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ABSTRACT
Understanding perception is critical to effective visualiza-
tion design. With its low cost and scalability, crowdsourcing
presents an attractive option for evaluating the large design
space of visualizations; however, it first requires validation.
In this paper, we assess the viability of Amazon’s Mechanical
Turk as a platform for graphical perception experiments. We
replicate previous studies of spatial encoding and luminance
contrast and compare our results. We also conduct new ex-
periments on rectangular area perception (as in treemaps or
cartograms) and on chart size and gridline spacing. Our re-
sults demonstrate that crowdsourced perception experiments
are viable and contribute new insights for visualization de-
sign. Lastly, we report cost and performance data from our
experiments and distill recommendations for the design of
crowdsourced studies.

ACM Classification: H5.2 [Information interfaces and pre-
sentation]: User Interfaces—Evaluation/Methodology

General Terms: Experimentation, Human Factors.

Keywords: Information visualization, graphical perception,
user study, evaluation, Mechanical Turk, crowdsourcing.

INTRODUCTION
“Crowdsourcing” is a relatively new phenomenon in which
web workers complete one or more small tasks, often for
micro-payments on the order of $0.01 to $0.10 per task.
Such services are increasingly attractive as a scalable, low-
cost means of conducting user studies. Micro-task markets
lower the cost of recruiting participants, offering researchers
almost immediate access to hundreds (if not thousands) of
users. Similarly, by reducing the burden of participation, the
subject pool is greatly increased and diversified [13].

The reduced cost structure of crowdsourced evaluations is
particularly attractive in visualization, where the design space
of possible visual encodings is large and perceptually inter-
connected [2, 7, 10, 19, 27, 34]. Crowdsourcing may enable
experimenters to canvas a wide range of subjects using their
standard displays, effectively swapping experimental control
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for ecological validity. Crowdsourced experiments may also
substantially reduce both the cost and time to result.

Unfortunately, crowdsourcing introduces new concerns to be
addressed before it is credible. Some concerns, such as eco-
logical validity, subject motivation and expertise, apply to
any study and have been previously investigated [13, 14, 23];
others, such as display configuration and viewing environ-
ment, are specific to visual perception. Crowdsourced per-
ception experiments lack control over many experimental
conditions, including display type and size, lighting, and
subjects’ viewing distance and angle. This loss of control
inevitably limits the scope of experiments that reliably can
be run. However, there likely remains a substantial subclass
of perception experiments for which crowdsourcing can pro-
vide reliable empirical data to inform visualization design.

In this work, we investigate if crowdsourced experiments in-
sensitive to environmental context are an adequate tool for
graphical perception research. We assess the feasibility of
using Amazon’s Mechanical Turk to evaluate visualizations
and then use these methods to gain new insights into visual-
ization design. We make three primary contributions:

• We replicate prior laboratory studies on spatial data en-
codings and luminance contrast using crowdsourcing tech-
niques. Our new results match previous work, are con-
sistent with theoretical predictions [21], and suggest that
crowdsourcing is viable for testing graphical perception.

• We demonstrate the use of crowdsourcing to generate new
perception results. We conduct experiments investigating
area judgments, chart size and gridline spacing. The results
provide novel insights for optimizing display parameters.

• We analyze the performance and cost of Mechanical Turk
across our experiments and distill recommendations for ex-
perimenters. For example, we find that qualification tasks
and verifiable questions help ensure high-quality responses
and that experimenters can accelerate the time to results
by increasing the compensation level. Although we focus
on evaluating visualizations, we believe these latter results
generalize to a variety of crowdsourced studies.

GRAPHICAL PERCEPTION
A great deal of prior research has investigated how visual
variables such as position, length, area, shape, and color
impact the effectiveness of data visualizations. Following
Cleveland [7], we use the term graphical perception to de-
note the ability of viewers to interpret such visual encodings



and thereby decode information in graphs. Assessing the im-
pact of visual encodings on graphical perception enables de-
signers to optimize their visualizations and is vital to the de-
sign of automatic presentation software [21, 22].

Inspired by Bertin’s [2] systematic treatment of visual vari-
ables, researchers in cartography [19, 27], statistics [7], and
computer science [21] have derived perceptually-motivated
rankings of the effectiveness of variables such as position,
length, area, and color for encoding quantitative data. Some
have further tested their predictions via human subjects ex-
periments. For example, subjects in Cleveland & McGill’s [7]
seminal study were shown charts and asked to compare
the values of two marks by estimating what percentage the
smaller value was of the larger. This accuracy measure was
then used to test and refine the ranking of visual variables.

Many researchers have applied experimental methods to
graphical perception tasks, for example to test differences
across chart types [28, 29], shape discrimination in scatter
plots [17, 31], and the effects of viewing angle and perspec-
tive distortion [36]. These studies measure how an individual
visual encoding variable affects the accuracy and/or response
time of estimating values of the underlying data.

