstraction var = var.any method more
than 100,000 times, but it has only encountered one vari-
ant of Ava’s combined snippet. However, Codex has en-
countered variants of the correct snippet, lower case name =

name.downcase, more than 200 times.

Block Return Value Analysis
Ruby programmers often manipulate data by passing blocks
(lambda-like closures) to functions, but using the wrong kind
of block, or passing a block to the wrong kind of function, can
process data in unintended ways. Codex identifies unlikey
pairings of functions and block return values.

For example, as part of data analysis pipeline, Ash wants to
raise every number in a list to the power of 2. He tries to do
this with a map block, but encounters a problem (he uses the
operator ˆ in place of **) and adds a puts (print) statement
inside the map block to help him debug his mistake:

new_nums =
nums.map do |x|

xˆ2
puts x

end

In doing so, Ash has introduced another bug. The puts

method returns nil, which means that new nums will be a list
of nil. When Ash runs his code, this new error complicates
his old problem.

Codex returns a warning: most programmers do not return the
method puts from a map block. We can anchor this concern
in data: Codex has observed map blocks 4297 times and puts

statements 5335 times, but it has never observed puts as the
last line (an implicit return) of a map block. However, Codex
observes that puts statements are a common return value of
blocks that are predominantly used for control flow, like each

(observed 272 times), so it produces a warning.

Function Type Analysis
Passing the wrong kinds of arguments to a function, or pass-
ing positional arguments in the wrong order, can lead to many
subtle bugs — especially in duck typed languages like Ruby.
However, by analyzing the kinds of AST nodes passed as po-
sitional arguments to functions, Codex can warn users about
unlikely function signatures.

Figure 2. The Codex IDE calls out a snippet of unlikely code by a yellow highlight in its gutter. Warning text appears in the footer.

For example, Severian wants to divide a few hundred data-
points into ten buckets, depending on their id number. To do
this, he needs to initialize an array of ten elements, where
each element is a hash. Severian codes: Array.new({},10).

Unfortunately, Severian doesn’t often initialize arrays with
specific lengths and values, and he has reversed the arguments
of Array.new. When he executes his code, it fails with the er-
ror, “TypeError: can’t convert Hash into Integer.”

Codex could have told Severian that programmers don’t of-
ten pass Array.new an argument list composed of a string

and integer. While Codex observes Array.new 674 times,
it has never observed Array.new with string and integer ar-
guments. However, Codex observes the correct parameteri-
zation Array.new(integer,string) several times, which is
the correct version of Severian’s code.

Variable Name Analysis
Good variable names provide important signals about how
a variable should be treated and lead to more readable code
[30]. Likewise, badly named variables can lead to poor
code readability and downstream program errors. By ana-
lyzing variable name associations with primitive values (e.g.,
Strings, Integers, Hashes), Codex can warn programmers
about violations of naming conventions.

For example, Azazel is writing a complicated function to pro-
cess a large dataset from a database call. He is collecting the
data in an an Array called array. However, he later realizes
that a hash would be simpler to manage and changes the vari-
able type. In a rush, Azazel changes the variable’s type but
doesn’t bother to change its name: array = {}. Later, Ash,
who is Azazel’s coworker, is looking elsewhere in the func-
tion and sees a line array.keys { ... }. He wonders, does
an Array have keys? He hadn’t thought so.

Instead, Codex notifies Azazel that most programmers do not
initialize a variable named array with a Hash value. While
Codex observes initializations to variables named array 116
times and variables assigned a Hash value many thousands of
times, it has never observed the two together. Instead, Codex
observes array = [] 46 times.

It is not wrong to assign a Hash value to a variable named
array, but code that does so is likely less readable and might
lead to downstream errors. Codex can determine that such
an assignment violates Ruby convention. Likewise, Codex
would notice integers stored in str or common loop count
iterators like i being initialized with other variable types.

The Codex IDE integrates CodexLint (Figure 2), allowing
users to call up statistics about any line of code in the editor.
The linter also runs behind the scenes during development,
highlighting any unlikely code with a yellow overlay on the
window gutter. When the cursor moves over a marked line, a
small message appears on the lower bar of the Codex window,
e.g., “We have seen the function split 30,000 times and strip
20,000 times, but we’ve never seen them chained together.”

