

VACA: A Tool for Qualitative Video
Analysis

Abstract

In experimental research the job of analyzing data is an

extremely slow and laborious process. In particular,

video and audio data of human behavior are difficult to

analyze, as this type of information does not lend itself

to automation. Here we present VACA, an open source

tool for qualitative video analysis. VACA presents video

annotations on a timeline interface and integrates

external sensor data to improve the rate at which

analysis can be performed. A comparative study is run

against commonly used video analysis tools, and

results are reported.

Keywords

Video analysis, annotation, behavioral research.

Introduction

Most disciplines of behavioral study require a significant

degree of human observation, either in a lab or in the

field. Many of these studies use video as their data

medium, as video is perhaps the richest of the

recording media. Because the data is very rich, it

requires a large amount of time to analyze the

qualitative content. Usability and human behavioral

researchers analyze video data by watching videos on

Copyright is held by the author/owner(s).

CHI 2006, April 22–27, 2006, Montreal, Canada.

ACM 1-xxxxxxxxxxxxxxxxxx.

Brandon Burr

Stanford University

353 Serra Mall, Room 160

Stanford, CA 94305 USA

bburr@stanford.edu

 2

one or more monitors while using a separate program

to code the information. This is commonly done using

basic video player and spreadsheet applications (Figure

1). Analysis in this way demands approximately four

hours to analyze a single hour of video. Much time is

spent simply switching back and forth between

programs, resulting in loss of attention on the subject

matter, and requiring multiple passes on a significant

amount of the video data. With experiments generating

hundreds to thousands of hours of video footage, the

time to analyze video data quickly begins to dominate

the period of a typical behavioral study, and often

becomes a major labor cost of such studies.

VACA addresses several significant problems with this

type of video analysis. It combines the video viewing

and the annotation into one system to eliminate the

switching costs. A timeline view of the events facilitates

drawing qualitative conclusions, and external sensor

data can be imported into the system to act as an

additional set of annotations.

The timeline, which affords a direct manipulation

interface to the video data, combined with the ability to

import external data, provides a unique means for

constructing an automatic index to the videos. Such an

index has the potential to increase the efficiency of

video analysis tasks.

Definition of Terms

Before describing the system, it is helpful to have

definitions for common terms in usability analysis.

Figure 1. Traditional tools for video analysis. Consists of one

or more video players along with a spreadsheet application.

Not particularly easy to manage.

CODE: Also called a code category. Refers to a type of

behavior that a researcher is interested in observing.

For example, a researcher analyzing videos of pair

programmers might want to note occurrences of

disagreements between the programmers. One of her

code categories would be “disagreements”.

EVENT: An instance of a particular code. Usually

associated with a time interval during which the event

occurred. In the example above, there would be a

“disagreement” event for every disagreement the pair

had.

Related Work

The timeline interface in VACA drew inspiration from

the Silver video editor [1]; however, this system was

not designed for analysis, annotation, or multiple video

 3

Figure 2. The VACA program. Videos are on the top left, the

timeline is at the bottom, and the codes are on the right.

streams. The Anvil analysis tool [2] also has a timeline

and supports annotation, but not multiple streams.

Observer [4] and Diver [5] are video analysis tools that

support annotation, but not a timeline visualization of

that annotation. None of these systems support

timeline-based indexing of video with external data.

Design

With the VACA interface (Figure 2), users designate one

stream as the focus stream. This focus video is

displayed as large as possible, with the other videos

shown as thumbnails off to the side. Clicking a

thumbnail switches that video to the focus. The size of

the thumbnails can be adjusted if close attention is

needed to two or more videos simultaneously.

A right-hand pane shows a list of the codes that have

been created for the video streams. From this pane the

user can instantiate new events for particular codes,

and can annotate those events freely.

The bottom pane shows the timeline. The timeline

reflects the current temporal location of video playback.

All events are displayed on the timeline in a color

corresponding to their code category. Events can be

shown or hidden on the timeline, facilitating correlation

between various codes, and allowing the user to obtain

a big-picture view of her codes.

External data can be imported into VACA, and shows up

in the main list of codes as additional categories. In

general, any external sensor data in the correct xml

format can be imported and used to index the videos.

The study we conducted for this project used a set of

videos from a pair programming session. In this case,

the external data from the event is the log of Eclipse

events from this programming session. Figure 2 shows

VACA as it appeared in the user study. The codes

shown were imported from the Eclipse log.