Researchers have also investigated interactions between vi-
sual variables [10, 34]. Viewers decode separable dimen-
sions such as position and shape largely independently, while
perception of integral dimensions such as color hue and sat-
uration are correlated [34]. For example, a redundant en-
coding using integral dimensions may incur performance im-
provements (e.g., redundancy gain) or deficits (e.g., filtering
interference). The interaction of visual variables complicates
our characterization of the design space, as extrapolating the
results from studies of isolated visual variables is unreliable.

Graphical perception is also affected by other design param-
eters and data characteristics, including contrast effects (e.g.,
due to background luminance [30]), plotting density [11, 30],
and changes to chart size [12], scale [6], or aspect ratio [1, 5].
Such contextual cues need not be purely visual; some stud-
ies suggest that environmental context (e.g., calm or busy
[24]) or textual prompts priming specific visual metaphors
[37] may also affect the decoding of visualized data.

The above considerations reinforce the need for empirical as-
sessment of visualizations to validate theory, replicate prior
results, and evaluate real-world applications. We aim to es-
tablish the viability of crowdsourcing as a low-cost adjunct
to laboratory experiments. Moreover, as visualizations be-
come increasingly prominent online [33, 35], web-based ex-
perimentation may improve ecological validity by reaching a
diverse population of subjects and display configurations.

WEB-BASED EXPERIMENTS AND MECHANICAL TURK
The web is increasingly being used for experimentation and
research. For example, by silently presenting different in-
terfaces to randomized subsets of users, companies study the
impact of changes on user behavior through log analysis. Ko-
havi et al. [15] provide a brief survey of experiments and rec-
ommendations for web experiment design. Web-based ex-
perimentation is increasingly popular and accepted in social

psychology [16], including research on the development of
cultural markets [25] and the manipulation of incentives for
online peer-production [4, 18].

In this work, we investigate the viability of crowdsourc-
ing graphical perception experiments. To do so, we con-
ducted a series of experiments on Amazon’s Mechanical
Turk (MTurk), a popular micro-task market. On MTurk, re-
questers post jobs (called Human Intelligence Tasks or HITs)
for consideration by a pool of workers colloquially referred
to as Turkers. Each HIT has an associated reward—typically
a micro-payment of $0.01 to $0.10—and a set number of as-
signments—the maximum number of Turkers who can per-
form the task. HITs may also require one or more qualifica-
tions, such as having 95% or better HIT acceptance or suc-
cessfully completing a quiz. Workers discover HITs through
a keyword search interface that supports task previews and
from which workers can elect to complete any number of
tasks. The requester pays the workers for completed tasks,
but retains the ability to reject responses deemed invalid. At
any time MTurk has thousands of active HITs; at the time of
writing the number was 97,212.

MTurk provides a convenient labor pool and deployment
mechanism for conducting formal experiments. For a fac-
torial design, each cell of the experiment can be published as
an individual HIT and the number of responses per cell can
be controlled by throttling the number of assignments. Qual-
ification tasks may optionally be used to enforce practice
trials and careful reading of experimental procedures. The
standard MTurk interface provides a markup language sup-
porting the presentation of text, images, movies, and form-
based responses; however, experimenters can include inter-
active stimuli by serving up their own web pages that are
then presented on the MTurk site within an embedded frame.

Recent research has investigated the use of MTurk for crowd-
sourcing labor, including user studies. Kittur et al. [14] used
MTurk for collecting quality judgments of Wikipedia arti-
cles. Turker ratings correlated with those of Wikipedia ad-
ministrators when the tasks included verifiable questions and
were designed such that completing them meaningfully is
as easy as not. Mason & Watts [23] studied the effect of
compensation level for image sorting and word puzzle tasks.
They found that raising the reward for each HIT increased
the quantity of individual responses but not the quality (e.g.,
accuracy) of the work performed. The implication is that
paying more results in faster, though not better, results.

Mechanical Turk has also been applied to perception exper-
iments. Cole et al. [8] studied shape perception of 3D line
drawings by asking Turkers to orient gauge figures indicat-
ing surface normals. They collected 275,000 gauge measure-
ments from 550 Turkers, which they used to evaluate render-
ing techniques. Compensation and collection time were not
reported, and the study did not validate the use of MTurk via
comparison to results collected in a laboratory.

