Analytic Methods for Optimizing Realtime Crowdsourcing

Michael Bernstein, David Karger, Rob Miller, and Joel Brandt
MIT CSAIL and Adobe Systems
Use *queueing theory* to understand and *optimize performance* of a paid, realtime crowdsourcing platform.

- Relationship between crowd size and response time
- Algorithm for optimizing crowd size & cost vs. response time
- Improvements to the platform: 500 millisecond feedback
Realtime Crowds

Answering visual questions for blind users

[Bigham et al. 2010]
Realtime Crowds

Answering visual questions for blind users

[Bigham et al. 2010]

Crowd-assisted photography

[Bernstein et al. 2011]
Realtime Crowds

Answering visual questions for blind users

[Bigham et al. 2010]

Crowd-assisted photography

[Bernstein et al. 2011]
Paid Crowdsourcing

Pay small amounts of money for short tasks

Amazon Mechanical Turk: Roughly five million tasks completed per year at 1-5¢ each [Ipeirotis 2010]

Label an image

Requester: Matt C.
Reward: $0.01

Transcribe short audio clip

Requester: Gordon L.
Reward: $0.04
Retainer Recruitment

Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

Wait at most:
5 minutes

Task:
Click on the verbs in the paragraph

He leapt the fence and dashed toward the door.

[Bernstein et al. 2011]
Retainer Recruitment

Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

Wait at most:
5 minutes

Task:
Click on the verbs in the paragraph

[He leapt the fence and dashed toward the door.]

[Bernstein et al. 2011]
Retainer Recruitment

Workers sign up in advance
½¢ per minute to remain on call
Alert when the task is ready

50% of workers return in two seconds, and
75% of workers return in three seconds.

[Bernstein et al. 2011]
State of the Literature

Realtime Crowds

- Recruit crowds in two seconds, execute traditional tasks (e.g., votes) in five seconds
- Maintain continuous control of remote interfaces
- Opportunities in deployable, intelligently reactive software

[Bigham et al. 2010, Bernstein et al. 2011, Lasecki et al. 2011]
The Challenge

Running Out of Retainer Workers
The Challenge

Running Out of Retainer Workers
The Challenge
Running Out of Retainer Workers
The Challenge
Running Out of Retainer Workers
The Challenge

Running Out of Retainer Workers
The Challenge

Running Out of Retainer Workers
The Challenge

Running Out of Retainer Workers

Loss
Non-realtime response
The Tradeoff

Missed tasks, non-realtime results

Extra retainer workers, extra cost

Tuesday, May 8, 12
The Goal

Optimize the tradeoff between recruiting too many workers and dropping too many tasks.
The Goal

Optimize the tradeoff between recruiting too many workers and dropping too many tasks.

Budget-optimal crowdsourcing is possible in non-realtime scenarios

[Dai, Mausam and Weld 2010; Kamar, Hacker and Horvitz 2012; Karger, Oh, and Shah 2011]
Queueing Theory

- Formal framework for stochastic arrival and service processes
- Basic idea: random task arrivals and random processing times for workers
- Quantify how long tasks will need to wait in line

Queueing theory for completion times: [Ipeirotis 2010]
Queueing Theory

M/M/1 queue

Markovian (Poisson process) task arrivals, rate λ
Markovian (Poisson process) server work time, rate μ
One server
Queueing Theory

M/M/1 queue

\(\lambda \) Markovian (Poisson process) task arrivals, rate \(\lambda \)

\(\mu \) Markovian (Poisson process) server work time, rate \(\mu \)

1 One server
Queueing Theory

M/M/1 queue

- Markovian (Poisson process) task arrivals, rate λ
- Markovian (Poisson process) server work time, rate μ
- One server
Queueing Theory

M/M/1 queue

\[\text{Markovian (Poisson process) task arrivals, rate } \lambda \]
\[\text{Markovian (Poisson process) server work time, rate } \mu \]

1 One server
Queueing Theory

M/M/1 queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
1 One server
Queueing Theory

M/M/1 queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
1 One server
Queueing Theory

M/M/1 queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
1 One server
Queueing Theory

M/M/1 queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
1 One server
Queueing Theory

M/M/1 queue

\[\lambda \]

\[\mu \]

M Markovian (Poisson process) task arrivals, rate \(\lambda \)

M Markovian (Poisson process) server work time, rate \(\mu \)

1 One server
Queueing Theory

M/M/1 queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
1 One server
Queueing Theory

M/M/1 queue

Markovian (Poisson process) task arrivals, rate λ
Markovian (Poisson process) server work time, rate μ
One server
Queueing Theory

M/M/1 queue

- Markovian (Poisson process) task arrivals, rate λ
- Markovian (Poisson process) server work time, rate μ
- One server
Queueing Theory

M/M/c/c queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
c c servers
c c max tasks in servers and queue
Queueing Theory

M/M/c/c queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
c c servers
c c max tasks in servers and queue
Queueing Theory

