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ABSTRACT 

 

Tangible User Interface Input: Tools and Techniques 

 

by 

Scott Robert Klemmer 

Doctor of Philosophy in Computer Science 

University of California, Berkeley 

Professor James Anthony Landay, Chair 

 

 

Tangible user interfaces (tuis) augment the physical world by integrating digital information 

with everyday physical objects. Developing tangible interfaces is problematic because 

programmers are responsible for acquiring and abstracting physical input. This is difficult, 

time-consuming, and requires a high level of technical expertise in fields very different from 

user interface development — especially in the case of computer vision. Consequently, only a 

small cadre of technology experts can currently build these uis. Based on a literature review 

and structured interviews with tui researchers, we created Papier-Mâché, a toolkit for 

building tangible interfaces using computer vision, electronic tags, and barcodes. Papier-

Mâché introduces high-level abstractions for working with these input technologies that 

facilitates technology portability. We evaluated this toolkit through a laboratory study and 

longitudinal use in course and research projects, finding the input abstractions, technology 

portability, and monitoring facilities to be highly effective. This dissertation contributes new 

software tools and interaction techniques for tangible user interface input. It comprises 

Papier-Mâché, a toolkit for building tangible uis; Books with Voices, a system providing 
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barcode-augmented paper transcripts for random access to digital video; and The Designers’ 

Outpost, a tangible ui for collaborative web site design. 

Papier-Mâché’s design has been deeply influenced by my experiences building physical 

interfaces. Web designers use pens, paper, walls, and tables for explaining, developing, and 

communicating ideas during the early phases of design. These practices inspired The 

Designers’ Outpost. With Outpost, users collaboratively author web site information 

architectures on an electronic whiteboard using physical media (Post-it notes and images), 

structuring and annotating that information with electronic pens. This interaction is enabled 

by a touch-sensitive electronic whiteboard augmented with a computer vision system. We 

conducted several studies of this system that validated that Outpost supports information 

architecture work practice and led us to develop support for design history, remote collabora-

tion, and fluid interoperability with other design tools. 

The second major tui we developed focused on oral historians. While oral historians 

consider interview recordings a central historical artifact, these recordings sit unused after a 

written transcript is produced. We hypothesized that this is largely because books are more 

usable than recordings. Therefore, we created Books with Voices: barcode-augmented paper 

transcripts enabling fast, random access to digital video interviews on a pda. Our evaluation 

found this lightweight, structured access to original recordings to offer substantial benefits 

with minimal overhead. Both The Designers’ Outpost and Books with Voices could have 

been built in a fraction of the time if the Papier-Mâché toolkit had been available. 

 

 

_____________________________________________________

Professor James Anthony Landay 

Dissertation Committee Chair   



 i 

 

 

 

 

 

For my parents, 

Cheryl and Chris Klemmer,  

who have always encouraged me 

 

 



 ii 

 

Table of Contents 

 

 

CHAPTER 1 INTRODUCTION 1 

1.1 Thesis Contributions 2 

1.2 Solution Overview 3 
1.2.1 Toolkit support for tangible user interface input 3 
1.2.2 TUI input supporting professional work practices 4 
1.2.3 User-centered methods for the design and evaluation of software tools 7 

1.3 Dissertation Roadmap 8 
1.3.1 Interaction techniques for tangible user interface input 8 
1.3.2 Software tools for tangible user interface input 9 

CHAPTER 2 RELATED WORK 11 

2.1 Introduction 12 

2.2 Origins of Tangible Interaction 14 
2.2.1 Interacting with paper on the DigitalDesk 15 
2.2.2 Bricks: laying the foundations for graspable user interfaces 15 
2.2.3 Tangible bits 17 

2.3 Motivating and Evaluating Tangible Interaction 17 
2.3.1 Walls for collaborative design 17 
2.3.2 Web site design practice 18 
2.3.3 Paper flight strips 18 
2.3.4 Comparing paper and tangible multimodal tools 20 

2.4 User Interface Software Tools 21 

2.5 GUI Input Models 22 
2.5.1 Model-View-Controller 22 
2.5.2 Interactors 22 
2.5.3 SubArctic 24 
2.5.4 Specifying non-WIMP user interfaces 24 

2.6 Tool Support for Ubiquitous Computing 25 
2.6.1 Phidgets: programmable physical widgets 26 



 iii 

 

