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ABSTRACT 

Figure 1. d.tools enables designers to rapidly prototype the 
circuits and code of information appliances using pictures 
and parts. 

Designers tasked with imagining future information appli-
ances currently employ separate tools for rapidly prototyp-
ing the form (the atoms) and the interaction model (the bits) 
because integrated prototyping of bits and atoms requires 
resources and knowledge outside the reach of design gener-
alists. Based on interviews with product designers, we 
created d.tools, a system enabling non-programmers to 
prototype the bits and the atoms of physical user interfaces 
in concert. d.tools lowers the threshold to prototyping func-
tional physical interfaces through plug-and-play hardware 
that is closely coupled with a visual authoring environment. 
We evaluated the d.tools use threshold through a first-use 
study with thirteen participants; the study showed that the 
tool is accessible and encourages reflective design practice. 
We tested the d.tools range of design support by recreating 
existing research and commercial devices; this demon-
strated that the visual language was sufficiently expressive 
for existing and emerging real-world designs. 

Author Keywords 
Toolkits, information appliances, design tools, prototyping, 
hardware-software integration, physical user interfaces 

ACM Classification Keywords 
H.5.2. [Information Interfaces]: User Interfaces-input de-
vices and strategies; interaction styles; prototyping; user-
centered design. D.2.2 [Software Engineering]: Design 
Tools and Techniques — State diagrams; user interfaces. 

INTRODUCTION 
Information appliances—small portable devices such as 
mobile phones, digital cameras, and music players—are 
growing quickly in number and diversity. To arrive at 
usable interface designs, product designers commonly build 
a series of prototypes — approximations of a product along 

some dimensions of interest. Prototypes  are the pivotal 
medium that structures innovation, collaboration, and crea-
tivity in the most successful design studios [19]. These 
prototypes play important roles for four distinct constituen-
cies. First, designers create prototypes for their own benefit; 
visually and physically representing ideas externalizes 
cognition and provides the designer with backtalk [37] — 

surprising, unexpected discoveries that uncover problems or 
generate suggestions for new designs. Second, prototypes 
provide a locus of communication for the entire design 
team; through prototypes, the tacit knowledge of individu-
als is rendered visible to the team. Third, prototypes are 
integral to user-centric development by providing artifacts 
that can be used for user feedback and usability testing. 
Finally, prototypes are also important sales tools in client 
relationships — many product designers live by the principle 
“never enter a client meeting without a prototype in hand.” 

Through much of the design process, designers today create 
two separate sets of prototypes: “looks-like” prototypes that 
show only the form of a device (the atoms), and “works-
like” prototypes that use a computer display to demonstrate 
its interaction (the bits). The time and expertise require-
ments for creating comprehensive prototypes that tie form 
and function together prohibit their use until late in devel-
opment. At that time, monetary constraints and resource 
commitments prohibit fundamental design changes [42]. 
However, only integrated functional prototypes can uncover 
the interdependence between bits and atoms that character-
izes the final user experience. To enable designers to proto-
type bits and atoms in concert, we have developed d.tools, a 
system that introduces integrated interactions [24] to enable 
rapid prototyping of information appliances (see Figure 1). 
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Figure 2. The d.tools visual authoring environment integrates 
software and hardware prototyping. This screen shows a state-
chart for a mobile phone prototype. 

Figure 3. Top left: Smart components have their own RISC 
microcontroller; they are connected to plug boards to com-
municate over an I2C bus. Top right: d.tools supports output 
to small-form-factor LCDs. Bottom: Examples of supported 
plug-and-play hardware.  

Design Tools 
Myers et al. introduced the terms threshold and ceiling to 
describe use properties of a tool: the threshold is the diffi-
culty of learning and using a system, while the ceiling 
captures the complexity of what can be built using the 
system [30]. Today, programming in general purpose lan-
guages and electronic circuit design are still the prevalent 
means of creating functional prototypes of physical user 
interfaces; the high threshold for these tools has been a 
gating factor to designers, and the time commitment of 
these tools makes them infeasible for rapid iterative explo-
ration. These difficulties of high-threshold tools echo the 
experiences of developing graphical user interfaces (GUIs) 
twenty years ago; today nearly all GUIs are built with the 
assistance of user interface design tools [30]. 

Recent research and commercial systems have demon-
strated the power of providing software abstractions to 
physical devices (e.g., [9, 15, 21, 38]). However, the exper-
tise threshold and time investment required make them 
inappropriate for designers, particularly at the early stages. 
The contribution of the d.tools research described in this 
paper is a system that lowers the threshold for functional 
prototyping and provides a sufficiently high ceiling to 
design useful systems. 