Pattern Annotation
Many valuable programming idioms are not collected in doc-
umentation or on the web. While users can access standard
library documentation for core abstractions (e.g., for Ruby,
http://ruby-doc.org/), and libraries often ship with simi-
lar kinds of documentation provided by their maintainers, the
common idioms by which basic functions may be combined
and extended often remain uncodified. Instead, these idioms
live in the minds of programmers and — sometimes — on the
message boards of communities and forums. Novice users of
languages and libraries must “mind the gap” present in offi-
cial forms of documentation.

Codex fills in gaps of practice-driven knowledge by detect-
ing common idioms as it indexes code and sending them out
to be filtered and annotated by a crowd of human experts.
Codex finds these idioms by selecting snippets in its database
with query parameters such as commonality and complexity.
These selected snippets (e.g., that appear in a large number of
unique projects and are sufficiently nontrivial) are primed for
annotation and human filtering. For instance, over the course
of its indexing, Codex identifies inject { |x,y| x + y } as
a common snippet, occurring 15 times across 4 projects.

Next, Codex sends these snippets — strings of Ruby code,
along with examples of them in use — to a Ruby expert on
oDesk, a paid expert crowdsourcing platform. The worker
annotates the snippet with a title (e.g., “sum all the elements
in a list”), a description, and a vote of how useful the snip-
pet would be for an everyday Ruby programmer. Codex
stores these annotations in its index along with the original
source snippet, making previously implicit knowledge ex-
plicit. Eventually, we envision a community of Ruby pro-
grammers that annotates snippets of interest.

The Codex IDE uses this annotated snippet information to
provide higher-level interpretability to code. The annotations
appear whenever a programmer opens a file containing the id-
iom. Users benefit from annotated code under many different
scenarios: perhaps using code scavenged from a web tutorial;

http://ruby-doc.org/

Example Codex Annotated Snippets
HTTP Basic Auth
if var0.user

var1.basic_auth(var0.user, var0.password)
end

Sets the basic-auth parameters (username and password) before
making an HTTP request, perhaps using Net::HTTP [. . .]

Popping Options Hash from Arguments
if Hash === var0.last

var0.pop
else

{}
end

Pops the last element from the list ’var0’ if it is a Hash. Gives
an empty hash if the last element is not a Hash [. . .]

Raise StandardError
raise(StandardError.new("str0"))

Raise a StandardError exception using “str0” as exception mes-
sage [. . .]

Configure action controller to disable caching
config.action_controller.perform_caching=(false)

This will set a global configuration related to caching in ac-
tion controller to false [. . .]

Create a migration template
record do |var0|

var0.migration_template("str0", "str1")
end

Create a migration template using “str0” as the source and
“str1” as destination. Will create a database-migration [. . .]

Table 1. Codex identifies common programming snippets automati-
cally, then feeds them to crowdsourced expert programmers for meta-
data such as the bolded title and descriptive text.

opening an unfamiliar file passed on by a collaborator; revis-
iting a segment of copy/pasted code; or trying to recall the
use of an idiosyncratic library function.

Consider one such user, Morwenna, who is collaborating
with a colleague on a Ruby on Rails application. Mor-
wenna hasn’t had much experience with Rails, so she begins
navigating the many files of her colleague’s code in an at-
tempt to build familiarity with the framework. While visiting
config/application.rb, Morwenna comes across the snippet
config.action controller.perform caching = false and
wonders what this means. Codex indicates the line has an an-
notation, so she asks to see it. The annotation reads, “Turns
off default Rails caching.”

The Codex IDE calls out and displays any available and rel-
evant annotations (Figure 1). When the cursor moves over
a line where annotations are avaiable, a user can call them
forward into the sidebar window.

We present examples of these annotated snippets in Table 1.
In general, Codex’s annotation system uncovers higher-level
connections between more basic program components. For
instance, human workers can infer the relation of a snippet
to some outside library, providing context that isn’t explic-
itly present (e.g., Net:HTTP or Ruby on Rails). Similarly,
Codex allows for the documentation of higher-level idioms,

Function Description
Array#sort by index(idx) Sort an array by the value at idx
Array#convert join(str) Converts each array element to a

string then joins them all on str

Array#upto size Create a range, same size as the array
String#capital tokens(str) Capitalize all tokens in a string
Hash.nested Create a hash with default value {}
Hash#get(key) Retrieve based on :key or “key”
File#try close Close a file if it’s open

Table 2. A sample of functions from CodexLib, detected in emergent
programming practice and encapulated into a new standard library.

where programmers can find each component in documen-
tion but not the snippet itself, like the combination of raise
and StandardError.new.

