

What Would Other Programmers Do?
Suggesting Solutions to Error Messages

Björn Hartmann1, Daniel MacDougall2, Joel Brandt2, Scott R. Klemmer2
1–Computer Science Division

University of California, Berkeley, CA 94720
bjoern@cs.berkeley.edu

2–Stanford University HCI Group
Computer Science Dept, Stanford, CA 94305

{dmac,jbrandt,srk}@cs.stanford.edu

ABSTRACT
Interpreting compiler errors and exception messages is
challenging for novice programmers. Presenting examples
of how other programmers have corrected similar errors
may help novices understand and correct such errors. This
paper introduces HelpMeOut, a social recommender system
that aids the debugging of error messages by suggesting
solutions that peers have applied in the past. HelpMeOut
comprises IDE instrumentation to collect examples of code
changes that fix errors; a central database that stores fix
reports from many users; and a suggestion interface that,
given an error, queries the database for a list of relevant
fixes and presents these to the programmer. We report on
implementations of this architecture for two programming
languages. An evaluation with novice programmers found
that the technique can suggest useful fixes for 47% of
errors after 39 person-hours of programming in an instru-
mented environment.
Author Keywords: debugging, recommender systems
ACM Classification: H.5.2 [Information Interfaces and
Presentation]: User Interfaces – Training, Help, and
Documentation. D.2.5 [Software Engineering]: Testing and
Debugging – Debugging Aids.
General terms: Design, Human Factors
INTRODUCTION
Programmers — especially amateurs — often create software
by opportunistically modifying found examples [5], and
they regularly use online forums and blogs to seek help.
However, most development tools remain largely unaware
of this social life of code and lack explicit support for it.
Using the web as a medium for sharing code and seeking
code-specific help clearly has value; it also has important
limitations as a platform. Standard search engines index
string literals rather than code semantics, making it hard to
specify queries for code. Specialized code search engines
incorporate language semantics, but they mainly index
repositories of working code bases, making them less

helpful for debugging tasks. Many programmers thus post
questions to online forums where answers may have high
latency or may not be answered at all. We believe that there
is significant latent value in integrating communal informa-
tion exchange around debugging directly into authoring
tools, where richer ways for collecting, presenting, and
interacting with code are available.
As a step into the direction of integrating collective
information into programming tools, this paper proposes
HelpMeOut, a recommender system that aids novices with
the debugging of compiler error messages and runtime
exceptions by suggesting successful solutions to similar
errors that other programmers have encountered.
Novice programmers have difficulty interpreting compiler
errors [26]. We hypothesize that presenting relevant
solution examples makes it easier for novices to interpret
and correct error messages. Programming by example
modification has been noted to be significantly easier to
end-users than creation from scratch [27]; it has been
documented in laboratory studies [6] and class observations
[34] of student programmers. Examples present a concrete
solution rather than an abstract problem statement. People
are adept at solving problems by analogy [11] — we
hypothesize that showing examples of related fixes enables
such analogical problem solving.
The HelpMeOut system collects and suggests error
corrections by augmenting existing programming develop-
ment environments (IDEs). HelpMeOut comprises four
components (see Figure 1):
1) Instrumentation that tracks code evolution over time

and collects modifications that take source code from
an error state to an error-free state (“fixes”).

2) An online database for storing fixes which can be
queried for most relevant examples, given an error
message and code context.

3) A suggestion interface inside an IDE that presents a list
of possible fixes for and error to the user, and aids with
integration of a fix into her code.

4) A web interface to elicit and collect plain text explana-
tions of collected fixes by experts.

The main contribution of this paper is a new strategy of
collecting and presenting crowdsourced suggestions for
programming errors inside an IDE. The paper contributes a
general architecture for such a system, two implementa-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1019

tions, an initial evaluation and a discussion of the potential
benefits and limitations vis-à-vis other approaches.
The fundamental technical insight enabling HelpMeOut is
to use both error messages and source code context in the
capture and search for relevant fixes. Instead of searching
for source code using plain text, the code is tokenized using
a custom lexical analyzer, which enables searching for
common code structure across different projects.
HelpMeOut is influenced by past work on mining source
code repositories retrospectively for bug finding [19,24].
Such work has generally focused on expert programmers
and completely automatic bug finding and fixing methods.
HelpMeOut also extends research on authoring environ-
ment instrumentation, which has been used to derive usage
patterns [33] and to suggest commands [23,25].
The remainder of this paper is organized as follows: We
first present a scenario that demonstrates the benefit of
HelpMeOut; we then discuss architecture and implementa-
tion of its three principal components; discuss evaluation
strategies, privacy implications and inherent limitations;
and conclude with a review of related work.
SCENARIO
Jim, a design student in art school, works on code for an
animation based on mouse input. In his code, he incorrectly
initializes a variable array:
float[] x = new float[];

When trying to compile his code he receives the error
message “Variable must provide either dimension expres-
sions or an array initializer.” Not sure what either of the
two options mean, he consults the HelpMeOut suggestion
panel (Figure 2). He sees that he can either add a size to the
right-hand side of his variable intialization, or provide

explicit values. He clicks on the “copy fix” button next to
the first suggested fix, which modifies his original source
line to add an array size, leaving his variable name and the
rest of his code intact. He then changes the array size to fit
his requirements.
His program now compiles, but at runtime an ArrayOutOf-
Bounds exception occurs at the following line:
x[i] = mouseX/width;

He again consults HelpMeOut and sees a suggestion to
surround the array access with an array bounds check
(Figure 3). The suggestion also includes a plain text
explanation of the problem and its solution. To indicate that
he thought this particular suggestion was valuable, he
clicks on the “vote up” link underneath the suggestion.
The explanation was provider earlier in the week by Jane,
Tim’s teacher, who was wondering how her students were
doing. She visited the HelpMeOut web site and looked at a
list of fixes that were frequently returned to other Help-
MeOut users (Figure 4). She picked some of the sugges-
tions and added explanations (Figure 5).