Methods

We conducted a preliminary comparative evaluation

with 9 undergraduate students. Four tasks were

performed by each participant using both the VACA

system and existing commonly used tools (Windows

Media Player and Excel). 4 of the participants

completed the tasks first using the VACA system, and

then using the common tools. The other 5 used the

common tools first, and VACA second. Each user was

given a 5 minute demonstration of the VACA system

before using it.

A 30 minute clip of a pair programming session was

used as the target for the users to analyze. This

VACA can import external sensor

data. This data appears as an

additional set of codes in the Codes

Window. Here, logging events from

an Eclipse programming session

have been imported and are shown.

 4

included a video recording of the programmers taken

from four different angles, a video of the screen

capture from their computer, and a video of the

whiteboard capture. Only the video recording of the

programmers contained audio. Also, for the common

tools setup the videos were not synchronized. Instead,

the users were given the timing offsets that would be

required to synchronize the videos. This is consistent

with common practice. In the VACA system, however,

the videos were synchronized, as this was one of the

design goals. Finally, users were given the Eclipse

logging data only for the VACA system.

Tasks

It was important to choose tasks that would be

representative of common analysis patterns of

behavioral researchers. Also, as the users were

undergraduates, not professionals, the tasks were

framed inside of a narrative. This was done to give

them insight into how an expert might think about this

kind of analysis. The relevant parts of the narrative are

reproduced below, edited for length. The four tasks the

users performed are displayed in bold.

Welcome! Today you will be analyzing a 30 minute clip of a pair

programming session. Your goal for this analysis is to try to get a

sense of how productive the pair was, and what factors contributed

to their productivity (or lack thereof). To start off, you decide to

use ‘lines of code produced’ as a rough metric to measure their

performance.

Task 1: Determine how many lines of code were produced by

the end of this session.

Ok, so they ended up with only 6 lines of code after a 30 minute

session. That’s pretty low for the simple task they are trying to

accomplish. It is possible that they wrote a lot of code, but did a lot

of editing towards the end of the session. This warrants a closer

look.

Task 2: Determine how many lines of code total were

written during this session.

Hmm… they wrote 8 lines total. So they really were being quite

unproductive. Were they having issues with the design, or problems

with the programming?

Task 3: Create a code for “Programming Problems”. This

will represent problems that the pair ran into while

programming. Code the occurrences of “Programming

Problem” events for the entire video session. The start time

for each event should be when the problem occurs, and the

end time should be when it is resolved.

Interesting. It looks like they spent most of their time dealing with

programming problems. No wonder they didn’t get much written.

Why are they running into so many problems? Is one person

encountering more issues than the other, or is it a shared struggle?

Task 4: Go back over the events you coded for Task 3, and

recode them into the following 3 subcategories: “Person A

Problem”, “Person B Problem”, “Both Problem”.

Ah! I see now. Person A is the one running into all the problems. It

appears he is a beginner. Person B is spending most of the time

explaining things to Person A. Now it makes sense…

As the users performed the tasks, completion times

were recorded. There was also a time limit imposed for

each task, to keep the user on track. The limit was 3

minutes for Task 1, 5 minutes for Task 2, 10 minutes

for Task 3, and 8 minutes for Task 4, chosen as

 5

reasonable bounds on completion times. If the user did

not successfully complete the task in the allotted time,

they were stopped, and they proceeded with the next

task. Finally, because Task 3 was particularly time

consuming, all users were cutoff at the 10 minute limit,

and the number of ‘programming problems’

successfully coded was used for comparison.

Our goals for the study were to

1. Determine how the VACA system performs on

common analysis tasks as compared to the common

tools setup. Additionally, understanding which kinds of

tasks are well suited to VACA and which aren’t will help

inform further design.

2. Assess the benefit of the Eclipse logging data to the

video analysis. We wanted to see if having this form of

external sensor data would be useful when performing

common analysis tasks.

Results

We present both quantitative and qualitative results

from our evaluation.

Quantitative Results

When using the VACA system, the average task

completion times for tasks 1, 2, and 4 was 1.17

minutes, 1.01 minutes, and 5.46 minutes, respectively.

For the common tools setup the times were 2.18

minutes, 3.38 minutes, and 6.24 minutes (Figure 3).

The VACA times, as a percent of the common setup

times, are 54%, 30%, and 90%. For Task 3, the

average number of problems coded was 2.50 for the

common setup and 4.75 for the VACA system, or 1.9x

the number coded in the common setup (Figure 4).