RESEARCH GOALS
Our first research goal was to assess the viability of crowd-
sourced graphical perception experiments by replicating pre-
vious laboratory-based studies. To cover a suitably inter-



esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380×380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.
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Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.
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Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8 ). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8
term is included to handle zero-valued differences.
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Figure 3: Midmeans of log absolute errors against
true percentages for each proportional judgment type;
superimposed are curves computed with lowess.

the results for the position-angle experiment to those for the
position-length experiment. By designing judgment types 6
and 7 to adhere to the same format as the others, the results
should be more apt for comparison. Indeed, the new results
match expectations: psychophysical theory [7, 34] predicts
area to perform worse than angle, and both to be significantly
worse than position. Theory also suggests that angle should
perform worse than length, but the results do not support this.
Cleveland & McGill also did not find angle to perform worse
than length, but as stated their position-angle results are not
directly comparable to their position-length results.

EXPERIMENT 1B: RECTANGULAR AREA JUDGMENTS
After successfully replicating Cleveland & McGill’s results,
we further extended the experiment to more judgment types.
We sought to compare our circular area judgment (T7) re-
sults with rectangular area judgments arising in visualiza-
tions such as cartograms [9] and treemaps [26]. We hypoth-
esized that, on average, subjects would perform similarly to
the circular case, but that performance would be impacted by
varying the aspect ratios of the compared shapes. Based on
prior results [19, 34], we were confident that extreme varia-
tions in aspect ratio would hamper area judgments. “Squar-
ified” treemap algorithms [3, 35] address this issue by at-
tempting to minimize deviance from a 1:1 aspect ratio, but it
is unclear that this approach is perceptually optimal. We also
wanted to assess if other differences, such as the presence of
additional distracting elements, might bias estimation.

Method
We again used Cleveland & McGill’s proportional judgment
task: subjects were asked to identify which of two rectangles
(marked A or B) was the smaller and then estimate the per-
centage the smaller was of the larger by making a “quick
visual judgment.” We used a 2 (display) × 9 (aspect ra-
tios) factorial design with 6 replications for a total of 108
unique trials (HITs). In the first display condition (T8) we
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Figure 4: Proportional judgment results (Exp. 1A & B).
Top: Cleveland & McGill’s [7] lab study. Bottom: MTurk
studies. Error bars indicate 95% confidence intervals.
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Figure 5: Rectangular area judgments by aspect ratios
(1B). Error bars indicate 95% confidence intervals.

showed two rectangles with horizontally aligned centers; in
the second display condition (T9) we used 600×400 pixel
treemaps depicting 24 values. Aspect ratios were determined
by the cross-product of the set { 2

3 , 1, 3
2} with itself, roughly

matching the mean and spread of aspect ratios produced by
a squarified treemap layout (we generated 1,000 treemaps of
24 uniformly-distributed random values using Bruls et al.’s
layout [3]: the average aspect ratio was 1.04, the standard de-
viation was 0.28). We systematically varied area and propor-
tional difference across replications. We modified the squar-
ified treemap layout to ensure that the size and aspect ratio
of marked rectangles matched exactly across display condi-
tions; other rectangle areas were determined randomly.

As a qualification task, we used multiple-choice versions of
two trial stimuli, one for each display condition. For each
trial (HIT), we requested N=24 assignments. We also re-
duced the reward per HIT to $0.02. We chose this number
in an attempt to match the U.S. national minimum wage (as-
suming a response time of 10 seconds per trial).



Results
To facilitate comparison across studies, we used Cleveland
& McGill’s log absolute error measure. We omitted 16 re-
sponses (0.62%), for which the subject’s estimate differed
from the true difference by more than 40%. Midmeans for
each display type are included in Figure 3. We see a de-
pendence on the true proportions: judgments become easier
towards the extremes of the scale (0 or 100%). Confidence
intervals are shown in Figure 4. The results confirm our hy-
pothesis that, on average, the accuracy of rectangular area
judgments matches that of circular area judgments.

We found a significant (p < 0.05) effect of aspect ratio on
judgment accuracy, as shown in Figure 5. Somewhat surpris-
ingly, comparisons of rectangles with aspect ratio 1 exhibited
the worst performance, a result robust across both the rectan-
gle and treemap display conditions. This finding suggests
that viewers actually benefit from the inability of a squari-
fied treemap algorithm to perfectly optimize the rectangles
to 1:1 aspect ratios. The result is consistent with the hypoth-
esis that viewers use 1D length comparisons to help estimate
area: comparing the lengths of sides as a proxy for area leads
to maximal error when comparing squares. Additional exper-
imentation is needed to form an accurate perceptual model.

We found no significant difference between the rectangle
(T8) and treemap (T9) conditions, suggesting that other el-
ements in a treemap display do not interfere with judgment
accuracy. That said, we might extend the study to compre-
hensively test for interference effects by including rectangles
of varying color intensity. However, as we lack control over
subjects’ display configuration, we must first establish the
reliability of crowdsourced studies involving luminance con-
trast. We take up this issue in our next experiment.