Figure 2. The HelpMeOut Suggestion Panel shows possible
corrections for a reported compiler error.

Figure 3. A suggestion for a runtime error which includes an
explanation of the fix.

Figure 1. HelpMeOut offers asynchronous collaboration to
suggest corrections to programming errors. 1: IDE instru-
mentation collects bug fixes and sends them to a remote
database. 2: Other programmers query the database when
they encounter errors. 3: Suggested fixes are shown inside
their IDE. 4: Explanations for fixes are collected in a web
interface.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1020

ARCHITECTURE AND IMPLEMENTATION
This section describes general techniques and algorithms
for realizing crowdsourced debugging suggestions, and our
particular implementation of these principles in the current
HelpMeOut prototype.
We have implemented HelpMeOut for two programming
languages popular with hobbyist and novice programmers
so far. Processing1 is a Java-based programming environ-
ment for multimedia and interactive graphics applications.
It is popular as an introductory teaching tool. Arduino2 is a
programming environment for microcontrollers popular
with creators of tangible interfaces and physical computing.
The underlying language is a subset of C++. We will use
the Processing/Java implementation as an example, then
comment on differences between the two implementations.
Collecting Example Fixes Through Change Tracking
To automatically collect examples of errors and fixes, a
tool has to keep track of both source changes and program
status (compilation results or runtime errors) as the source
is edited and run throughout a development session.
HelpMeOut employs different strategies for collecting fixes
for compiler errors and runtime exceptions.
Compiler Errors: What Changed to Make the Code Compile?
For compile time errors, a fix is a source change that takes
a project from a failed compilation to a successful compila-
tion. HelpMeOut monitors return codes from the
Processing compiler throughout a programming session
with a finite state machine (Figure 6). If compilation fails
with an error, the error message and a snapshot of the
source are saved. If the subsequent compilation succeeds, a

1 http://www.processing.org/
2 http://www.arduino.cc/

diff report [14] comparing the initial error state and the
error-free state is generated. The error message and the diff
report are then sent to the remote HelpMeOut database to
be stored as a bug fix.
Runtime Exceptions: Did the Program Make Progress Past the
Previous Point of Failure?
Automatically recording fixes for runtime exceptions is
arguably more useful, but also harder. While it is easy to
detect when a program is broken by watching for runtime
exceptions during execution, it is not obvious when such a
problem has been fixed. If a program had an error at a
given line of code and runs successfully on the following
execution, this could be attributable to either a successful
bug fix; or no bug fix, but the bug not manifesting itself,
e.g., because of different program input.
While detecting whether a runtime bug has been fixed is
undecidable in the general case, HelpMeOut employs a
progress heuristic that catches a useful subset of excep-
tions. When a runtime exception occurs, HelpMeOut saves
the error message, the stack trace, line number in the source
file, and the number of times the line had been called when
the exception occurred. On the following execution, a diff
algorithm calculates the line in the new modified source
that corresponds to the line where the exception occurred in
the old source. The runtime system then counts the number
of times this line gets executed. If the line execution count
reaches the count of the previous error and the program
subsequently makes progress, HelpMeOut marks the
exception as resolved.
Progress tracking relies on an augmented Processing
runtime system that can interpret Java code (instead of
executing compiled code) to supply line execution counts.
It would also be possible to achieve similar functionality by
augmenting the Java Virtual Machine.
Finding Relevant Examples in a Database of Fixes
Whenever an error occurs in a programming session, due to
a failed compilation or an exception, HelpMeOut generates
a query to its remote database to retrieve related fixes,
based on the error message as well as the line of code
referenced by the error.
The database of example fixes has to be reachable from
many individual users’ machines, store submitted reports,
and return related fixes in response to a query containing an
error and code context. To achieve easy access, HelpMeOut
implements the database as a web service that can be

Figure 6. A state machine tracks compiler errors to collect
fix reports for the HelpMeOut database. Error connotes a
failed compilation, Success a successful compilation. Figure 4. The HelpMeOut web interface provides a priority

list of fixes that could benefit most from expert explanations.

Figure 5. Expert users can provide explanations for a fix.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1021

queried through HTTP requests. In our prototype, we
extend an Apache web server with Python CGI scripts to
respond to remote procedure calls using the JSON-RPC3
format. The database is implemented using SQLite4.
Relevance matching follows a three step process:
1) Query existing fixes based on matching the error

message from the compiler error or runtime exception.
2) Rank-order results from step 1 according to similarity

of source structure or stack trace structure.
Return m-best list.

3) Re-order results from step 2, based on previous user
votes; Return n-best list, where n<m.