Querying for Understanding
In addition to the automatic idiom detection provided by the
pattern finding module, users can query Codex directly to bet-
ter understand community practices around a line or block of
code. Queryable parameters include the type of AST node
(e.g., a block, conditional, or function call), the body string of
the normalized code associated with a node, the body string
of original code, the amount of information contained in an
AST node (i.e., a measure of code complexity), and the fre-
quency of a node’s occurrence across files and projects.

For instance, from a library-driven standpoint, suppose that
programmers want to know more about how people use the
Net::HTTP class. They can query for all blocks that contain
Net::HTTP.new, sorting on the ones that occur most often.
By the diversity of this result set, programmers gain a sense
of the kinds of context in which Net::HTTP is used — even
more so, if any of the results have been annotated by Codex’s
crowdsourcing engine. This is a more query-driven approach
to example-driven development [5, 28].

Queries also have applications in other more IDE-specific
components like auto-complete, where the IDE might attempt
to find the most common completion for a snippet of code,
given additional program context. For example, with the line
Hash.new and an open block, Codex suggests the comple-
tion block { |h,k| h[k] = [] }, which initializes the de-
fault value of a hash to a new empty Array.

Codex’s user query system enables a broad set of functional-
ities including code search, auto-complete, and example dis-
covery. The details of the query language are discussed in the
Codex section.

Library Generation
Many of the Ruby snippets discovered by Codex are modu-
lar, reusable components. The recomposable nature of these
snippets suggests that programmers might benefit from their
encapsulation in a new standard library that reflects the “miss-
ing” functionality that Ruby programmers actually use. Pro-
grammers may sometimes engage in unnecessary work: both
the mechanical work of typing out repetitive syntax, and also

the mental work of caching task-oriented semantics in work-
ing memory.

Here we present CodexLib, a library created by emergent
practice (Table 2). Unlike human language, which evolves
over time (e.g., “personal computer” becomes “PC” and
“smartphone” emerges to describe a new class of devices),
programming languages and libraries often remain more
static. CodexLib suggests programming libraries can simi-
larly evolve based on actual usage.

Consider one common Ruby idiom, creating a new Hash ob-
ject where its default lookup value is another empty Hash.
This nested hash object allows programmers to write code in
a matrix-like style, e.g., hash[‘‘Gaiman’’][‘‘Coraline’’]
= true. Programmers usually create a nested hash with the
snippet, Hash.new { |h,k| h[k] = {} }. The nested hash
idiom is 22 characters long and involves some nontrivial
tracking of syntactic details, yet it appears in 66 times in 12
projects. Programmers would likely benefit by the creation of
a shorter library function. Using CodexLib, they can create
a new nested hash with the code Hash.nested, which is only
10 characters long and has far fewer opportunities for error.

Alternatively, consider the Ruby idiom to capitalize each
word token in a string, which occurs 10 times across 5 dif-
ferent projects:

var0.split(/str0/).map do |var1|
var1.capitalize

end.join("str0")

This idiom is dense and not immediately self-descriptive;
it contains four function calls and a block within three
lines. The code splits var0 on str0 (in practice, usually
“ ”) to produce an array, applies capitalize to each ele-
ment in this array, the uses join to knit the array into a
new string again using str0. Programmers might benefit
from a simpler way to express this task. Using CodexLib
they can achieve the same result with the shorthand code:
var0.capital tokens(‘‘str0’’).

CodexLib is a layer on top of the Codex snippet database.
To construct it, we extract the most popular idioms and their
crowdsourced descriptions from the database. For this small
number of functions, it is feasible to manually write func-
tion signatures and encapsulate them in new class methods
for Hash, Array, String, Float, File, and IO (Table 2). Pro-
grammers can download this library as a Ruby gem at http:
//hci.st/codexlib.

CODEX
Norms of practice and convention emerge for software sys-
tems that aren’t codified in documentation. Codex uncovers
these norms by processing and aggregating millions of lines
of open source code from popular Ruby projects on Github.

Indexing and Abstraction
To build its database, Codex indexes more that 3,000,000
lines of code from 100 popular Ruby projects on Github. It
gathers these projects through the Github API by sorting all
Ruby projects on the number of watchers and then selecting
the 100 projects most watched by other Github users. Codex

first breaks apart a project recursively into all constituent AST
nodes and annotates these nodes with metadata; next, it nor-
malizes all the AST nodes and collapses those that share a
normalized form into a single generalized database entry. The
unparsed representation of each of these normalized nodes is
a Codex snippet.