EXPERIMENT 2: GRIDLINE ALPHA CONTRAST
The previous experiments examined spatial encodings using
black and white images. We now turn to a different set of
perceptual tasks: separation and layering via luminance con-
trast. To do so, we replicated an alpha contrast experiment by
Stone & Bartram [30] in which subjects configure the alpha
(transparency) of scatter plot gridlines across variations of
background darkness and plot density. The experiment seeks
to bound the range of acceptable luminance contrast settings
for visual reference elements such as gridlines. The results
can inform smart defaults for the presentation of reference
elements within display software.

As this experiment involves careful calibration of luminance
contrast within visualization displays, a successful replica-
tion would help establish the utility of crowd-sourced exper-
iments for a broader range of perception tasks. We expect
monitor display settings and lighting conditions to affect the
outcome of this task. While we lose control over such de-
tails when crowdsourcing, we might simultaneously gain a
more representative sample of web users’ displays: results
may exhibit higher variance, but with means suitable for a
larger user population. Accordingly, the goals of this repli-
cation were to (a) compare our crowdsourced results with
those gained in the laboratory and (b) determine which dis-
play configuration details we can unobtrusively collect and
assess to what degree they impact the results.

Figure 6: Density conditions for alpha contrast experi-
ment (left-to-right): none, sparse, medium, dense.

Figure 7: Background intensities for alpha contrast
experiment: #f3, #d8, #be, #a5, and #8e.

Method
We asked users to parameterize the display of chart gridlines
drawn over a plotting area. In task L, we asked subjects,
“Adjust the grid so that it is as light as possible while still
being usably perceptible.” In task D, we instructed them,
“Adjust the grid strength to meet your best judgment of how
obvious it can be before it becomes too intrusive and sits in
front of the image; some users have called this a ‘fence’.”

As the experiment requires interactivity, we could not use
the standard MTurk markup to create our HITs. Instead, we
hosted a Flash application, presented to subjects in an em-
bedded frame. The interface consisted of a chart display and
alpha adjustment controls. “Lighter” and “Darker” buttons
adjusted the alpha contrast by a value of 2 units on a 0-255
scale; holding a button resulted in an accelerated adjustment.
By hosting the task ourselves, we were also able to use cus-
tom JavaScript to collect display configuration data, an op-
tion unavailable in the standard MTurk interface.

As a qualification task, subjects were asked to adjust a sam-
ple display so that the grid was fully transparent (alpha=0)
or fully opaque (alpha=1), thereby ensuring that the subject
could successfully run our Flash applet and adjust the grid
contrast. We also considered eliciting additional display con-
figuration information (such as monitor gamma), either by
asking explicitly or with a calibration task. While a number
of devices for facilitating user-provided perceptual estimates
of monitor gamma exist, they are unreliable. For example,
many LCD monitors are direction sensitive, with changes of
viewing angle of just a few degrees causing a significant shift
in perceived contrast. However, a rough estimate of gamma
can be made using the web browser’s “User-Agent” field to
infer the operating system: most PC systems use a gamma of
2.2 while Mac OS X (prior to 10.6) uses 1.8.
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Figure 8: Alpha contrast results (2L & 2D). Top: Stone
& Bartram’s [30] lab study. Bottom: Our MTurk study.
Error bars indicate 95% confidence intervals.
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Figure 9: MTurk results for “Light” task (2L), grouped by
operating system to estimate effect of monitor gamma.

We used a 5 (background)× 4 (density) factorial design with
3 replications, resulting in 60 trials (HITs) per task. Fig-
ures 6 and 7 illustrate these conditions. Each plot was sized
at 450×300 pixels, and displayed within a frame 700 pixels
tall. The background of the frame was varied with the trial
and sized to fill the majority of a standard laptop display.

For each trial, we recorded the alpha value, time to com-
pletion, and the subject’s screen resolution, color depth, and
browser type (“User-Agent”), as reported by JavaScript. We
posted 60 HITs each for tasks L and D with N=24 assign-
ments. Subjects were paid $0.02 per HIT.

Results
We analyzed 60×24 = 1,440 responses to task L, and 1,126
responses to task D. The missing responses (∼22%) to task
D were due to the expiration of our HITs on MTurk; we de-
scribe the reason why later. For task L, we omitted 9 results
(0.62%) for which alpha=0 or alpha>0.4. For task D, we
omitted 4 results (0.4%) for which alpha=0 or alpha=1.

Our results are shown in Figure 8, juxtaposed with the re-
sults of Stone & Bartram. Applying analysis of variance, we
found a significant effect of plot density (F (3,2413) = 3.49, p
= 0.015) but not of background intensity (F (4,2413) = 0.44,
p = 0.779), consistent with Stone & Bartram’s findings. Al-
pha values in task L are higher in our experiment. Stone &
Bartram note surprise at how low their values are; we surmise
that crowdsourced results may be more representative of web
users than a single laboratory display. Alpha values for task
D have a much higher variance than those of task L, again

consistent with past results. Our results corroborate Stone &
Bartram’s recommendation of alpha = 0.2 as a “safe” default.