We next review the query process for compiler errors and
runtime exceptions in detail. Our current algorithms are
proof-of-concept implementations that are sufficient to test
the HelpMeOut user experience. They can be improved
upon with more robust approaches in future work.
Step 1: Matching Errors Messages
As a first step in identifying relevant fixes, the error
messages of query and database entry have to match. Our
current implementation checks for string matching with
wildcards replacing identifiers and literals inside the error
message, as these are likely to be unique to the user’s
program. For example, an error for “Unexpected token:
myVar” generates a query for “Unexpected token: %”,
where % is the SQL wildcard character.
Step 2a: Determining Relevance for Compiler Errors
From the set of errors fixes obtained through matching of
error messages, which fixes are most relevant? We
hypothesize that a fix is relevant if the source code of the
broken state in the fix contains a line that is as close as
possible to the line of source code referenced by the error
in the query.
A naïve approach for calculating similarity would be
Levenshtein’s string edit distance [21] between the two
source lines. However, edit distance over source code
overly penalizes changes in the identifier names, literals,
and comments, which are likely to vary between different
users’ programs. We therefore employ a more robust
approach in which source code is first passed through a
lexical analyzer, which discards whitespace and replaces
identifiers, literals, and comments with placeholders. An
example of this tokenization is shown in Table 1.
Similarity between two lines of tokens is then calculated
using a similarity ratio, where identical lines have a
similarity of 1; lines that do not share any characters have a
similarity of 0. We employ the Python difflib5 ratio, which
is 2×M/T, where T is the total number of characters in both
lines, and M is the number of matched characters according
to a sequence differencing algorithm. The similarity for an

3 http://www.json-rpc.org
4 http://www.sqlite.org
5 http://docs.python.org/library/difflib.html

entire fix, which may contain many lines of changed
source, is then calculated as the maximum similarity
encountered when comparing all lines individually against
the input line. Alternative approaches for similarity
detection from the literature on code clone detection, e.g.,
parse tree matching [18], could be substituted.
A subtle difficulty that will require more attention is that
the line number reported by a compile error does not
necessarily match the line where the real problem occurs.
To hedge against this problem, analyzing an entire block of
code surrounding the reported error line is advisable.
Step 2b: Determining Relevance for Runtime Exceptions
For runtime exceptions, we hypothesize that a fix is
relevant if as much as possible of the exception’s stack
trace in the user’s query matches the stack trace of the
broken code of the candidate fix in the database. Excep-
tions are often raised by standard API methods, and
similarity of the chain of calls from the user’s code into the
failing API method is indicative of similar intent across
different programs. Because the highest levels of a stack
trace are likely to be user-defined functions which will not
match across programs, HelpMeOut calculates stack trace
similarity as the number of consecutive shared lines starting
from the bottom of the stack, i.e., from the method that first
threw the exception.
Step 3: Re-Ordering Based on User Votes
Since there is no editorial control in the bug fix collection
process, variance in the utility of collected fixes should be
expected. To promote fixes that users have deemed useful
and to demote fixes that are not helpful, HelpMeOut
includes functions for users to vote presented fixes up and
down. Many approaches for factoring user feedback into
selection algorithms exist. HelpMeOut retrieves 2N best
examples and then reorders these examples in decreasing
order of votes (each up vote = +1, down vote = -1). The
best N fixes are then returned to the user.
Presenting Found Fixes
The list of relevant fixes generated in the previous step is
visualized in a separate pane inside the programmer’s IDE.
The visualization juxtaposes before (with error) and after
(without error) states of the code, and highlights what parts
changed. Only changed lines are shown to conserve space.

Source Tokenized Source

/* a comment */

float[] x =new float[50];

void setup() {

 x[0]=1.0f;

 smooth();

}

c

float[]n=newfloat[il];

voidfn(){

n[il]=fl;

n();

}

Substitutions in this example:

comment = c, name=n, integer literal = il, float literal = fl, function
name in definition=fn

Table 1. Example of lexical source transformation performed
during similarity calculation.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1022

Figure 7. An example of token-based patching for automati-
cally applying fixes to user programs.

Below each code comparion are links to vote a given
example up or down. When the user chooses to vote up or
down, the vote is added to the database, which is then re-
queried to immediately show new results. The voted fix
may move towards the top of the list or further down,
potentially dropping out of the top N list and being replaced
with a different fix. The view limits display of code context
for any given fix to converse space and show multiple
possible suggestions. If the user needs more code context, a
“more detail” link takes them to a web page that contains a
full-file difference view in an external window.
Integrating fixes into user code
Once relevant examples are displayed, the remaining
challenge is to determine whether the suggestions are
applicable to the user’s code and, if so, apply changes that
fix the user’s problem. These steps can be accomplished
manually, automatically, or with mixed initiative.
HelpMeOut can attempt to automatically apply a sugges-
tion to the user’s program. This automatic patching is
currently limited to single-line changes. HelpMeOut first
tries to find the line where the fix should be applied (this is
often not the line where the error occurred). Again, to avoid
mismatches due to variable names and literals, source code
and fix are tokenized. If a line was found, HelpMeOut then
calculates a token-based diff between the fix and the user’s
source line. When the difference set is applied to the user’s
source, preference is given to the user’s text for any
matching tokens. This ensures that the user’s variable
names and values are preserved where possible (Figure 7).
For multi-line patches or situates where automatic patching
fails, HelpMeOut pastes the fix into the user’s code as a
comment so it can be integrated manually.
Augmenting Examples with Explanations
Presenting only examples may make the transfer from
example code to user code challenging. Presenting a
principle that explains how the example fix works can
likely help. But where should these principles come from?
Two options are generic explanations of error messages,
e.g., from the compiler documentation; or specific explana-
tions of the error and its fix in the context of the given
example.
HelpMeOut leverages an online community of users to
provide the latter kind of explanations. HelpMeOut logs all