Snippets of Ruby source code tend to be syntactically unique
due to high variance in identifier names and primitive val-
ues. Pattern finding tools usually need to abstract away some
properties if they are to find meaningful statistical patterns
[18, 3, 9]. While we might implement normalization in many
different ways, Codex groups together snippets that are func-
tionally similar by standardizing the names of local variables
and primatives. For some snippets (e.g., variable assignment)
Codex also keeps track of the original identifiers to enable
variable name analysis.

Specifically, Codex’s normalization renames variable identi-
fiers, strings, symbols, and numbers. The first unique variable
in a snippet would be renamed var0, the next var1, the first
string str0, and so on. Codex does not normalize class con-
stants and function calls, as these abstractions provide infor-
mation important to Codex’s task-oriented search functional-
ity and statistical linting. As programmers use many different
variable names and primitive values when accomplishing a
specific task, abstracting away these names helps Codex rep-
resent the core behavior of a snippet.

For instance, consider the Ruby snippet:
[:CHI, :UIST].map do |z|

z.to_s + ‘‘is a conference’’
end

After normalization, this snippet will be:
[:sym1, :sym2].map do |var1|

var1.to_s + ‘‘str1’’
end

Normalization works less well when such primitives (e.g.,
specific string or number values) are vital to the interpreta-
tion of a snippet. In the future, we will only normalize snippet
variable names and identifiers if there is sufficient entropy in
their definitions across similar snippets. Snippets with vital
identifiers are likely to be more consistent. Other normaliza-
tion schemes may succeed as well, but we find that this ap-
proach successfully collapses most similar snippets together.

Codex applies a map-reduce to the database, collapsing AST
nodes with the same normalized form into a single AST en-
try. We collect additional parameters as part of the map-
reduce step: files, a list of each file in which the snippet
occurs; projects, a list of projects in which the snippets ap-
pears; count, the total number of times a snippet has ap-
peared; file count, the number of times a snippet has appeard
in unique files; and project count, the number of times a snip-
pet has appeared in unique projects. Codex uses these param-
eters to enable the statistical and pattern finding modules.

Codex users the Parser and AST Ruby gems by whitequark
for AST processing. We have deployed the Codex database
on Heroku, using RethinkDB and MongoHQ.

http://hci.st/codexlib
http://hci.st/codexlib

Statistical Analysis Module
Codex has two modules that together enable both high-level
and low-level pattern detection. First we describe the low-
level module, which focuses on syntactical patterns that occur
among AST nodes.

The statistical analysis module allows Codex to warn users
when code is unlikely. Codex decides this likelihood using a
set of statistics: the frequency of the snippet and also the fre-
quencies of component forms of the snippet (e.g., .to s and
.split for .split.to s). When a snippet’s component forms
are sufficiently common and the snippet itself is sufficienctly
uncommon, Codex labels it unlikely; that is, a snippet s must
have occurred fewer than t times and all its component pieces,
ci must have occurred at most ti times.

Detecting Surprisingly Unlikely Code
Codex indexes many kinds of AST nodes (e.g., blocks, con-
ditionals, assignment statements, function calls, function def-
initions), but it conducts syntactic analysis upon a subset of
these nodes. The function by which a snippet of unlikely code
is declared surprising differs based upon the type of node in
question. We discuss four representative analyses we have
built to demonstrate the system’s power:

1. Function Call Analysis: This analysis checks how many
times a function has been called with a given “type sig-
nature”, which Codex defines as the kind of AST nodes
passed as arguments (not the runtime type of the expres-
sion), relative to the number of times the function has been
called with other kinds of signatures. If a sufficiently com-
mon function appears with a type signature that is very
rarely observed by Codex, this may suggest problematic
code. In split(’ ’,2), s is split(string,number); c1 is
the name of the function; c2 is the function signature, e.g.,
[string, number]). Codex checks how many times split
is called with string and integer arguments relative to other
kinds of arguments.

2. Function Chaining Analysis: This analysis checks how
many times one function has been chained with another;
that is, the result of some first function is used as the caller
of some second function. Here s is the function chain, e.g.,
split.to s; c1 is the first function, e.g, split; and c2 is
the second, e.g., to s. Two functions that are often used
but never chained together suggest unusual code.