Prototyping with d.tools 
d.tools supports design thinking rather than implementation 
tinkering. With d.tools, designers place physical controllers 
(e.g., buttons, sliders), sensors (e.g., accelerometers, com-
passes), and output devices (e.g., LEDs, LCD screens, and 
speakers) directly onto form prototypes, and author behav-
ior visually in our software workbench (see Figure 2 and 3). 
d.tools employs a PC as a proxy for embedded processors so 
designers can focus on user experience-related tasks rather 
than implementation-related details. The d.tools library 
includes an extensible set of smart components that cover a 
wide range of input and output technologies.  

Designers create interaction prototypes in d.tools using a 
PC-based visual authoring environment, inspired by the 
statecharts visual language [16]. States in the editor specify 

device outputs (see Figure 2); state transitions are triggered 
by physical inputs. Users graphically arrange icons of rec-
ognized physical I/O components into a virtual representa-
tion of the physical device. This iconic representation af-
fords rapid matching of software widgets with physical I/O 
components. d.tools dynamically detects the presence and 
capabilities of attached hardware components, enabling the 
software editor to be couple to the hardware configuration. 

UNDERSTANDING CURRENT DESIGN PRACTICES 
To create a design tool offering these benefits in a manner 
felicitous with current design practices, we conducted 
structured interviews with designers and surveyed the inter-
action requirements of existing devices.  

Interviews 
We conducted individual and group interviews with eleven 
designers and managers at three product design consultan-
cies in the San Francisco Bay Area. To understand how 
design students could benefit from prototyping tools that 
help them focus on the design aspects of their education, we 
interviewed three product design master’s students. 

Professional design companies have access to resources and 
expertise to create integrated functional prototypes that 
demonstrate interaction in a high-fidelity form factor (iden-
tified by one interviewee as “Comdex models” to convey 
their importance for trade shows). Pering has described the 
use of such comprehensive prototypes for user experience 
testing of PDAs [35]. However, these solutions are generally 
expensive one-offs that that can not be reused or easily 
modified. Their cost limits deployment to later stages of the 
design process and to large projects.  

For earlier stages, designers reported using lower-fidelity 
prototyping solutions such as using PowerPoint and Excel 
spreadsheets or Photoshop layers to express UI control flow. 
One design manager noted that user interface evolution was 
harder and slower than iterating hardware designs. One 
reason is that many design consultancies have more me-
chanical engineers and design generalists than programmers 



or electrical engineers on staff: technical work has to be 
queued or outsourced. d.tools addresses these difficulties 
with early-stage design by giving design generalists a 
ready-to-hand tool for building functional prototypes at 
their desk or workstation. 

Design students’ access to resources is even more con-
strained; two of the three interviewees reported giving up 
on trying to prototype the electronics of their projects. 
Students expressed a need for narrative or storyboard-based 
design that allows them to capture only key interaction 
paths without having to develop a comprehensive interface 
model up front. As with our professional interviewees, 
students fell back on lower-fidelity mock ups such as slid-
ing transparencies in and out of acrylic blocks to simulate 
screen output. They expressed dissatisfaction with those 
techniques because they failed to suspend disbelief of their 
test users. In response, we designed d.tools focus on con-
crete interaction sequences and to support high-fidelity, 
low-latency output comparable to that of finished products. 

Survey of existing information appliances 
To inform the architecture and library requirements for 
d.tools, we tallied the use of input and output components 
by 24 devices in three categories: mobile consumer elec-
tronics, stationary control interfaces, and novel systems that 
introduce interactions not yet common in the mainstream.  

Mobile appliances such as portable media players, cell 
phones and digital cameras predominantly use a large num-
ber of buttons (~5 to 71), and a small number of switches 
(~1 to 3) as inputs. With these digital controls, UI state is 
not apparent in the physical state of the input components 
and is mostly communicated through status LEDs and color 
LCD screens. Many devices feature microphone input and 
stereo sound output; capacitive and other sensors are gain-
ing popularity in the commercial avant-garde (such as the 
iPod wheel) but are not yet commonplace. 

Stationary interfaces include appliances from musical con-
trol surfaces to home automation/room control panels. They 
often rely on continuous dedicated controls such as rotary 
knobs (potentiometers or encoders) and sliders as inputs 
which offer a physical indication of their state. LED and text 
LCD output is common; graphical LCDs are less common, 
but gaining popularity.  

Entertainment and research devices form the vanguard of 
physical interactions, and helped us understand emerging 
trends. Devices such as the Nintendo Revolution game 
controller, experimental musical controllers, and research 
systems such as the Sensing PDA [18] and Tablet Whacking 
[17] make use of a broader range of sensors: orientation, 
acceleration data, pressure. Non-graphical output via sole-
noids or vibrating motors (e.g., [40]) is currently rare, even 
in research, but is an important area for future growth. 