M/M/c/c queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
c c servers
c c max tasks in servers and queue
Queueing Theory

M/M/c/c queue

\[\begin{aligned}
\text{M} & \quad \text{Markovian (Poisson process) task arrivals, rate } \lambda \\
\text{M} & \quad \text{Markovian (Poisson process) server work time, rate } \mu \\
\text{c} & \quad \text{c servers} \\
\text{c} & \quad \text{c max tasks in servers and queue}
\end{aligned} \]
Queueing Theory

M/M/c/c queue

Markovian (Poisson process) task arrivals, rate λ

Markovian (Poisson process) server work time, rate μ

c servers

c max tasks in servers and queue
Queueing Theory

M/M/c/c queue

M Markovian (Poisson process) task arrivals, rate λ
M Markovian (Poisson process) server work time, rate μ
c c servers
c c max tasks in servers and queue
Queueing Theory

M/M/c/c queue

- **M** Markovian (Poisson process) task arrivals, rate λ
- **M** Markovian (Poisson process) server work time, rate μ
- **c** c servers
- **c** c max tasks in servers and queue
Queueing Theory

M/M/c/c queue

All servers busy

M Markovian (Poisson process) task arrivals, rate \(\lambda \)
M Markovian (Poisson process) server work time, rate \(\mu \)
c \(c \) servers
c \(c \) max tasks in servers and queue
Queueing Theory

M/M/c/c queue

\[\text{Markovian (Poisson process) task arrivals, rate } \lambda \]
\[\text{Markovian (Poisson process) server work time, rate } \mu \]
\[\text{c servers} \]
\[\text{c max tasks in servers and queue} \]
Retainer Queue

M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate λ
Worker recruitment time: Poisson process, rate μ
Retainer Queue

M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate λ
Worker recruitment time: Poisson process, rate μ
Retainer Queue

M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate λ
Worker recruitment time: Poisson process, rate μ
Retainer Queue
M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate λ
Worker recruitment time: Poisson process, rate μ
Retainer Queue

M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate λ
Worker recruitment time: Poisson process, rate μ
Retainer Queue

M/M/c/c queue

c workers, no waiting queue
Task arrivals: Poisson process, rate λ
Worker recruitment time: Poisson process, rate μ
Retainer Queue

Loss

c workers, no waiting queue
Task arrivals: Poisson process, rate λ
Worker recruitment time: Poisson process, rate μ
Retainer Queue

Loss

c workers, no waiting queue
Task arrivals: Poisson process, rate λ
Worker recruitment time: Poisson process, rate μ

Tuesday, May 8, 12
Retainer Queue

Loss

All servers busy

c workers, no waiting queue

Task arrivals: Poisson process, rate λ

Worker recruitment time: Poisson process, rate μ
Retainer Queue

Loss

All servers busy
Retainer Queue

Loss

All servers busy

Tuesday, May 8, 12
Retainer Queue

Loss

\[\Pr(\text{i servers busy}) \]

All servers busy
Retainer Queue

Loss

\[P(i \text{ servers busy}) = \pi(i) \]
Retainer Queue

Loss

\[P(i \text{ servers busy}) = \pi(i) \]

\[P(\text{all servers busy}) \]
Retainer Queue

Loss

\[P(i \text{ servers busy}) = \pi(i) \]
\[P(\text{all servers busy}) = \pi(c) \]
Model Predictions

1. Probability that all workers are busy: $\pi(c)$
 \rightarrow the task has to wait for expected time $1/\mu$

2. Cost of keeping a retainer pool of size c
 \rightarrow cost depends on number of idle servers
Probability of Loss

- Draw on Erlang’s Loss Formula from queueing theory: probability of a rejected request in an M/M/c/c queue

- Let ρ be the traffic intensity:

 $\rho = \lambda/\mu$

 (roughly, the number of new tasks that will arrive in the time it takes to recruit a worker)
Probability of Loss

Erlang’s Loss Formula says:

\[\pi(c) = P(c \text{ servers busy}) \]

\[= \frac{\rho^c / c!}{\sum_{i=0}^{c} \rho^i / i!} \]

Remarkably, this result makes no assumptions about the arrival distribution.
Expected Waiting Time

\[P(c \text{ servers busy}) \times (\text{expected recruitment time}) \]

\[= \pi(c) \frac{1}{\mu} \]

\[= \frac{\rho^c / c!}{\sum_{i=0}^{c} \rho^i / i!} \frac{1}{\mu} \]
Expected Cost

How much do we pay in steady-state?