database queries so statistics which fixes are shown most
frequently to users are available. Having explanations for
those frequently returned fixes would be most useful. The
HelpMeOut web interface presents a priority-ordered list of
fixes that still need explanations so experts, e.g., teachers,
can browse these fixes and supply explanations.
Keeping Private Data Private
The need for users to keep all or parts of their code private
may prevent them from using HelpMeOut. Setting privacy
preferences can mitigate some of these concerns.
Preferences enable setting whether to query and submit
fixes, query only (some code will be sent to the database,
but it will not be visible to others users); or disable
HelpMeOut (Figure 8). Independent of querying behavior,
users can also choose to upload usage logs which contain
command counts and error messages encountered, but no
user code, to the database. A more detailed treatment of
privacy questions is provided in the discussion section.
HelpMeOut For Other Programming Languages
To evaluate whether the functionality in the initial Help-
MeOut Java implementation transfers into other domains,
we ported its architecture to the Arduino development
environment. Arduino and Processing share the same IDE
code base, but target different compiler back ends: Arduino
is used to write C/C++-code for microcontrollers; it relies
on the open-source avr-gcc6 compiler.
We noted that the gcc compiler generated error messages
such as “error: at this point in file” that do not provide
any information about the cause of the problem. Such error
messages are a good example for the need for augmenting
error message queries with source code context. While the
(lack of) quality of error messages may make HelpMeOut
more appealing for Arduino, HelpMeOut cannot capture or
provide suggestions for any runtime errors because the
compiled program is not run on the development machine
itself, but on an external microcontroller.
This exercise led us to reconsider the language space for
which techniques such as HelpMeOut have the largest
potential impact. In future work we plan on supporting
dynamic scripting languages such as JavaScript, Ruby, and
Python. Such languages are frequently used by our target

6 http://www.nongnu.org/avr-libc/

Figure 8. Privacy preferences in HelpMeOut give users
control about exposing their code to others.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1023

audience of amateur programmers. While many helpful
static verification techniques are available for Java, tool
support is comparatively low for dynamic languages.
EVALUATION
Our initial evaluation sought to establish evidence for the
feasibility of the HelpMeOut end-to-end approach for
collecting and displaying bug fix suggestions. Our evalua-
tion considered the following three concrete questions:
1. Can we quantify, for our chosen IDE and language,

how large the example set needs to be? How many
examples and different users are needed before sugges-
tions are returned for a majority of queries?

2. How useful are bug fix suggestions collected during
instrumented programming sessions?

3. Which types of errors are covered well by HelpMeOut,
which ones are not?

Method: Two Programming Workshops
We evaluated HelpMeOut through two three-hour work-
shops on Processing offered to graduate students at an Art
& Design school in our area. Most students self-ranked as
novice or “struggling” programmers with no or brief prior
exposure to Processing (Figure 10). Students downloaded a
version of Processing with HelpMeOut at the beginning of
the first workshop and used it for both sessions. 8 students
used HelpMeOut in the first session; 5 in the second. This
resulted in approximately 39 person-hours of programming
data. Students all worked on the same set of problems.
Thus, our results are relevant for deployments in homogen-
ous groups, e.g., in a class or company, but may not be
representative of highly heterogeneous user groups.
To seed the database with some initial fixes for common
errors, we transcribed the examples in the debugging
chapter of Shiffman’s Processing textbook [29] as be-
fore/after source pairs and added them to the database. This
set comprised 12 runtime fixes and 21 compile-time fixes.
Results
During the workshop, students queried HelpMeOut 274
times (7 queries per person, per hour). 229 queries (84%)
returned at least one suggestion from HelpMeOut, meaning
that at least one fix with a similar error message existed in
the database at the time. This suggests that common errors
are common enough to have example fixes after relatively
few hours of usage. Whether these fixes are helpful will be
addressed further below. 238 queries (87%) were for
compiler errors; 36 for runtime errors. The dominance of
compiler errors may be due to the format of the tutorial
where students worked through a number of projects in
fairly quick succession.

Students submitted 101 fixes (2.6 per person, per hour, 88
compiler error fixes, 13 runtime fixes). Even within the
relatively short time span of 39 person-hours, many of the
fixes that were newly submitted were recycled and returned
to other users (or the same user). In one example we
observed, a student had a compile-time error and found out
that the fix suggestion presented by HelpMeOut had been
entered by his neighbor struggling with a similar problem
just a few minutes earlier.
How useful are the returned suggestions?
We manually examined each query generated during the
workshops and the suggested fixes returned at the time to
determine utility of suggestions. We operationalized utility
as follows: given the error message and the line of code
reported as the error line, does at least one of the returned
suggestions lead either to a direct solution of the problem
or to a clarification of the problem that suggests a solution?
One example of a direct solution is a syntax error where
“}” was used instead of “]”, and the fix suggests this exact
substitution. An example of an indirectly useful suggestion
is a misspelled function name where the suggestions show
other misspellings that were corrected, but not for the same
function name.
For 96 of the 274 student queries we could not determine
whether the suggestions were helpful or not, mostly due to
limited code context in our log files. We labeled the
remaining 178 queries with three categories: helpful, not
helpful, and no suggestions returned.
On average, for this data set, 47% of queries yielded useful
suggestions, 25% were not useful, and 23% yielded no
suggestions. Figure 9 shows how these percentages evolved
over time. The percentage of queries for which no sugges-
tions were returned decreases over time, as should be
expected. However, the percentage of useful suggestions so
far hovers consistently just below 50%. In other words,
every other query returns useful suggestions. Why are
useful results relatively steady? One possible explanation is
that there are still many distinct error instances for a given
error messages that we have not captured in the database
yet. We would predict the rate of useful suggestions to
eventually rise in this case. A larger deployment with more
varied programming tasks and a larger dataset will have to

Figure 9. Relative utility of returned suggestions for
queries issued during the Processing workshops.