These survey results offer important design guidelines for 
d.tools. The d.tools architecture should support both dis-
crete and continuous input, and graphical and sound output. 
The architecture should not be a closed system; it should 
enable fluid integration of emerging sensor technologies as 
designers adopt them. 

D.TOOLS ARCHITECTURE 
d.tools was developed using the same iterative design proc-
ess that our target audience employs. We summarize our 
exploratory work and then describe the full implementation. 

Prototyping a Prototyping Tool 
An integrated prototype requires interaction, physical input, 
and output. Our formative prototype employed Macromedia 
Flash [1] for the interaction, a Phidgets interface kit [15] for 
the input, and a RS232-controlled color LCD screen 
(earthLCD ezLCD001) for display. We designed visual 
interaction techniques for authoring the UI of one specific 
information appliance: a media player, for which we also 
built a physical device out of layered sheets of laser-cut ¼" 
acrylic (see Figure 4). Flash affords rapid interaction devel-
opment and Phidgets provided a complete C# API for sens-
ing physical input. A TCP socket server connected the Flash 
GUI editor to the LCD screen and Phidgets hardware by 
marshaling physical input events as XML messages and 
unmarshaling Flash XML commands into API calls for 
Phidgets and our LCD library. 

This prototype anchored our discussions with professional 
designers. Designers found the visual authoring environ-
ment, in which states iconically represent the physical 
device, immediately compelling. We learned that the fluid-
ity of our design tool should also extend to hardware com-
ponents. Interviewees pointed out the disconnect between 
fluid drag-and-drop interactions in software and the solder-
ing, screwing, and software development required to inte-
grate hardware into an application. Armed with this infor-
mation, we implemented the complete d.tools system.  

Figure 4. We brought this Flash + Phidgets prototype to 
design companies to elicit feedback during our fieldwork.

Software 
The d.tools visual authoring environment is implemented in 
Java J2SE 5.0 as an Eclipse IDE plug-in using its Graphical 
Editing Framework (GEF). Eclipse furnishes a standard 
application framework with flexible handling of multiple 
editors, views, and wizards. The d.tools Eclipse plug-in 
comprises 9,850 lines of logical code (18,600 lines of 
physical code, which includes comments and white space). 
The d.tools interface comprises a device designer, a state-
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chart designer, and associated views for specifying proper-
ties. 

Device designer 
In the device editor, designers author an iconic representa-
tion of the appliance they are prototyping: they create, 
arrange and resize input and output components, then con-
trol their look by dragging and dropping images from the 
asset library image browser onto the device outline or onto 
individual components. (While d.tools recognizes the de-
vice type, designers may wish to add a particular look to 
their visual prototype.) d.tools supports image transparency 
and can read graphics in JPEG, GIF, and PNG formats. The 
component library of the device editor currently comprises 
the following inputs: buttons, switches, sliders, knobs, 
accelerometers, and general voltage varying sensors; and 
the following outputs: LCD screens, speakers and LEDs. 
Input and output components are presented according to 
their affordances. For example, while buttons and switches 
are both one-bit controls, d.tools retains their distinct affor-
dances in software (switches physically maintain their state, 
while buttons return to a default position after each press).  

Statechart designer 
Designers define their prototype’s behavior by creating 
interaction graphs with the statechart designer (see Figure 
2). States are graphical instances of the device design; they 
describe the content assigned to the outputs of the prototype 
at a particular point in the UI: screen image, sound, LED 
behavior. As in the device editor, content can be assigned to 
output components of a state by dragging and dropping 
items from the asset library onto a component. 

Transitions represent the control flow of an application; 
they define rules for switching the currently active state in 
response to user input (hardware events). They are repre-
sented graphically as solid-line arrows connecting two 
states. Transitions have one or more input components and 
an input event associated with each such component. For 
example, a designer can author that a button press transi-
tions from one state to a second. Designers can specify 
multiple options for a transition’s input (Boolean OR); they 
can also specify synchronous operation of multiple inputs 
(Boolean AND). When a user operates a physical control, 
d.tools checks whether that input matches the condition(s) 
for any transitions outbound from the current state. If there 
is a match, d.tools updates the visual interface’s current 
state and sends this new state’s content (images, sounds, 
LED behaviors, etc.) to the device. These state transitions 
express the control flow portion of the interaction design.  

d.tools also supports data flow: the continuous attributes of 
output elements. Designers specify this data flow logic 
through intra-state bindings, which create a link between an 
input and an output component within a single state. For 
example, while a speaker receives discrete events to play 
and pause a sound (specified through transitions), continu-
ous control specifies the volume (specified through bind-
ings). Graphically, bindings are shown as arrows with 

dashed lines. Input components act as binding sources and 
expose different signals, such as the continuous position of 
a slider, or the state of a switch. These signals can be bound 
to different targets exposed by output components.  