3. Block Return Value Analysis: This analysis checks how
many times a certain kind of block has returned a certain
kind of value. For instance, it would be legal but unusual to
write the code things.each { |x| x.to s }, which does
transform every element in the things list to a string, but
does not alter things itself since to s does not change the
state of its caller (to change the values in names, a program-
mer might instead use the expression x = x.to s inside the
each block). Here s is a kind of block with a particular re-
turn type, e.g., a each block with return type of the to s

function; c1 is a kind of block, e.g., an each block; and
c2 is a kind of block return type, e.g., blocks returning the
to s function.

4. Identifier Analysis: This analysis checks how many times
a variable identifier has been assigned with a certain type
of primitive. Often variable names suggest the type of
the variable that they reference; this analysis allows Codex
to warn programmers about misleading or unconventional
variable names (e.g., str = 0 or my array = {}). Here s
is the variable name as assigned to a particular type, e.g.,
str = 0; and c1 is the variable name, e.g., str.

Pattern Finding Module
Whereas the statistical analysis module focuses on low-level
syntactical structure, the pattern finding module detects a
set of high-level Ruby idioms and example snippets com-
monly reused by programmers. By constructing an appropri-
ate query over the normalized snippets in its database, Codex
can find snippets that isolate common programming idioms.
The pattern finding module also enables other specific kinds
of queries based on context (e.g., searching for certain library
methods called from within a map block.)

The general form of Codex’s pattern finding consists of a sin-
gle query that is applied to the database of abstracted snip-
pets; we intend it to filter out snippets that programmers are
less likely to find interesting or useful. The query has five pa-
rameters, corresponding to attributes stored in the database,
and ordered here by their selectivity:

1. Project Count: the number of unique projects in which an
abstracted snippet has occurred. A lower bound of 2% of
the number of projects indexed by codex filters out snippets
that tend to be longer and more idiosyncratic.

2. Total Count: the total number of times an abstracted snip-
pet has occurred. An upper bound of the 90% percentile
filters out overly trivial snippets (e.g., var0 = var1).

3. File Count: the total number of unique files in an abstracted
snippet has occurred. An upper bound of 20% of the count
of an abstracted snippet filters out snippets that are reused
quite a bit within one or more files; these snippets tend to
be overly domain specific.

4. Token Count: the number of unique variables, function
calls, and primitives that occur in an abstracted snippet.
An upper bound of the 80% percentile of all snippet token
counts filters out overly domain specific code.

5. Function Count: the number of unique function calls in a
snippet. A lower bound of 2 filters out trivial snippets.

These snippets are then passed to expert crowds, who attach
metadata such as a title, description, and measure of recom-
mended usefulness.

Together, these parameters produce 9,693 abstracted snippets
from the Codex database, corresponding to 79,720 original
snippets in the index. This query is designed to produce gen-
eral purpose snippets; other queries might be constructed dif-
ferently to produce more domain specific results.

EVALUATION
Codex hypothesizes that we can build new software engineer-
ing interfaces by using databases that model practice-driven

Figure 3. A plot of Codex’s hit rate as it indexes code over four random
samples of file orderings. The y-axis plots the database hit rate, and the
x-axis plots the number of lines of code indexed.

knowedge for programming languages. In this section, we
provide evidence for three claims:

1. The 3,000,000 snippets in the Codex database are suffi-
cient to characterize and analyze a broad swath of pro-
gram behavior. We measure the redundancy of AST nodes
as Codex indexes increasing amounts of code.

2. Codex captures a set of snippets that are recomposable and
task-oriented. We ask oDesk Ruby experts to describe and
review a subset of the Codex patterns.

3. Codex allows us to identify unlikely code, without too many
false positives. We evaluate the number and kinds of warn-
ings that Codex throws across a test set of 49,735 lines of
code.

The Codex Database
The Codex database is composed of more than 3,000,000
lines of open source code, indexed from 100 popular Ruby
projects on Github. These projects come from a diverse set
of application areas, including programming languages, plu-
gins, webservers, web applications, databases, testing suites,
and API wrappers.

We designed Codex to reflect programming practice. Pro-
gramming is open ended — the number of valid strings of
source code in most languages is infinite — so no database
can hold information about every possible AST node or pro-
gram. However, programming is also highly redundant when
examined at a small enough level of granularity [12]. Of the
approximately 7 million AST nodes that Codex has indexed,
only 13% are unique after normalization. Among the more
complex types of AST nodes we see variablity in this redun-
dance. For example, among block nodes 74% are unique, and
among class nodes 85% are unique (Table 3).