Figure 10. Self-reported expertise of workshop participants.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1024

d
p
s
b
W
A
q
W
q
th
W
H
p
u
p
ty
w
c
la
e
th
u
li
T
s
m
w
th

F
s

F
b

determine to w
possible explan
systematically
below suggests
What errors can
Are there char
queries that yie
We manually
queries that yi
hose that did n

What do these
HelpMeOut? F
punctuation sy
useful suggest
punctuation ca
ypes and diffe

while covering
contain appropr
arger corpus o

effective. Seco
here is also a

useful suggesti
ikelihood of ha

The principal r
set of underlyi
messages. Whi
when only con
hat many unde

Figure 11. Er
suggestions fro

Figure 12. Erro
but where sugg

what extent utili
nation is that th
fails for some

s that this optio
n be corrected?
racteristic diff
elded useful v

categorized
ielded useful

not yield useful
e results sugge
First, the pred
yntax errors in
tions points
an manifest it
erent places in
g the appropr
riate matching
of examples w
ond, beyond th

longer “tail”
ions: again, on
aving seen less
realization from
ing causes ma
ile HelpMeOu
nsidering error
erlying causes

rror types for
om HelpMeOut.

or types for qu
gestions were n

ity can be incr
he current rele
subset of erro

on is less likely

ferences in the
versus non-usef
the errors co
suggestions (

l suggestions (F
est about the

dominance of
queries that d

to the fact
tself in many
code. HelpMe

riate error me
g lines of sourc
will be needed
he “head” of t

of queries tha
nly more data w
s frequent error
m this analysis
ap onto a sma
ut achieved 84
r messages, ou
are not yet re

r queries tha
.

ueries that yiel
not useful.

eased. A secon
vance algorith

ors. Our analys
y.

e types of err
ful suggestion
ontained in th
(Figure 11) an
Figure 12).
performance
“miscellaneou
did not produc
that misplace
different err

eOut’s databas
ssages, did n

ce code yet. So
, and should b
this distributio
at did not yie
will increase th
r types.
s is that a larg
ller set of err
4% of coverag
ur data sugges
presented in th

at yielded use

lded suggestio

nd
hm
sis

or
s?
he
nd

of
s”
ce
ed
or
se,
not
o a
be

on,
ld
he

ger
or
ge
sts
he

fix da
could
We fi
runtim
error m
proble
not ca
includ
work.
Follow
The p
approa
room
luated
expert
expert
code?
compi
messag
directl
compi
Finally
explan
analog
mers s
be aid
fix dem
DISCU
This s
collabo
identif
Privac
Can w
(buggy
softwa
practic
like H
code
HelpM
proprie
disable
databa
code c
person
Restric
Our ev
as a cl
tion, c
Thus a
group
sharing
added
on rel
related

eful

ons,

atabase. This s
in fact rise wit
inally note th

me exceptions.
manifests itsel

em has to be fix
aptured in our
ded in this analy

w-Up Questions
presented eval
ach of HelpM
for improvem
the efficacy o

t users able to
ts, and transfer

And more ge
ler errors aid
ges? We also
ly to current
ler errors in
y, future evalu
nations have o
gical problem s
seeking to tran
ed by an expla
monstrates, but
USSION
ection reviews
orative appro
fies areas for fu
cy — Is Sharin
we assume that
y) code freely w
are community
ce and we fore

HelpMeOut for
is written as

MeOut will ha
etary code. He
e submitting f
ase traffic. Two
confidentiality
nal, read-only d
cted Group Dep
valuation sugg
ass of students

can generate en
an installation
where code sh
g outside of th
benefit of a lo

lated code are
d errors.

suggests that
th a longer dep
hat our analy
For runtime e

lf is frequently
xed. Because t
logs, most run
ysis. We leave

luation sugges
MeOut shows
ment. However
of the presenta
o take suggest
r the fixes suc
enerally, does

d programmer
o have not ye

status quo te
documentation
uation should

on transfer per
solving [11,12

nsfer a fix sugg
anation that sta
t we have yet t

s technical and
oach embodie
uture work.
ng Realistic?
t people will b
with the world

y, code sharing
esee no obstac

this user clas
open source.

ave to navigat
elpMeOut alre
fixes to the da
o other possibl
are restricted

databases.
ployments
gests that small
s, or a product
nough fixes to
n that operates
haring within th
he group is no
cal installation
e more likely

the rate of us
loyment of He

ysis is inconc
errors, the line
y not the line
this remote erro
ntime errors co
e this evaluatio

sts that the a
promise, whi

r, we have no
ation interface
tions rated as
ccessfully into

presenting ex
understanding

t compared H
chniques of l
n or using w

clarify the im
rformance. Lit

2] suggests tha
gestion to their
ates the princip
to measure this

d social limitati
ed in HelpM

be willing to
d? Within the o

is already an e
cles in adoption
s. But only a
. In general,
te issues of p
eady offers the
atabase, or to
le scenarios tha
group deploym

ler groups of u
team within an
create a usefu

s within a sma
he group is per
ot, can still be
n is that people
 to make (an

seful fixes
elpMeOut.
clusive for

where the
where the

or line was
ould not be
on to future

algorithmic
ile leaving
ot yet eva-
: Are non-
useful by
their own

xamples of
g of error

HelpMeOut
ooking up

web search.
mpact that
terature on
t program-
r code will
ple that the
s effect.