We also examined the effect of display configuration on al-
pha values in task L. (We limited our attention to task L be-
cause it was more clearly defined and resulted in notably less
variance than task D.) We found a weak positive correlation
(r(1431) = 0.07, p < 0.01) between alpha values and screen
resolution (measured in total pixels; resolutions varied from
1024×768 to 1920×1200). Thus as the resolution increased,
users tended to make the (likely thinner) gridlines slightly
darker. Unsurprisingly, we also found a negative correlation
(r(1431) = -0.176, p < 0.01) between alpha values and mon-
itor color depth (one of 16, 24, or 32 bits): subjects tended to
select lighter alphas on displays with greater color resolution,
presumably due to better contrast.

We found a significant effect of operating system (F (1,1391)
= 10.24, p < 0.001), as determined via the browser-reported
User-Agent field (Figure 9). The darker alpha values for
Mac OS X prior to 10.6 (220 responses) versus other oper-
ating systems (1211 responses) are consistent with a more
“washed-out” monitor gamma of 1.8, indicating that the
User-Agent field provides some predictive power.

EXPERIMENT 3: CHART SIZE AND GRIDLINE SPACING
Our next experiment focuses on a design variable that is dif-
ficult to control in a crowdsourced study: visualization size.
While pixel size can easily be varied, the subjects’ physi-
cal display size, resolution, and viewing distance can not be
measured reliably. Still, by canvassing a diversity of web
users, we might determine pixel-based settings to optimize
presentation. Our goal was to assess the use of crowdsourc-
ing for experiments involving variations in chart sizing.

We investigated the effects of chart size and gridline spacing
on the accuracy of value comparisons in a chart. The experi-
ment design was inspired by Heer et al.’s [12] study of time-
series visualizations, which found that as chart heights were
decreased (from a starting height of 48 pixels, or 135 mm
on Heer et al.’s displays), subjects initially responded more
quickly without diminished accuracy, implying that there are
optimal sizes that maximize the speed and accuracy of graph-
ical perception. However, they did not investigate the effect
of further increasing chart height or introducing gridlines. In
this experiment, we sought to determine optimized sizing and
spacing parameters for web-based display.

Method
Subjects were shown a chart and asked to first indicate which
marked element (the left or the right) was smaller and then

Figure 10: Experiment 3 stimuli varying chart type,
chart height, and gridline spacing.
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Figure 11: Chart height and gridline spacing results
(3A & B). Error bars indicate 95% confidence intervals.

estimate the difference between the two (i.e., the value of the
larger minus the smaller). Subjects were instructed to be as
accurate as possible while making a “quick visual judgment.”

We used a 2 (chart)× 3 (height)× 4 (gridline spacing) facto-
rial design with 3 replications, for a total of 72 trials (HITs).
Either a bar chart or a line chart was shown with a height of
40, 80, or 160 pixels; gridlines were drawn at intervals of 10,
20, 50, or 100 units (see Figure 10 for examples). Each chart
consisted of 12 values distributed on a range of 0-100 units.
Each value was labeled A-L and values D and I were always
the compared values (c.f., [12]). As a qualification task, we
used multiple-choice variants of two trial stimuli: one bar
chart and one line chart, each 80 pixels tall.

For each experimental trial, we recorded estimation error as
|judged difference - true difference|. We chose this error
measure to facilitate comparison of our results with those
of Heer et al. [12]; however, the unreliability of response
times (discussed later) curtailed a deeper analysis of speed-
accuracy trade-offs along these lines.

We requested N=24 assignments and paid $0.02 per HIT. We
subsequently conducted a second experimental run, denoted
as 3B. The extended experiment used chart heights of 160
and 320 for a total of 48 HITs. We again requested N=24
assignments, but raised the reward to $0.04 per HIT.

Results
We analyzed a total of 2,880 responses from the two experi-
mental runs. We omitted 46 responses (1.60%) with error >
40. We then ran an ANOVA on the error results. We found
statistically significant effects for chart height (F (3,2802) =
14.16, p < 0.001), gridline spacing (F (3,2802) = 31.98, p <
0.001), and an interaction of height and spacing (F (9,2802)
= 2.11, p < 0.026). Figure 11 plots these results.

Using Bonferroni-corrected post-hoc tests, we found that

charts 40 pixels tall resulted in significantly more error (p <
0.001 in all cases), but found no significant difference be-
tween the other heights. The results confirm our hypothe-
sis that accuracy plateaus as chart heights increase, and sug-
gest little benefit for increasing chart height beyond 80 pixels
when using a 0-100 scale. This size roughly coincides with
the point at which the pixel and data resolutions match.