Depends on how many workers are usually waiting on retainer.
Expected Cost

Probability of \(i \) busy servers in an M/M/c/c queue is a more general version of Erlang’s Loss Formula:

\[
\pi(i) = \frac{\rho^i / i!}{\sum_{i=0}^{c} \rho^i / i!}
\]

Derive the expected number of busy workers:

\[
E[i] = \rho [1 - \pi(c)]
\]
Expected Cost

Probability of \(i \) busy servers in an M/M/c/c queue is a more general version of Erlang’s Loss Formula:

\[
\pi(i) = \frac{\rho^i / i!}{\sum_{i=0}^{c} \rho^i / i!}
\]

Derive the expected number of busy workers:

\[
E[i] = \rho [1 - \pi(c)]
\]

Total cost is the number of \textit{idle} workers:

\[
c - \rho [1 - \pi(c)]
\]
Expected Cost

Cost goes down when $c < \rho$, but performance suffers.
Expected Cost

Cost goes down when $c < \rho$, but performance suffers.
Optimal Retainer Size

- Size of retainer pool is typically the only value that requesters can manipulate
- Minimize costs by keeping the retainer pool small while keeping $\pi(c)$ low
Optimal Retainer Size
Based on Maximum Miss Probability

Given a maximum desired probability of a miss p_{max}:

Minimize c subject to $\pi(c) \leq p_{max}$
Optimal Retainer Size
Based on Maximum Miss Probability

Given a maximum desired probability of a miss p_{max}:

Minimize c subject to $\pi(c) \leq p_{max}$
Optimal Retainer Size
Based on Joint Cost

If the “pizza delivery” property holds: we can quantify the cost of loss
Improving the Retainer Model

1. Subscriptions
2. Shared Pools
3. Predictive Recruitment
Retainer Subscriptions

• Proposal: increase μ by allowing workers to subscribe to realtime tasks

• Instead of posting to the global task list, the platform sends a message to subscribers

• Change crowdsourcing from a pull model to a push model
Global Retainer Pools

• Sharing one global retainer pool across requesters improves performance

• Intuition: Most workers are padding for unlikely runs of arrivals)
Global Retainer Pools

- Sharing one global retainer pool across requesters improves performance
- Intuition: Most workers are padding for unlikely runs of arrivals

<table>
<thead>
<tr>
<th>Time</th>
<th>Task 1</th>
<th>Task 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>🟢</td>
<td>🟢</td>
</tr>
</tbody>
</table>
Global Retainer Pools

- Sharing one global retainer pool across requesters improves performance
- Intuition: Most workers are padding for unlikely runs of arrivals
Global Retainer Pools

- Sharing one global retainer pool across requesters improves performance
- Intuition: Most workers are padding for unlikely runs of arrivals

<table>
<thead>
<tr>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined</td>
</tr>
</tbody>
</table>
Global Retainer Pools

- Through approximation, individual pools:
 \[\pi(c) \approx \sqrt{2\pi c} \left(e^{-\rho} (e \rho / c)^c \right) \]

- Shared pools across \(k \) requesters:
 \[\pi(c) \approx \sqrt{2\pi k c} \left(e^{-\rho} (e \rho / c)^c \right)^k \]

- Loss rate declines exponentially with the number of bundled retainer pools
Global Retainer Pools

- Through approximation, individual pools:
 \[\pi(c) \approx \sqrt{2\pi c \left(e^{-\rho} \left(e\rho/c \right)^c \right)} \]

- Shared pools across \(k \) requesters:
 \[\pi(c) \approx \sqrt{2\pi kc \left(e^{-\rho} \left(e\rho/c \right)^c \right)^k} \]

- Loss rate declines exponentially with the number of bundled retainer pools
Global Retainer Pools

Cost dramatically decreases as you combine retainers: k dollars to $\log(k)$ dollars
Global Retainer Routing

- Not every worker in a global retainer pool is good at every task
- If we assigned each worker to any task they could do, some tasks would starve
Global Retainer Routing

- We want to maintain a buffer of workers to respond to all kinds of tasks
- A linear programming technique can balance the traffic intensities across all tasks
Precruitment

- Predictive Recruitment: notify workers before the task arrives
- Recall workers in expectation of having a task by the time they arrive 2–3 seconds later
Precruitment

Formative Study, N=373 tasks

• 3¢ for 3-minute retainer task: whack-a-mole
• ‘Loading...’ screen for randomly-selected time [0, 20] seconds after worker returns
• Click on randomly-placed mole
Precruitment

Formative Study, N=373 tasks

- 3¢ for 3-minute retainer task: whack-a-mole
- ‘Loading...’ screen for randomly-selected time [0, 20] seconds after worker returns
- Click on randomly-placed mole
Recruitment

Results

- Median time to mouse move: 0.50 seconds

- Standard retainer model (start timer @ alert): median mouse move in 1.36 seconds
Discussion

• Empirics: Can deployed crowdsourcing platforms support lots of realtime tasks?
• Theory: Crowds as queueing systems
• Reputation: median response time, overall response rate
Use *queueing theory* to understand and *optimize performance* of a paid, realtime crowdsourcing platform.

- Relationship between crowd size and response time
- Algorithm for optimizing crowd size vs. response time
- Improvements to the platform: 500 millisecond feedback
Analytic Methods for Optimizing Realtime Crowdsourcing

Michael Bernstein, David Karger, Rob Miller, and Joel Brandt
MIT CSAIL and Adobe Systems