To evaluate the breadth of code that Codex knows about, we
examine the overall hit rate of its database as it indexes more
code. That is, when indexing N lines of code, what percent-
age of its normalized AST nodes have not been seen before as
they are added to the database? We analyzed the raw Codex
dataset for values ranging from 92 to 3,000,000 lines of code
across four random samples of file ordering.

Codex’s hit rate exceeds 80% after 500,000 lines of code (Fig-
ure 3), meaning that Codex had already observed 80% of the
AST nodes after normalization. Different AST node types
display slightly different curves, with the same overall shape.

Node Type Percent Unique

Class definition 85%
Rescue statement 78%
Block statement 74%
Function definition 69%
If statement 66%
Interpolated string 29%
Function call 28%
Inlined hash 17%

Table 3. The percent of snippets that are unique after normalization for
common AST node types.

Category Percent of Snippets

Standard Library 76%
External Library 14%
Data or Control Flow 9%

Table 4. Programmers from an expert crowdsourcing market annotated
Codex’s idioms with their usage type. The vast majority concern the use
of standard, built-in libraries.

Many of the nodes we are interested in for statistical analysis
are more complex, and so they are less amenable to the level-
ing of this curve. However, were Codex to index more code,
its hit rate would increase even futher.

Pattern Annotation
We asked professional Ruby programmers on the oDesk ex-
pert crowdsourcing marketplace to annotate 500 Codex snip-
pets randomly sampled from the approximately 10,000 snip-
pets that passed Codex’s general pattern finding filter.

First, we asked crowdworkers to label each snippet with one
of the categories: Data or Control Flow, Standard library, Ex-
ternal library, and Other (Table 4). The majority of snippets
address standard library tasks (76%), followed by external li-
brary tasks (14%), and tasks involving data or control flow
(9%). None fell outside these categories (Other = 0%).

Next, we asked oDesk crowdworkers to answer: 1) Is this
snippet a useful programming task or idiom? 2) Can this snip-
pet be encapsulated into a seperate standalone function? 3) Is
there a more common way to write this snippet?

The oDesk Ruby experts reported that 86% of the snippets
queued for annotation are useful, 96% are recomposable, and
91% have no more common form. These statistics indicate
that Codex’s pattern finding module produces snippets that
are generally recomposable and reflective of good program-
ming practice.

Statistical Linting
Stastical linting relies upon the low-level properties of mil-
lions of lines of code to warn users about code that is unlikely.
Codex defines a general approach for detecting unlikely code,
on which it implements analyses for: type signatures, vari-
able names, function chains, and block return types. Here we
evaluate to what extent CodexLint’s produces false positives
through a training set of 49,735 lines of code.

As Codex seeks to identify unlikely code, and not program
bugs, the distinction between true positives and false posi-
tives is largely subjective. Inevitably, some users will want
to be warned about these properties, while others will not.
Here we test the statistical linter against code known to be of
high quality. Supposing the number of warnings CodexLint
suggests is small, relative to the number of lines of code an-
alyzed, this provides evidence that the statistical linting tool
does not suggest too many false positives.

We based our CodexLint test set on 6 projects randomly sam-
pled and witheld from the 100 repositories collected to build
Codex’s index. The test set projects contain a total of 49,735
lines of code, and all of these projects are popular and widely
used, with more than 100 watchers on Gitub (as the case for
all the projects selected for indexing by Codex). Since 90% of
the snippets annotated through Codex’s pattern finding mod-
ule are found by crowdsourced experts to be idiomatic, and
over 85% are rated as useful, we can safely assume that these
projects generally do contain high-quality code — the null
hypothesis would be the principle, “garbage in, garbage out.”
By treating each warning it throws as a false positive, we ar-
rive at a conservative estimate of the error rate.

Running CodexLint against the test set, we find that it gener-
ates 1248 warnings over 49,735 lines of code; this suggests a
conservate false positive rate of 2.5%.

The most common category of false positive involves func-
tions and blocks that appear at least a few times across a
number of projects, but that haven’t been observed enough
for Codex to appropriately model their behavior. For exam-
ple, nodes and uri are part of a HTML parsing library that
Codex has only seen used in a few files, and the system throws
a warning about their combination, e.g., nodes.uri. We are
working on a new technique to detect sparse functions based
on library dependancies and additional program context that
will handle them seperately in analysis.