Adding gridlines improved accuracy, though post-hoc tests
found no significant difference between 10 and 20 gridlines
(p = 0.887) or between 50 and 100 (p = 0.905). Error in-
creased steeply in charts with a height of 40 pixels and grid-
line spacing of 10 units. Presumably the dense packing of
gridlines impedes accurate tracing to their labels. The results
suggest that gridlines be separated by at least 8 pixels.

MECHANICAL TURK: PERFORMANCE AND COST
In this section, we analyze subject performance and exper-
imental costs across our experiments, investigating subject
overlap, task completion rates, quality of results, and the
money and time costs of running studies on Mechanical Turk.

Turkers Overlap Across Studies
A total of 186 different Turkers participated in our experi-
ments. Experiment 1A was launched in June 2009 as four si-
multaneously deployed collections of HITs grouped by judg-
ment type. Participation across HIT groups was highly over-
lapping: of the 82 Turkers participating, 93% (76) con-
tributed to multiple HIT groups and over half (45) con-
tributed to all four. Experiment 1A consisted of a total of
70 HITs, so completing all HITs in a single session was eas-
ily achieved. The remainder of our experiments launched
in September 2009 as five HIT groups, one each for experi-
ments 1B, 2L, 2D, 3A, and 3B. HIT totals per group ranged
from 48 to 108. These experiments netted 117 subjects. In
our analyses we treat all experiment 1A runs as one group, as
they match single HIT groups in the remaining experiments.

Figure 12 shows the cumulative distribution of Turkers by the
number of experiments to which they contributed. Across
experiments, 31% of Turkers (58/186) contributed to two
or more experiments, and 15% (28) contributed to three or
more. Only 1 Turker participated in all experiments and
only 7% of Turkers (13) who participated in experiment 1A
later participated in any of the other studies. In summary,
there was substantial variability in the subject pool across
experiments and very little overlap in studies separated by 3
months. For any given study, an average ∼ 1

3 of subjects also
participated in another experiment.
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Figure 12: Cumulative number of subjects participat-
ing in our crowdsourced experiments.
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Figure 13: HIT completion results. Top: Turker count
by HIT completion rate: histogram and best-fit Gaus-
sian mixture model. Bottom: Total HITs submitted.

HIT Completion Rates: “Samplers” and “Streakers”
Do Turkers randomly sample tasks across HIT groups, or do
they plow through every task in a group? Given the over-
head of learning a new task, it would make economic sense
to complete related tasks in batch, and the Mechanical Turk
interface facilitates this process. However, we found that the
number of trials completed by a subject varied substantially.

An “average” Turker completed 62 HITs (σ = 71.4) across
all experiments—roughly one full study. However, as Fig-
ure 13 illustrates, the distribution of study completion rates
is bi-modal. The histogram groups Turkers by their average
HIT completion rate, which we calculate as the weighted per-
centage of HITs completed within participating HIT groups.
Thus, if a Turker never participated in experiment 1B, the
lack of HITs for that group is not factored into the average.

To analyze participation, we fit the data using Gaussian mix-
ture models. A three cluster model provides the best fit ac-
cording to AIC and BIC selection measures. The model con-
firms that Turkers cluster around low and high rates of com-
pletion. One cluster centers at a 10% completion rate, rep-
resenting Turkers who sample only a few HITs in a group.
The other localized cluster centers above 95% and repre-
sents Turkers who complete nearly all HITs in a consecutive
streak. It is these “streakers” who do the lion’s share of the
work: almost half of all trials (45.7%) were completed by the
52 Turkers with an average completion rate of 95% or higher.

It is difficult to state definitively the implications of these re-
sults for study design. Certainly, these patterns do not result
in strict between-subjects or within-subjects designs. How-
ever, in terms of user attention, these results suggest an in-
teresting cross-slice of task behaviors. Real-world interfaces
often have both dedicated and sporadic users, and it is pos-
sible that Turker completion patterns reflect similar distinc-
tions. Further study is needed to evaluate these distinctions
and also to assess how participation varies by task.

With Qualification, Turkers Provide High-Quality Results
Given the variety of completion rates, does the quality of
Turker results vary? Overall, we found the quality of Turk-
ers’ responses to be high: rejected outliers constituted only
0.75% of responses. Though crowdsourced responses exhib-
ited higher variance, our replicated studies (1A & 2) match
prior results and imply identical design recommendations.

We found that the combined use of (a) qualification tasks to
ensure subject understanding, and (b) clearly worded tasks
with verifiable answers, encourages accurate crowdsourced
results. Trial runs of Experiment 1 omitted the qualifica-
tion task, and over 10% of the responses were unusable.
We attribute this degradation in quality to confusion rather
than “gaming” of the system. The use of verifiable answers
(also advocated elsewhere [14]) serves to dissuade gaming,
as wildly incorrect answers can be rejected outright, strip-
ping Turkers of their pay. There is little incentive for crafting
subtly incorrect answers; one might as well perform the task.