ions of the
MeOut and

share their
pen source
established
n of a tool
fraction of
tools like

private and
e option to
disable all
at maintain
ments, and

users, such
n organiza-

ul database.
aller social
rmitted, but
useful. An

e who work
nd correct)

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1025

Personal Read-Only Databases
Another option is to only collect fixes from a group of
users who opts in to supply those fixes, but to let a larger
group of users who do not wish to share their code benefit
from the database. Because each query also transmits some
amount of the user’s code to the database to establish a
match, some users may not want to issue remote queries.
The database file itself could be located on the user’s own
machine and updated periodically, so no private informa-
tion is ever relayed to a third party.
Keeping private data private, selectively
Even in the case where a user community generally agrees
to share source code, some code within a project should
remain private. Examples are passwords and API keys
stored as plain text in source code. We propose to address
this issue through source code annotations. If an annotation
is found preceding a variable declaration, that variable’s
value could obfuscated before code is sent to the server.
This places some burden on the developer to remember to
label data as private, but enables fine-grained control.
Plagiarism and Learning
Debugging tools for non-experts can have a variety of
goals: one goal could be to teach students how to form
correct mental models of compilation and program
execution. A different goal would be to simply eliminate
programming errors, whether or not learning takes place
(“just fix it”). These two goals can be in conflict. For
example, when we demonstrated HelpMeOut to Computer
Science teachers in our department, they remarked that use
of HelpMeOut in a class context could lead to a “free rider
problem” where students who procrastinate on an assign-
ment benefit from fixes added to HelpMeOut by students
who started earlier.
Our motivation for HelpMeOut was to aid non-experts who
are not primarily evaluated on the originality of the code
they produce, but who have to write code as part of their
work. Hobbyists, electronic artists, web designers fit this
description.
Limitations
The presented implementation of HelpMeOut has several
important technical limitations:
1) A simplifying characteristic of the Processing compiler

used in our prototype is that it is configured to only
report a single error. This facilitates association of a
given code change with a given error.

2) HelpMeOut does not currently deal with type systems
of object-oriented languages. All user-defined types
are considered identifiers and are abstracted away dur-
ing queries. A more sophisticated implementation
would take inheritance relationships into account.

3) Lexical analysis as a basis for relevance matching and
patching outperforms matching plain text, but has its
limits. For more accurate matching, HelpMeOut
should analyze parse trees if such trees can be con-
structed.

4) The progress heuristic used to detect fixes to runtime
exceptions has limitations: it cannot deal with different
application input between runs.

Finally, the degree to which amateur programmers can
reason about the transfer of fixes from one program to
another is an important empirical question that requires
further investigation.
RELATED WORK
HelpMeOut related to prior work in five areas: studies of
novice programmers; systems for finding and correcting
bugs; example-centric programming; better programming
IDEs; and instrumented authoring environments.
Programming Errors of Novices
Debugging by novices has been well-studied in the
Computer Science Education community. For a recent
survey, see [26]; a recent multi-institutional study is
reported in [10]. Nienaltowski et al. [28] studied how
different styles of compiler error messages are understood
by novice programmers, finding that additional detail is not
necessarily helpful and suggesting that information
placement and structuring are more important. Our research
goal is complementary in that HelpMeOut strives to
improve debugging performance without changing
compiler messages. Ahmadzadeh et al. [1] studied patterns
of compiler errors in novice users' code using instrumenta-
tion similar to ours — but their results were manually
analyzed, while HelpMeOut uses them to generate
suggestions automatically.
Finding and Correcting Bugs
Bug detection is an active research area in software
engineering. Some projects have specifically investigated
how to find and correct bugs and program errors based on
data collected from a development team or a larger user
base. Kim et al.'s BugMem [19] uses the version control
history of large, long-running software projects to find
project-specific bugs and suggest fixes. One interesting
result is that bugs found by mining project histories are
largely distinct from bugs found by static analysis tech-
niques, suggesting that tools based on code-to-code
comparison can effectively augment other formal tech-
niques. DynaMine [24] similarly extracts recurring patterns
of application-specific errors by data mining project
revision histories.
Liblit et al. [22] proposed to automatically instrument
application binaries to collect statistical data of runtime
behavior during real-world software deployment. The
statistics are aggregated on a central server where the
developer can inspect them to find runtime bugs.
Other research and commercial systems have focused on
supporting remote synchronous debugging, where multiple
developers engage in a conversation around a shared view
of program source [8] or runtime state [30]. Domingue and
Mulholland's goal to “foster online debugging communi-
ties” is also congruent with our motivation [9]. They argue
that there are no successful online debugging communities
so far because communicating bugs through plain text