The second most common false positive occurs when Codex
observes two AST nodes, neither of them particularly uncom-
mon, together in a new and valid way, e.g., lambda blocks
returning a function call to rand, which did not appear at all
in Codex’s index. Programming is an open-ended task, and
there will always be valid combinations of expressions that a
system like Codex has not encountered.

Other false positives are more ambiguous. For example, one
project passes the map function a string, which would usually
produce an error. This project had overridden map to support
new functionality. Similarly, another file assigns a variable
named @requests an integer value, and Codex has only ever
observed @requests as an array. Programmers might be well
served by changing their code in response to these warnings.

Finally, this false positive rate will decrease as the size of
Codex’s index grows and fewer correct code paths surprise it.
As the statistical linting algorithm is based upon probability
thresholds, users can make the linter even more conservative
by adjusting these thresholds — analogous to adjusting the
parameters of traditional linters.

LIMITATIONS AND FUTURE WORK
The approach that Codex takes has limitations, many of
which we plan to address with future work. First, while we
have collected evidence that suggests Codex’s index is large
enough to encompass a broad swath of program behavior, it
is likely that many applications — such as pattern annotation
and statistical linting — would benefit from a larger index of
code. We have tested Codex with indexes as large as ten mil-
lion lines of code, with no significant difference in the kinds
of nodes and statisitical properties it detects. However, as the
size of the index grows, there will be fewer and fewer edge
cases and false positives, and Codex will more easily detect
idioms and make precise statistical statements about combi-
nations of AST nodes. Codex must balance its desire for more
coverage against the danger of indexing lower-quality code.

Second, many more kinds of program analyses can be defined
beyond Codex’s current abstractions. All the analyses tested
in the current version of Codex rely upon local properties of
AST nodes, and not the sourrounding program context. By
incorporating more of this context into analyses, we might
detect more complex properties (e.g., detecting that a user
hasn’t initialized a MySQL database wrapper).

Third, due to the subjective nature of CodexLint’s warnings,
we have not determined a precise rate of true positives and
false positives. In future work, we might ask programmers to
evaluate these warnings, to better determine how often they
are useful. Moreover, this paper does not address the general
question: do programmers really find it useful to know when
they are violating convention? We can determine the answer
more concretely through longitudinal study.

Finally, while Codex models practice-driven knowledge for
the Ruby programming language, our techniques for process-
ing AST nodes and generating statistics are applicable to any
AST structure or language. For example, it might be feasi-
ble to generate a Codex database for JavaScript by crawling
highly-trafficked web pages. Moreover, while we focused on
a dynamic language due to its popularity and flexibility of
naturalistic usage, static languages provide additional meta-
data that Codex could leverage. Extending Codex’s analyses
to these other languages remains future work.

CONCLUSION
Codex suggests that mining and codifying emergent program-
mer behavior can support a broad set of software engineering
interfaces. By modeling how developers use programming
languages in practice, Codex enables algorithms for finding
common idioms and detecting unlikely code. In combination
with human crowds, we use these algorithms to enable new
applications like statistical linting, pattern annotation, and li-
brary generation.

More broadly, systems like Codex point towards a future of
programming languages as living artifacts: where libraries
self-update to use the latest, most common idioms, IDEs offer
suggestions to programmers that suit evolving coding styles,
and languages evolve to better support their users. In this way,
the wisdom of the crowd can be fed back to make crowds
themselves wiser.

ACKNOWLEDGEMENTS
Special thanks to our reviewers and colleagues at Stanford.
This work is supported by Adobe Research.

REFERENCES
1. Ahmadzadeh, M., Elliman, D., and Higgins, C. An

analysis of patterns of debugging among novice
computer science students. In Proc. ITiCSE 2005.

2. Ayewah, N., et al. Using static analysis to find bugs. In
IEEE Software 2008.

3. Baxter, I.D., et al. Clone detection using abstract syntax
trees. In Proc. ICSM 1998.

4. Bernstein, M.S., et al. Direct answers for search queries
in the long tail. In Proc. CHI 2012.

5. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S.R. Example-centric programming: integrating web
search into the development environment. In Proc. CHI
2010.