Standard HITs Frustrate Fine-Grained Timing
Although we found crowdsourcing to provide high-quality
responses, the standard MTurk interface makes it difficult to
collect fine-grained timing data. In a laboratory setting, we
estimate that the trials in our experiments take a few seconds
on average. In our crowdsourced studies, however, the aver-
age timing data was significantly higher. Rather than a few
seconds per trial, the median response time was 42s (µ=54s,
σ=41s). We observed a minimum time of 5 seconds, yet
many responses took multiple minutes. There is simply not
enough control: it is unclear how much time is due to page
loading, scrolling, user inattention, and response submission.

Despite these limitations, significant effects due to time may
still be found in the data. In experiment 2L, subjects spent an
average of 5 extra seconds adjusting alpha contrast on dense
plots (F (3,1391) = 3.25, p = 0.021). However, due to the in-
ordinately high means and large variation, we forego making
any predictions or recommendations based on such results.

If fine-grained timing is needed, experimenters should im-
plement their own task interface and present it in MTurk
as an embedded frame. One option is to maintain the typ-
ical micro-task format, but include “ready-set-go” phases at
the beginning of each task and record response times using
JavaScript. Another option is to use a “macro-task” for-
mat by batching a number of trials into a single HIT with
higher compensation. While such a format might enforce
within-subjects participation, pacing, and timing accuracy
more similar to a lab study, it violates standard usage. Further
study is needed to assess how such “macro-tasks” impact the
performance and scalability of crowdsourced experiments.

Reward Level Affects Study Completion Time
How long does it take to run an MTurk study? Are com-
pletion time or result quality affected by the reward? For
each experimental run, Figure 14 plots HITs completed vs.
time elapsed since launch. Runs priced ≥ $0.04/HIT are
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Figure 14: HIT completion rate per experiment.



shown in orange, those priced at $0.02 in shades of blue.
Note the steeper slope, and thus faster completion rate, for
tasks with higher rewards. One complicating factor is that
the low-reward studies were launched on a holiday; however,
the pattern holds even if timing values are shifted by one day.

We note that submissions in Experiment 2D lag those of 2L;
this resulted in HITs for 2D expiring prior to completion. We
attribute the lag to a naming error: the HIT titles for tasks 2L
and 2D included the words “Part 1” and “Part 2”, respec-
tively. Turkers took us at our word and allocated more effort
on “Part 1”. Experimenters should take care to avoid such
mistakes when studies need not be performed in sequence.

We analyzed the elapsed time from experiment launch to HIT
completion across all studies (correcting to account for the
holiday). An ANOVA found a significant effect (F (1,11521)
= 2817.28, p < 0.001) of reward, as elapsed time averaged
0.8 days in the high-reward case and 1.9 days in the low-
reward case. Our separate runs of Experiment 3A and 3B—
priced at $0.02 and $0.04 respectively—also allowed us to
inspect the affect of reward on result accuracy. We analyzed
HITs with a chart height of 160 pixels, which we intention-
ally overlapped across runs. We again found a significant
effect of reward on elapsed time (F (1,1136) = 1035.56, p <
0.001): Turkers completed more tasks when paid more. On
the other hand, reward did not affect the time spent complet-
ing an individual HIT (F (1,1136) = 0.08, p = 0.778), only the
total rate of HIT completion. We also found a small but sig-
nificant effect of reward on accuracy (F (1,1136) = 7.79, p <
0.005): Turkers were less accurate (∆µ = 1.4 units) when
paid more. The difference does not alter the design implica-
tions of experiment 3. Our results corroborate those of Ma-
son & Watts [23]: paying more does not substantially affect
the quality of results, but does increase the rate of HIT com-
pletion. By raising the reward, experimenters can decrease
the time to results.

Crowdsourcing Reduces Money and Time Costs
The total expenditure for our crowdsourced experiments was
$367.77. Had we instead run five laboratory studies (one
each for experiments 1A, 1B, 2, 3A, and 3B), using the same
number of subjects (assignments) and paying a typical com-
pensation of $15, the cost would have been $2,190. Thus our
crowdsourced studies realized a cost savings factor of 6. Had
we run all crowdsourced experiments with a $0.02 reward,
this increases to a factor of 9 and thus order of magnitude
savings are possible. However, experimenters should also
consider the equitable treatment of Turkers. Our own mises-
timation of the average response time led us to compensate
Turkers at decidedly less than minimum wage.