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1026

forum posts place too high a burden on programmers to
describe and understand bugs. Research on collaboration in
programming has mostly focused on the corporate setting,
where small, geographically distributed teams of experts
are the norm. For example, the Jazz [7] project augments
the Eclipse development environment with team collabora-
tion tools.
Ko’s WhyLine [20] is notable for its focus on debugging as
a human cognitive activity that can benefit from reframing
the debugging task as posing and answering a set of “why”
and “why not” questions.
Finding Relevant Examples
Recent work has examined how to aid programmers with
finding relevant example code for programming libraries.
These projects differ from HelpMeOut by focusing on
finding working examples of new functionality that does
not yet exist in the user’s code, rather than suggesting
solutions to problems in the user’s code.
Brandt’s BluePrint system [4] integrates search for code
examples directly into the development environment.
Assieme [16] introduced an augmented code search engine
that combines documentation search results with code
snippets of the relevant function in use. Jadeite [31] uses
data mining of published code examples to improve the
documentation of libraries, e.g., by resizing the font used to
display function names to show their relative call frequency
in real-world code.
Better Editors
HelpMeOut aids debugging by relying on crowdsourced
suggestions; an alternative approach is to improve the
compiler or code editor. Many of the compile-time errors
caught by HelpMeOut in our evaluation could also be
prevented by smarter editors, though this is not generally
true for runtime exceptions.
Structured or syntax-directed editors (e.g., the Cornell
Program Synthesizer [32]) make it impossible to create
syntax errors in the first place. However, such editors
increase the viscosity—the resistance to change—making
experimentation harder. Relaxed edit-time grammars have
been proposed as a solution to this problem [2].
A second strategy is to provide auto-completion during
editing (e.g., Microsoft IntelliSense) and error highlighting
through background compilation (e.g., as found in the
Eclipse IDE). Such techniques match source code against
formal descriptions of APIs and errors; HelpMeOut
matches against real-world occurrences of errors. Help-
MeOut can thus catch errors caused by incorrect use of API
conventions. HelpMeOut also provides explanations of
concrete examples of errors and fixes. Incremental
compilation is only applicable to compiled languages. This
reinforces our motivation to apply HelpMeOut to dynamic
languages in future work.
A third path is to provide better compiler errors [3,17]. We
see such research as complementary to our work.

Instrumented Authoring Environments
Prior research has investigated how to extract information
from authoring application usage logs to inform usability
evaluation and to guide application users.
Hilbert and Redmiles [15] published a survey of event trace
recording methods to derive application usability data.
Terry et al. instrumented an open source graphics program
to collect usage information [33]. Usage logs are shared
publicly on a website, a practice they term “open instru-
mentation”. To provide a level of privacy, logs are partially
anonymized and abstracted.
Linton and Schaefer [23] instrumented a Word processor to
log command usage over time; based on log data, visualiza-
tions instruct users how to more effectively use the
application. More recently, Matejka et al. improve upon
Linton’s results in CommunityCommands [25], a command
recommendation system for complex creativity software
such as AutoCAD. One goal of CommunityCommands is
to suggest useful functions that users are not yet employing
in the product to help them gain expertise.
Grabler et al. [13] generate tutorials in graphics software by
recording demonstrations of an expert user and generaliz-
ing instructions from that history. We share with this
research the strategy of automatically logging salient events
during application use, as opposed to explicit revision
management by the user. Our approach differs by logging
changes to source code instead of command histories.
CONCLUSIONS AND FUTURE WORK
This paper presented HelpMeOut, a social recommender
system that aids the debugging of error messages by
suggesting solutions that other programmers have applied
in the past. The main contribution of this paper is a new
strategy of collecting and presenting crowdsourced
suggestions for programming errors inside an IDE. We
described the general architecture for such a system, two
implementations, an initial evaluation and a discussion of
the potential benefits and limitations vis-à-vis other
approaches.
The fundamental technical insight enabling HelpMeOut is
to use both error messages and source code context in the
capture and search for relevant fixes. We believe that the
general approach of automatically collecting usage data,
aggregating data over many users, and then suggesting
actions based on that data has wider applicability beyond
the realm of programming errors. We also believe the
approach can help users learn about API usage. We would
also like to explore how to extend our approach beyond text
programming languages into other media authoring tools.
One interesting question going forward is to what extent
systems like HelpMeOut can combine automatic instru-
mentation, matching, and fixing algorithms with explicit
user interaction.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1027

REFERENCES
1. Ahmadzadeh, M., Elliman, D., and Higgins, C. An analysis

of patterns of debugging among novice computer science
students. Proceedings of the 10th annual SIGCSE confe-
rence on Innovation and technology in computer science
education, ACM (2005), 84-88.

2. Birnbaum, B.E. and Goldman, K.J. Achieving Flexibility in
Direct-Manipulation Programming Environments by Relax-
ing the Edit-Time Grammar. Proceedings of the IEEE Sym-
posium on Visual Languages and Human Centric Compu-
ting, IEEE Computer Society (2005), 259-266.

3. Boustani, N.E. and Hage, J. Improving type error messages
for generic java. Proceedings of the 2009 ACM SIGPLAN
workshop on Partial evaluation and program manipulation,
ACM (2009), 131-140.

4. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,
S.R. Example-Centric Programming: Integrating Web
Search into the Development Environment. Proceedings of
CHI 2010, (2010).

5. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., and
Klemmer, S.R. Opportunistic Programming: Writing Code to
Prototype, Ideate, and Discover. IEEE Software 26, 5 (2009),
18-24.

6. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., and
Klemmer, S.R. Two studies of opportunistic programming:
interleaving web foraging, learning, and writing code. Pro-
ceedings of the 27th international conference on Human
factors in computing systems, ACM (2009), 1589-1598.