6. Brandt, J., et al. Opportunistic programming: Writing
code to prototype, ideate, and discover. In IEEE
Software 2009.

7. Brandt, J., et al. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proc. CHI 2009.

8. Buse, R.P.L. and Weimer, W. Synthesizing api usage
examples. In Proc. ICSE 2012.

9. Ducasse, S., Rieger, M., and Demeyer, S. A language
independent approach for detecting duplicated code. In
Proc. ICSM 1999.

10. Engler, D., et al. Bugs as deviant behavior: a general
approach to inferring errors in systems code. In Proc.
SOSP 2001.

11. Fourney, A., Mann, R., and Terry, M. Query-feature
graphs: bridging user vocabulary and system
functionality. In Proc. UIST 2011.

12. Gabel, M. and Su, Z. A study of the uniqueness of
source code. In Proc. FSE 2010.

13. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design Patterns: Elements of Reusable Object-Oriented
Software. 1994.

14. Goldman, M., Little, G., and Miller, R.C. Collabode:
collaborative coding in the browser. In Proc. CHASE
2011.

15. Goldman, M. and Miller, R.C. Codetrail: Connecting
source code and web resources. In Proc. VL/HCC 2009J.

16. Grechanik, M., et al. Exemplar: Executable examples
archive. In Proc. ICSE 2010.

17. Greenberg, S. and Witten, I.H. How users repeat their
actions on computers: Principles for design of history
mechanisms. In Proc. CHI ’88.

18. Hartmann, B., MacDougall, D., Brandt, J., and
Klemmer, S.R. What would other programmers do:
suggesting solutions to error messages. In Proc. of CHI
2010.

19. Hartmann, B., Wu, L., Collins, K., and Klemmer, S.R.
Programming by a sample: rapidly creating web
applications with d.mix. In Proc. UIST 2007.

20. Hindle, A., et al. On the naturalness of software. In
Proc. ICSE 2012.

21. Holmes, R., Walker, R.J., and Murphy, G.C. Strathcona
example recommendation tool. In Proc. FSE 2005.

22. Hummel, O., Janjic, W., and Atkinson, C. Code
conjurer: Pulling reusable software out of thin air. IEEE
Software 2008.

23. Kim, M., Bergman, L., Lau, T., and Notkin, D. An
ethnographic study of copy and paste programming
practices in oopl. In Proc. ISESE 2004.

24. Ko, A.J. and Myers, B.A. Designing the whyline: a
debugging interface for asking questions about program
behavior. In Proc. the CHI 2004.

25. Kumar, R., et al. Webzeitgeist: Design Mining the Web.
In Proc. CHI 2013.

26. Mandelin, D., Xu, L., Bodı́k, R., and Kimelman, D.
Jungloid mining: helping to navigate the api jungle. In
Proc. PLDI 2005.

27. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G.
CommunityCommands. In Proc. UIST 2009.

28. Mooty, M., Faulring, A., Stylos, J., and Myers, B.A.
Calcite: Completing code completion for constructors
using crowds. In Proc. VL/HCC 2010.

29. Sahavechaphan, N. and Claypool, K. Xsnippet: mining
for sample code. In Proc. OOPSLA 2006.

30. Seacord, R.C., Plakosh, D., and Lewis, G.A.
Modernizing Legacy Systems: Software Technologies,
Engineering Process and Business Practices. 2003.

31. Simon, I., Morris, D., and Basu, S. MySong: automatic
accompaniment generation for vocal melodies. In Proc.
CHI 2008.

32. Stylos, J. and Myers, B.A. Mica: A web-search tool for
finding api components and examples. In Proc. VL/HCC
2006.

33. Thummalapenta, S. and Xie, T. Parseweb: a programmer
assistant for reusing open source code on the web. In
Proc. ASE 2007.

34. Urma, R.G. and Mycroft, A. Programming language
evolution via source code query languages. In Proc.
PLATEAU 2012.

35. Ye, Y. and Fischer, G. Supporting reuse by delivering
task-relevant and personalized information. In Proc.
ICSE 2002.

	Introduction
	Related Work
	Codex Applications
	Statistical Linting
	Function Chaining and Composition
	Block Return Value Analysis
	Function Type Analysis
	Variable Name Analysis

	Pattern Annotation
	Querying for Understanding

	Library Generation

	Codex
	Indexing and Abstraction
	Statistical Analysis Module
	Detecting Surprisingly Unlikely Code

	Pattern Finding Module

	Evaluation
	The Codex Database
	Pattern Annotation
	Statistical Linting

	Limitations and Future Work
	Conclusion
	Acknowledgements
	REFERENCES