Crowdsourcing also provides opportunities beyond simple
cost-cutting. Mechanical Turk largely eliminates recruiting
effort, makes it easy to extend or modify a study, and auto-
mates administration. These result in substantial savings of
time and effort: in just a few days (for Exp. 3B, a single
day) we were able to run studies that normally would have
taken two weeks due to recruiting and scheduling. Moreover,
crowdsourcing can scale to large samples that would other-
wise be prohibitively large (e.g., 550 Turkers in [8]), greatly
expanding the space of feasible study designs.

FINDINGS AND FUTURE WORK
The results from Mechanical Turk demonstrate that crowd-
sourced graphical perception studies can be viable. We suc-
cessfully replicated prior experiments on proportional judg-
ments of spatial encodings [7] and alpha contrast adjustment
of chart gridlines [30], with our crowdsourced results pro-
viding a good match and identical design guidelines to prior
work. The increased variation of our results compared to pre-
vious results may be compensated by the platform’s scalabil-
ity: for the same cost, many more subjects can participate.
We also found that operating system and monitor details re-
ported by JavaScript, though supporting only incomplete and
approximate inference of subjects’ display configuration, can
be predictive of results and so should be recorded if possible.

The results also demonstrate the use of Mechanical Turk to
gain new insights into visualization design. Our rectangu-
lar area judgment experiment (1B) revealed that comparison
of rectangles with aspect ratios of 1 led to higher estima-
tion error than other aspect ratio combinations. This result
suggests that the “squarified” optimization objective of lead-
ing treemap algorithms [3, 35] may rest on tenuous percep-
tual footing, and that viewers benefit from the inability of
the algorithm to achieve its objective. Future work may lead
to improved layout algorithms. Our chart height and grid-
line spacing experiment (3) suggests optimized parameters
for displaying charts on the web: gridlines should be spaced
at least 8 pixels apart and increasing chart heights beyond 80
pixels provides little accuracy benefit on a 0-100 scale.

Our results help characterize the use of Mechanical Turk for
conducting web-based experiments. Experimenters can ex-
pect significant subject overlap when running simultaneous
studies, and unreliable response times when using the stan-
dard HIT interface. By using qualification tasks and ver-
ifiable questions, one can increase the likelihood of high-
quality responses. As higher rewards led to faster completion
rates with little substantive difference in response quality, ex-
perimenters can use payment level to influence study com-
pletion time. To facilitate replication, we recommend that
experimenters describe qualification tasks and compensation
rate when publishing the results of crowdsourced studies.

Finally, we identified benefits for crowdsourcing over labo-
ratory experiments. We found that crowdsourcing can pro-
vide up to an order of magnitude cost reduction. Such sav-
ings could be reinvested in more subjects or more conditions.
For constant dollars, we might run better experiments. We
realized a faster time to completion. This is separate from
cost and can also be used to enrich experimental design, es-
pecially when experiments are run in stages. We can also
gain access to wider populations [13]. Many experiments
are done on college undergraduates due to the difficulty of re-
cruiting wider populations. Crowdsourcing reduces this cost.

We believe crowdsourcing will be particularly useful in com-
bination with other methods. There is something wrong with
every methodological technique, which can often be com-
pensated by combining techniques. Small-scale traditional
laboratory experiments can be paired with Mechanical Turk
experiments with overlapped conditions. In this way the
results of laboratory experiments and crowdsourced exper-



iments can cross check each other, using the two in tandem
to leverage their respective strengths.

Future research is needed to develop better tools for crowd-
sourced experimentation. The facilities for conducting user
studies on Mechanical Turk are still rudimentary. Dynamic
task generation and easier access control would help re-
searchers conduct adaptive studies, enforce between-subjects
designs, and prevent subject overlap across experiments. Al-
ready, tools such as Turkit [32] are being developed to close
this gap. We believe these tools have an important role to
play beyond simplifying study administration. By collecting
and aggregating statistics of Turker performance, these tools
might provide a means of tracking a dynamic market place,
helping researchers make more informed estimates of partic-
ipation, time to completion, and appropriate compensation.

By integrating crowdsourcing tools with web-based experi-
ment design tools [20], an entire class of user studies may
be subject to cheap, scalable web-based design and deploy-
ment. Moreover, by archiving and disseminating HIT defi-
nitions, such tools might also greatly facilitate study replica-
tion, comparison, or modification. In this spirit, all materials
used for the studies in this paper can be downloaded from
http://hci.stanford.edu/gp/chi10.zip.

Of course, crowdsourcing is far from a panacea. Some stud-
ies, particularly those dependent on physical or environmen-
tal context (e.g., [24, 36]) are simply ill-suited to the web.
Crowdsourcing results might also be insensitive to factors
such as color blindness or limited visual acuity. Despite these
limitations, it is clear that crowdsourcing offers a cheap and
scalable way to conduct a valuable range of graphical per-
ception experiments. The time is ripe for investigating more
subtle aspects of visualization design.
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