To facilitate a seamless map between the statechart author-
ing interface and the physical prototype, both are always 
live. Selecting a state in the visual authoring environment 
sets the physical device’s current state, and vice versa. 
Integrating these representations and providing fast, global 
control of application state has two important benefits. 
First, it provides a clear and consistent mental model to 
designers. Second, it facilitates the designer’s ability to 
extemporaneously control interactions during walkthroughs 
with clients and prototype testing with end users. As a first 
step toward enabling designers to analyze user interaction 
data, time-stamped state transitions are recorded in a log 
file.  

Tight and loose coupling of hardware and software 
d.tools introduces plug-and-play functionality for input and 
output components through a tight coupling between hard-
ware components and their software duals (see Figure 5). 
The software listens for incoming messages and sends out 
hardware state change events via serial (RS232) and UDP 
ports. When a physical component is plugged in, a corre-
sponding virtual component is created in the device editor 
and propagated to the statechart. When a physical compo-
nent is unplugged, the software dual is decoupled from the 
physical component and deactivated. d.tools indicates 
deactivation by drawing a red × over the visual component. 

d.tools uses a two-phase delete mechanism because compo-
nents are bound to designer-authored information (state 
content and transitions). Separating deactivation from re-
moval enables designers to review the action and remap the 
interaction logic to an alternate control if desired. To en-
courage exploration, all user interface actions are imple-
mented on a command stack that supports multiple levels of 
undo. After initiating a delete in software or removing a 
hardware component, designers can reassign that compo-
nent’s transitions and content to a different component by 
dragging and dropping a new component on top of an 
equivalent inactive component.  

Designers can switch to a loose coupling mode if they 
prefer software-centric development, if they want to work 
with only a subset of the hardware in their design, or if they 
do not have access to the hardware toolkit. When loosely 

Figure 5. d.tools introduces an integrated approach: hard-
ware components and their software duals are tightly cou-
pled. 



coupled, d.tools is agnostic to the presence of hardware 
components: it can receive data events from hardware and 
will follow matching transitions, but it will not add or 
deactivate software components based on con-
nect/disconnect actions of physical components.  

When a designer switches from loose to tight coupling, 
d.tools scans the hardware to ascertain which components 
specified in the hardware diagram currently have hardware 
duals attached. Visual components are active when their 
hardware dual is present. When the hardware is detached, 
the visual component is inactive. 

Hardware 
This section describes design rationale for and implementa-
tion of the d.tools hardware platform. d.tools provides plug-
and-play integration of individual IO components by mak-
ing each component smart (adding a dedicated small micro-
controller) and networking the components on an I2C bus 
(see Figure 6). I2C offers a large base of existing compati-
ble hardware, sufficient bandwidth characteristics for most 
interaction components and easy connection-point expan-
sion through daisy-chaining. Output devices that require 
higher bandwidth are handled separately by PC peripherals.  

A master controller board coordinates hardware-to-PC 
communication. This controller transforms hardware events 
into OpenSoundControl (OSC) messages. OSC is an open 
protocol developed specifically for real-time control of 
human performance systems.  

Atmel microcontrollers are used to implement this architec-
ture because of their low cost, high performance, and pro-
grammability in C. We used the open source WinAVR tool 
chain [6] and the commercial IAR AVR workbench [41] 
compilers. The d.tools microcontroller code comprises 1260 
logical lines and 2100 physical lines. 

I2C is a serial multi-drop bus architecture where one master 
and many slaves exchange messages through two data and 
clock lines. Up to 127 bus devices can be connected at a 
temporally-multiplexed data rate of 100 Kbps. We pro-
grammed an Atmel ATmega128-based Procyon Engineering 
AVRmini v3.1 board to serve as the communication liaison 
between the host PC and individual hardware components. 
It serves as I2C master and also sends OSC messages over 
an RS232 connection at 115 Kbps (or USB via VirtualCom-
Port drivers). Individual interface components each have 
their own 8-pin microcontroller (Atmel ATtiny45) that runs 
an I2C slave program sending sensor data from an attached 

input to the master or setting the state of an attached output 
according to received commands (see Figures 3, 6). Com-
ponents can be hot-plugged into the I2C bus via plug boards 
with polarized 4-pin plugs carrying I2C data and clock, +5 
volts and ground. A polling loop over a database of known 
components allows the master controller to track presence 
and identity of hardware components. Sensors are polled at 
250Hz to 1kHz, depending on the number of attached com-
ponents. Most human input devices require less than 
100Hz. The master generates additional OSC messages to 
notify the d.tools software of the configuration change. 
Occasionally, electrostatic discharge during plugging can 
interrupt operation of the I2C bus, which requires a manual 
3 second hardware reboot; this problem can be avoided by 
introducing I2C bus buffer chips in the plug boards. 