Since users repeat the same tasks on both systems, it’s

expected that their times would improve for the second

system they use. For those that used the common

setup first, the VACA/common setup ratio for the four

tasks was 63%, 37%, 2.9x, and 69%. For those that

used the VACA system first, these ratios are 41%,

25%, 1.2x, and 117%. Thus, even when the common

setup was used after the VACA system, it still

performed worse for tasks 1-3. However, this was not

the case for task 4.

Qualitative Results

After the study each user was questioned about their

experiences using both systems. All 9 users preferred

using the VACA system over the common setup.

Opinions ranged from “it’s better for some tasks, but

maybe not others” to “I don’t see how anyone could

ever do this stuff in [Excel and Windows Media Player]!”

Interestingly, one user commented that VACA was “a

lot less stressful than the other way. Trying to switch

between videos and Excel to input numbers, while still

trying to pay attention to what’s happening in the

videos – it’s just too much.”

Not surprisingly, most participants used the Eclipse

logging events to complete tasks 1 and 2 in VACA. The

two that didn’t use the Eclipse events had the longest

completion times for these tasks. More interestingly,

however, 4 of the 9 participants used the Eclipse events

to complete task 3 – the task to code occurrences of

“programming problems”. They reasoned that problems

would occur in proximity to basic programming events,

and they used the Eclipse events to jump around and

hone in on these problems more rapidly. Unfortunately,

this did have an adverse effect for 2 of the users, who

Figure 3. VACA outperformed the

common tools setup for all of the

tasks. While only marginally better

for task 4, tasks 1 and 2 were

completed in about half the time or

better using VACA.

Figure 4. For task 3, users

produced almost twice as many

events in VACA as compared to the

common tools setup.

Task Completion Times

0

1

2
3

4

5

6
7

8

9

1 2 4

Task

T
im

e
 (

m
in

)

VACA Traditional

Number of Events Coded

0

1

2

3

4

5

6

7

3

Task

#
 E

v
e
n

ts

VACA Traditional

 6

skipped over some “programming problem” events due

to this kind of seeking.

Conclusions

Users were more efficient at completing common video

analysis tasks using VACA than using the common

setup of Windows Media Player and Excel. 3 of the 4

tasks were close or better to a factor of 2 improvement.

Interestingly, the last task – that of refactoring a code

into a subset of codes – was only marginally better in

VACA, and in some cases even worse. It appears that

the VACA interface doesn’t provide much benefit over

the common tools system for tasks that involve a

known location in the video. For example, the 4th task

mainly involved seeking to specific locations in the

video file, and then watching the video from there. This

task was accomplished in Windows Media Player just as

easily as in VACA. The benefit seems to come with

tasks that require some degree of searching through

the video. In these situations, helpful context in VACA

is provided by other codes or events, the Eclipse

logging data, or simply the location of events on the

timeline. And, as with the 3rd task, this context seems

to be useful in speeding up the search task.

Users were frustrated by the lack of editing capabilities

in VACA. If they made a mistake, or wanted to change

a start or end time for a particular event, it wasn’t easy

to do. One user pointed this out as a major benefit of

having data in a numerical, spreadsheet format. It’s

very simple to change the data to your liking. While

VACA does have editing capabilities, none of the

participants made use of them, leading us to conclude

that the current editing features are unusable.

Future Work

Qualitatively, it appears that the Eclipse logging data

was useful in completing the given tasks. Next we plan

to perform a quantitative study to measure the amount

to which the logging data improves video analysis.

As was suggested by this study, for the next iteration

we plan to integrate a simple spreadsheet view of the

codes to provide easier editing capabilities.

So far we have only studied how beginners interact

with VACA. While the results have been very

encouraging with novices, and they have served to

inform some issues of the design, the best feedback we

can get is from a longer study with actual behavioral

researchers, using the system for their real world

analysis tasks. To this end, we are planning to have

VACA used as the analysis tool for a pair programming

research project being conducted here at Stanford.

Acknowledgements

We would like to thank Jan Chong for her help in

designing the experiment tasks and Scott Klemmer for

his tireless advice and many helpful comments.

References
[1] Casares, J., et al. Simplifying Video Editing Using

Metadata, in Proc. DIS 2002, p. 159-166.

[2] Kipp, Michael. Anvil video annotation system.
http://www.dfki.de/~kipp/anvil.

[3] Noldus, L.P., et al. The Observer Video-Pro, in
Behav Res Methods, Instrum Comput 2000, 32, p.
197-206.

[4] Pea, R., et al. The DIVER Project: Interactive

Digital Video Repurposing. IEEE Multimedia, 11(1),
p. 54-61