7. Cheng, L., Souza, C.R.D., Hupfer, S., Patterson, J., and
Ross, S. Building Collaboration into IDEs. Queue 1, 9
(2004), 40-50.

8. Dixon, P. pastebin - collaborative debugging tool.
http://pastebin.com/.

9. Domingue, J. and Mulholland, P. Fostering debugging
communities on the Web. Communications of the ACM 40, 4
(1997), 65-71.

10. Fitzgerald, S., Lewandowski, G., McCauley, R., et al.
Debugging: Finding, Fixing and Flailing, a Multi-
Institutional Study of Novice Debuggers. Computer Science
Education 18, 2 (2008), 93-116.

11. Gick, M.L. and Holyoak, K.J. Analogical Problem Solving.
Cognitive Psychology 12, 3 (1980), 306-55.

12. Gick, M.L. and Holyoak, K.J. Schema induction and
analogical transfer. Cognitive Psychology 15, 1 (1983), 1-38.

13. Grabler, F., Agrawala, M., Li, W., Dontcheva, M., and
Igarashi, T. Generating photo manipulation tutorials by
demonstration. ACM Transactions on Graphics 28, 3 (2009),
1-9.

14. Heckel, P. A technique for isolating differences between
files. Communications of the ACM 21, 4 (1978), 264-268.

15. Hilbert, D.M. and Redmiles, D.F. Extracting usability
information from user interface events. ACM Computing
Surveys 32, 4 (2000), 384-421.

16. Hoffmann, R., Fogarty, J., and Weld, D.S. Assieme: finding
and leveraging implicit references in a web search interface
for programmers. Proceedings of the 20th annual ACM sym-
posium on User interface software and technology, ACM
(2007), 13-22.

17. Jeffery, C.L. Generating LR syntax error messages from
examples. ACM Transactions on Programming Languages
and Systems 25, 5 (2003), 631-640.

18. Jiang, L., Misherghi, G., Su, Z., and Glondu, S. DECKARD:

Scalable and Accurate Tree-Based Detection of Code
Clones. Proceedings of the 29th international conference on
Software Engineering, IEEE (2007), 96-105.

19. Kim, S., Pan, K., and E. E. James Whitehead, J. Memories of
bug fixes. Proceedings of the 14th ACM SIGSOFT interna-
tional symposium on Foundations of software engineering,
ACM (2006), 35-45.

20. Ko, A.J. and Myers, B.A. Debugging reinvented: asking and
answering why and why not questions about program beha-
vior. Proceedings of the 30th international conference on
Software engineering, ACM (2008), 301-310.

21. Levenshtein, V.I. Binary codes capable of correcting
deletions, insertions and reversals (in Russian). Soviet Phys-
ics Doklady 10, 8 (1966), 707-710.

22. Liblit, B., Naik, M., Zheng, A.X., Aiken, A., and Jordan,
M.I. Scalable statistical bug isolation. Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation, ACM (2005), 15-26.

23. Linton, F. and Schaefer, H. Recommender Systems for
Learning: Building User and Expert Models through Long-
Term Observation of Application Use. User Modeling and
User-Adapted Interaction 10, 2-3 (2000), 181-208.

24. Livshits, B. and Zimmermann, T. DynaMine: finding
common error patterns by mining software revision histories.
SIGSOFT Software Engineering Notes 30, 5 (2005), 296-
305.

25. Matejka, J., Li, W., Grossman, T., and Fitzmaurice, G.
CommunityCommands: command recommendations for
software applications. Proceedings of the 22nd annual ACM
symposium on User interface software and technology,
ACM (2009), 193-202.

26. McCauley, R., Fitzgerald, S., Lewandowski, G., et al.
Debugging: A Review of the Literature from an Educational
Perspective. Computer Science Education 18, 2 (2008).

27. Nardi, B. A small matter of programming. MIT Press, 1993.
28. Nienaltowski, M., Pedroni, M., and Meyer, B. Compiler

error messages: what can help novices? Proceedings of the
39th SIGCSE technical symposium on Computer science
education, ACM (2008), 168-172.

29. Shiffman, D. Learning Processing: A Beginner's Guide to
Programming Images, Animation, and Interaction. Morgan
Kaufmann, 2008.

30. Smith, R.B., Wolczko, M., and Ungar, D. From Kansas to
Oz: collaborative debugging when a shared world breaks.
Communications of the ACM 40, 4 (1997), 72-78.

31. Stylos, J., Faulring, A., Yang, Z., and Myers, B.A. Improv-
ing API Documentation Using API Usage Information. Pro-
ceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, VL/HCC'09, (2009).

32. Teitelbaum, T. and Reps, T. The Cornell program synthesiz-
er: a syntax-directed programming environment. Communi-
cations of the ACM 24, 9 (1981), 563-573.

33. Terry, M., Kay, M., Vugt, B.V., Slack, B., and Park, T.
Ingimp: introducing instrumentation to an end-user open
source application. Proceeding of the twenty-sixth annual
SIGCHI conference on Human factors in computing systems,
ACM (2008), 607-616.

34. Yeh, R.B., Paepcke, A., and Klemmer, S.R. Iterative design
and evaluation of an event architecture for pen-and-paper
interfaces. Proceedings of the 21st annual ACM symposium
on User interface software and technology, ACM (2008),
111-120.

CHI 2010: Understanding and Supporting Programming April 10–15, 2010, Atlanta, GA, USA

1028