d.tools distinguishes audio and video from lower-bandwidth 
components (buttons, sliders, LEDs, etc.). The modern PC 
A/V subsystem provides plug-and-play support for audio 
and video; for these components d.tools simply uses the 
existing infrastructure. For graphics display on the small 
screens commonly found in information appliances, d.tools 
includes an LCD display which can be connected to a PC 
graphics card with video output (Purdy AND-TFT-25PAKIT). 
This screen is controlled by a secondary video card con-
nected to a video signal converter. 

Modularity allows for substitution and extension 
Tool support for physical computing operates at three lev-
els: the wire protocol, the hardware-to-PC interface, and the 
software level. To facilitate extensibility by advanced users 
and the software development community at large, d.tools 
builds on existing open source APIs for all three layers; no 
existing systems provide a comparable level of extensibil-
ity. With closed architectures, designers are unable to create 
their desired prototype if the tool does not contain all re-
quired library elements. Our interviews and use of Phidgets 
in our university's interaction design course demonstrated 
that limited libraries are indeed a problem in current prac-
tice. d.tools employs I2C as its wire protocol; OSC for the 
hardware-to-PC interface, and Eclipse and Java as the soft-
ware interface. 

Each of these three APIs has a rich development commu-
nity. For example, there are OSC implementations for the 
data flow languages Pd and Max/MSP [4]. The d.tools 
hardware connects these languages to the physical world. 
To show this modularity, we have used a d.tools slider to 
select pitch and a d.tools button to trigger sound in Pd. 
Similarly, other hardware toolkits can be used with d.tools 
by writing an OSC wrapper that communicates with the 
d.tools software. We have written a reference wrapper to 
connect a Phidgets InterfaceKit to d.tools. The Phidgets API 
affords detection of connection status for components such 
as servo motor controllers and component aggregators such 
as InterfaceKits, and LED banks. Phidgets does not provide 
this information for small, individual components such as 

Figure 6. The d.tools plug-and-play hardware architecture. 
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buttons and LEDs; thus, tight coupling behavior is not 
available. 

The design choice of whether all components should be 
smart trades off larger size for plug-and-play functionality: 
d.tools components afford faster prototyping and a lower 
development threshold through tight coupling; however, 
plain electronics are smaller as they do not require a dedi-
cated microcontroller per component. It is certainly also 
possible to mix smart and plain components in a particular 
device, or to initially prototype with smart components for 
their richer tool integration and later in the design process, 
as fidelity and form constraints increase, replace some of 
the smart components with the smaller plain components. 

The d.tools hardware component library can be extended 
with other devices that conform to the I2C standard. In 
addition to our own ATtiny controlled components, we have 
successfully added I2C chips from other manufacturers into 
our system: a Phillips PCF8591 I2C A2D converter for volt-
age-varying inputs such as potentiometer knobs, and a 
Procyon Engineering ADXL accelerometer board, which 
uses an ADS7828 I2C A2D converter. Currently, adding such 
new components requires programming expertise; source 
code for both microcontroller and Eclipse environments is 
freely available to users. 

Performance 
Performance matters in three distinct areas of the d.tools 
system: designer interaction with the software workbench; 
plugging and unplugging of hardware in tightly coupled 
mode; and user interaction with a physical prototype.  

Interaction with the d.tools software workbench is respon-
sive on the 3.0 GHz PCs used in our evaluation. Noticeable 
lags only occur when operations such as device layout 
updates and state dragging involve repainting many graphic 
elements in complex statecharts. These delays are incidental 
rather than intrinsic to our architecture and are a result of 
using the GEF’s suboptimal graphics engine. Plugging and 
un-plugging hardware is reflected in software representa-
tions after one to two seconds. This latency is sufficient to 
convey causality. Round-trip latency from the time a user 
generates a hardware event in an input component (e.g., by 
pressing a button) until a signal is generated in an output 
component (e.g., LED turns on) is on the order of 100ms, 
within the range of perceptual causality [12]. Refactoring 
code to separate hardware output from graphics updates 
may improve this performance. 

EVALUATION 
We present two evaluations of our system — a first-use 
study with thirteen participants, and the use of our toolkit to 
rebuild prototypes of three existing devices. 

First-Use Study 
We conducted a controlled study of d.tools in our labora-
tory to assess the ease of use and felicity of our tool for 
design prototyping. The study group comprised 13 partici-

pants whose skills matched those of the d.tools target audi-
ence: general design experience, but no required back-
ground in building physical user interfaces, electronics or 
programming. Most participants were students or alumni of 
design-related graduate programs at our university. Two 
undergraduates with design experience also participated. 
While all had some prior exposure to programming, only 
one participant reported to be fluent; none self-rated as 
experts. Participants’ ages ranged from 20 years to 37 
years; six were male, seven were female. 

Pilot Study 
Three participants served as pilot testers, which allowed us 
to iteratively refine our testing protocol. The pilots uncov-
ered stumbling blocks not related to the technical part of 
our system: they alerted us to the importance of labeling 
otherwise identical hardware components to give users a 
way to differentiate them, of making available third party 
software tools for image creation during the study so par-
ticipants could add their own graphics to their prototypes, 
and of providing online documentation and design patterns 
for participants to refer to. To support opportunistic design 
strategies, we also added a set of images of common navi-
gation elements and symbols to the asset library. 

Laboratory Evaluation 
We began each two-hour session for the ten participants in 
the full study by demonstrating the d.tools software editor 
and the hardware components. We then gave the partici-
pants two narrowly-defined tasks and one open-ended 
design project. For the first task, participants were asked to 
complete a cell phone navigation menu that the experi-
menter had started during the demonstration. For the second 
task, participants were asked to build a functional physical 
prototype of a device with one button and one switch as 
inputs, and one LED and a speaker as outputs. Pressing the 
button should play a sound clip and toggling the switch 
should turn the LED on or off. The two components were to 
function independently of each other. 

The third assignment was to begin prototyping a digital 
music player for children. Participants were given written 
guidelines such as “children prefer dedicated controls and 
like elements that move better than buttons,” and were told 
to focus on the out-of-box experience. As the study allotted 

 
Figure 7. Prototypes created by our study participants. Left: 
a music player; Right: statechart and device for task 2 



only 30 to 45 minutes for this part, participants were in-
formed that they were not expected to produce a finished 
product. To sketch and build physical prototypes, we pro-
vided an 18" × 24" paper pad, sheets of foam core, pens, a 
selection of tools, glue and tape, and a label printer. As the 
final step of the study, participants were asked to complete 
a 26 question survey. 

Study Results 
All participants successfully completed both closed tasks, 
regardless of prior experience in user interface design or 
physical computing. Task one took a mean of 9 minutes 
while task two took a mean of 24 minutes to complete (see 
Figure 8). 

Participants followed heterogeneous approaches: some 
started by exploring the ergonomics of different shapes to 
determine input component placement; others focused on 
requirements analysis on paper; yet others worked exclu-
sively in software. d.tools was most frequently used for 
determining layout of interaction components in the device 
designer, and reasoning about the interaction model in the 
statechart designer. Two participants with prior physical 
computing experience built functional physical prototypes 
with navigation and sound playback in less than 30 minutes.  

The success of a low threshold and tight coupling  
Almost all users commented positively on the tight cou-
pling of hardware components and their software counter-
parts, especially the automatic recognition of hardware 
connections. Authoring statecharts through link-and-create 
actions was immediately intuitive. Refining default behav-
iors through text properties and expressing functional inde-
pendence in a statechart took longer; nevertheless, partici-
pants mastered these strategies by the end of the session.  

After an initial period of learning the d.tools interface, 
participants spent much of their time with design thinking 

— reasoning about how their interface should behave from 

the user’s point of view instead of wondering about how to 
implement a particular behavior. This was especially true 
for authoring UI navigation flows. 

The experimenter asked participants to hand over the de-
vices built for task two  — while observing this on-the-spot 
user test, many subjects expressed the wish to iterate on 
their designs and produced another version two to ten min-
utes later. This suggests the advantage of the rapid iteration 
cycles that d.tools enables. 

Participants consistently gave d.tools high marks for ena-
bling usability testing (µ=4.6 on a 1 to 5 Likert scale with 
neutral value 3; σ=0.70), shortening the time required to 
build a prototype (µ=4.3; σ=0.67) and helping to under-
stand the user experience at design time (µ=4.25; σ=1.03).  

Needs: software simulation, larger library, richer feedback 
One significant shortcoming discovered through the study 
was the lack of software simulation of an interaction model: 
the evaluated version did not provide a mechanism for 
stepping though an interaction without attached hardware. 
A software simulation mode would complement the soft-
ware-centric loosely coupled work flow.  

Participants also found the d.tools hardware library too 
limited and noted that this constrained their designs. Some 
participants explicitly asked how difficult it would be to 
extend the hardware library. Some participants desired 
more robust hardware connectors: they were concerned 
about damaging or unhooking wires during plugging and 
unplugging and wished for a more “Lego-like” fit. We have 
yet to find a commercially available connector set that 
combines small size, polarized plugs, positive lock, and 
robustness to a high number of plug cycles. Users also 
wished for aggregate inputs that have become standard 
navigation elements for information appliances such as 
combined up-down buttons and five-way joysticks.  

In the visual authoring interface, the study uncovered an 
inconsistency in our handling of click-and-drag actions 
between the device editor and the statechart editor. Fur-
thermore, d.tools could benefit from better feedback on 
transitions and visualization of input component state in the 
statechart – some participants looked for transition informa-
tion in the components of a state, instead of in the proper-
ties of transitions themselves. 

Figure 8: Task completion times, and prior experience and 
expertise of the study participants. Participants completed task 
1 in an average of 9 minutes, and task 2 in an average of 24 
minutes. These times demonstrate that prototyping with d.tools 
is fast enough to be appropriate for early-stage design. 

Editing textual properties worked well for subjects who had 
some comfort level with programming, but was disliked by 
one product designer who described himself as a “visual 
person.” Interaction techniques for graphically specifying 
properties would likely address this. 

Rebuilding Existing Devices 
To evaluate the current toolset’s expressiveness, we recre-
ated prototypes for three existing devices — an Apple iPod 
Shuffle music player, the back panel of a Casio EX-Z40 
digital camera, and the Sensing PDA published in [18]. 
Figure 9 shows statechart diagrams of these prototypes. We 
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distilled the key functionality of each device and prototyped 
these key interaction paths.  

Figure 9. Statechart diagrams and build times of prototypes 
for three existing devices: iPod Shuffle, Casio digital camera
back, Sensing PDA. 

Interactive physical prototypes have two scaling concerns: 
the complexity of the software model, and the physical size 
of the prototype. This rebuilding exercise demonstrated that 
d.tools diagrams of up to 50 states are visually understand-
able on a desktop display (1600 × 1200); this scale is suffi-
cient for the primary interaction flows of current devices. 
Positioning and resizing affords effective visual clustering 
of subsections according to gestalt principles of proximity 
and similarity. However, increasing transition density 
makes maintaining and troubleshooting statecharts taxing. 
This limitation is shared by other visual authoring environ-
ments. The design of more complex interfaces would bene-
fit from the ability to create reusable aggregations of func-
tionality and implementing more of Harel’s visual abstrac-
tions [16], especially hierarchical grouping. 

Models were created at a scale of 1.5:1 since cabling and 
the small microcontrollers attached to each d.tools compo-
nent require additional space inside the device enclosure. 
While miniaturization of our components can mitigate this 
issue to a certain extent, there still exists a principal mis-
match between the physical scale appropriate for manipula-
tion during prototyping and the scale of components used in 
computer-aided manufacturing. 

Figure 9 shows the breakdown of prototyping times into 
graphic design time, d.tools design time, and physical 
construction time. d.tools successfully cut the time that is 
implementation-details-related to a small fraction, enabling 
the prototyping to be driven by design concerns. 

RELATED WORK 
The d.tools system supports early-stage design activities. 
Prior work has created early-stage design tools for other 
domains, including graphical [26], web [22, 33], multime-
dia [8], speech [23], multimodal [39], and cross-device [28] 
user interfaces. The d.tools system also draws on related 
work in end-user programming and tools for physical com-
puting. This section summarizes each area and how d.tools 
relates to each body of work. 

End-user and visual programming 
Nardi [32] notes that while general-purpose programming 
languages are too far removed from the tasks faced by 
domain experts to be adopted into their work processes, 
these users are not averse to using formal languages per se. 
Task-specific languages with abstractions that match the 
professional’s work domain (e.g., spreadsheets, CAD) have 
been tremendously successful. 

Domain-tailored visual authoring environments have been 
successful for domains such as real-time music synthesis 
and control [4] and engineering simulation [5]. The HANDS 
system [34] shows that the same usability and human-
centered design strategies used to construct task-specific 
languages can also be employed to develop more accessible 

models of general programming. d.tools seeks to transfer 
the benefits of end-user programmability to the domain of 
physical interaction design. 

Tools for Physical Computing 
d.tools builds on prior work on physical computing tools, 
including programming toolkits, multimedia authoring 
extensions, and visual authoring systems.  

Toolkits for Programmers 
The Phidgets [15] system introduced physical widgets: 
programmable ActiveX controls that encapsulate communi-
cation with USB-attached physical devices, such as a 
switch, pressure sensor, or servo motor. The graphical 
ActiveX controls, like the d.tools visual authoring environ-
ment, provide an electronic representation of physical state.  

iStuff [9] extended this idea to support wireless devices, a 
loose coupling between input and application logic, and the 
ability to develop physical interactions that function across 
an entire ubiquitous computing environment. iStuff, in 



conjunction with the Patch Panel [10], enables standard UIs 
to be controlled by novel inputs. 

Papier-Mâché [20, 21] introduced a software architecture 
for acquiring and abstracting physical input, most notably 
computer vision. d.tools employs the user-centered tool 
design methods that Papier-Mâché introduced, but focuses 
on mechatronic input. 

Wiring [11] is an IO board that extends the Processing [36] 
environment in which behavior is authored through a Java-
extensible scripting language.  Wiring and Processing differ 
from d.tools in that they seek to teach textual programming 
to design students. 

Pin&Play [25] offers smart components with conductive 
pins that can be pushed into a multi-layer surface which 
acts as the network medium and power source. The act of 
attaching a component to the surface itself establishes a 
communications connection. Ergodex [13] follows a similar 
“put any element anywhere” approach, but uses RF technol-
ogy to allow freeform placement of buttons on a tablet. 

Application logic for these toolkits is created through a 
textual programming language such as Java or C. The 
d.tools visual authoring environment contributes a lower 
threshold tool and provides stronger support for rapidly 
developing the “insides of applications” [30] than these 
systems. However, textual programming offers a higher 
ceiling and allows for novel control of existing applications, 
which d.tools does not. 

Extending Multimedia Authoring 
Teleo [38] is a commercial system offering similar benefits 
to Phidgets. Teleo’s primary distinction is that it is pro-
grammed with Max/MSP [4] or Macromedia Flash [1], 
rather than through Microsoft Visual Studio. 

Calder [7, 27] integrates RFID buttons and other wired and 
wireless devices with C and Macromedia Director [1]. Fluid 
integration with physical mock-ups is aided by the small 
form factor of the devices.  

DART [29] provides augmented reality authoring in the 
Macromedia Director [1] environment. It abstracts technol-
ogy issues such as sensor input from designers.  

This class of toolkits enables those in the interaction design 
community already familiar with scripting languages of 
multimedia applications to prototype physical devices such 
as remote controls and game controls. The goal of tools in 
this area should be similar to the goal of web authoring 
tools such as Macromedia Dreamweaver [1], where (for the 
most part) users can move fluidly between textual and 
visual authoring modes. d.tools shares this goal but offers a 
authoring environment focused on designing artifacts rather 
than creating a media experience. 

Visual Authoring 
The Lego Mindstorms Robotic Invention System [2] offers 
a visual environment based on control flow puzzle pieces to 

control sensors and actuators. While a benchmark for low-
threshold authoring, Lego Mindstorms targets autonomous 
robotics projects; the abstractions are inappropriate for 
designing physical user interfaces.  

STCtools [31] employs a statechart editor coupled with pen 
input  and geo-referenced projection to prototype informa-
tion appliances. It is the only other tool besides d.tools that 
provides explicit support for integrated raster graphics 
displays. There are several advantages to a small display 
over projection: higher resolution; freedom from occlusion; 
better mobility; and lower system complexity. At this point, 
the STCtools library comprises solely buttons and is not 
designed to support richer interactions. 

Maestro [3] is a commercial design tool for prototyping 
mobile phone interactions. It provides a complex visual 
state language with code generators, software simulation of 
prototypes, and compatibility with Nokia’s Jappla hardware 
platform. Maestro and Jappla together offer high ceiling, 
high fidelity mock-up development; however, the complex-
ity of the tools make them too heavyweight for the informal 
UI sketching that d.tools targets. 

CONCLUSIONS AND FUTURE WORK 
This paper introduced d.tools, an integrated prototyping 
environment that lowers the threshold for creating func-
tional physical prototypes. To better understand how d.tools 
is used in longitudinal practice, we have released d.tools to 
the design community as open source (see 
http://hci.stanford.edu/d-tools). This winter, we will deploy 
d.tools in our university’s interaction design studio course 
to ascertain the strengths and weaknesses of this interaction 
model for design students. d.tools introduces an architecture 
that provides a low threshold for design generalists, and 
modular extensibility for developers. Currently, we are 
researching techniques for developers to more fluidly in-
crease the software ceiling of the d.tools visual authoring 
language. We are also exploring opportunities for integrat-
ing digitally-controlled fabrication technologies such as 3D 
printing [14] into d.tools. 
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