2.6.2 IStuff 27 
2.6.3 Image processing with crayons 28 
2.6.4 Hardware toolkit 28 
2.6.5 Context toolkit 29 
2.6.6 Tools for augmented reality 29 
2.6.7 OOPS: Supporting mediation and ambiguity 30 
2.6.8 Distributed interaction architectures 31 

2.7 Taxonomies of Tangible Interfaces 31 
2.7.1 Emerging frameworks for tangible user interfaces 32 
2.7.2 A taxonomy for and analysis of tangible interfaces 33 
2.7.3 The TAC syntax 33 

2.8 Inspiring Tangible Interfaces 34 
2.8.1 Spatial applications: interactive surfaces 36 
2.8.2 Topological applications: relationships between objects 40 
2.8.3 Associative applications: physical indices 41 
2.8.4 Forms applications: offline interaction 43 
2.8.5 Commonalities 43 

2.9 Input Technologies for Tangible Interaction 44 
2.9.1 Computer vision as a sensing technique 44 
2.9.2 Barcodes and glyphs 45 

2.10 Evaluating Programming Tools and Languages 47 
2.10.1 Early evaluation of tools and languages 47 
2.10.2 Empirical studies of programming 48 
2.10.3 Designing usable programming systems 49 
2.10.4 Cognitive dimensions of notations 50 
2.10.5 Evaluating ubiquitous computing tools 52 

CHAPTER 3 THE DESIGNERS’ OUTPOST 54 

3.1 Introduction 55 
3.1.1 Current physical practice: benefits and drawbacks 56 
3.1.2 Supporting and extending practice with Outpost 58 

3.2 Background 60 
3.2.1 Web site design: tools and practice 60 
3.2.2 Affinity diagrams 61 
3.2.3 Electronic walls 62 



 iv 

 

3.3 Initial Design Studies 63 
3.3.1 Low-fidelity desk: design study 65 
3.3.2 Pixel and paper mock-up 66 

3.4 Outpost Interaction Techniques 67 

3.5 Professional Design Study 70 
3.5.1 Study design 71 
3.5.2 Design findings 72 

3.6 Design Implications 78 
3.6.1 Smart yet silent 78 
3.6.2 Sweet spot on the tangible/virtual spectrum 79 
3.6.3 Extending the existing design process 81 

3.7 Computer Vision Prototypes 82 
3.7.1 Difference image vision prototype 83 
3.7.2 Matlab algorithms prototype 85 
3.7.3 Interactive wall vision prototype 87 

3.8 Current Implementation 89 
3.8.1 Physical tools and graphical display 89 
3.8.2 Computer vision infrastructure 90 

3.9 Summary and Toolkit Motivations 94 

CHAPTER 4 ELECTRONIC DESIGN HISTORY OF PHYSICAL ARTIFACTS 96 

4.1 Introduction 96 

4.2 Background 98 
4.2.1 Design rationale 98 
4.2.2 History-enabled applications 100 

4.3 Motivations for History Support 102 

4.4 History Interface 103 
4.4.1 Timeline visualization 103 
4.4.2 Synopsis visualization 108 

4.5 History Usage Scenarios 109 
4.5.1 Reaching a dead-end 110 
4.5.2 Writing a Session Summary 110 
4.5.3 Find the rationale behind a decision 111 



 v 

 

4.5.4 Following up on a session 111 

4.6 Implementation 111 

4.7 Design Study 112 
4.7.1 Timeline usability 114 
4.7.2 Need for visual comparison and merging 114 

4.8 Summary 115 

CHAPTER 5 TANGIBLE REMOTE COLLABORATION 117 

5.1 Introduction 117 

5.2 Background 119 
5.2.1 Distributed media spaces 120 
5.2.2 Remote actuation 121 

5.3 Interviews and Fieldwork Informing Design 122 
5.3.1 Current experiences with remote collaboration 122 
5.3.2 User needs for remote collaboration 124 

5.4 Interaction Techniques 124 
5.4.1 Shared workspaces and transactional consistency 125 
5.4.2 Desktop Outpost 128 
5.4.3 Transient ink for deictic gestures 128 
5.4.4 Distributed presence 129 

5.5 Software Infrastructure 131 
5.5.1 Data transfer 132 
5.5.2 Vision and tracking 132 

5.6 User Feedback 133 
5.6.1 Qualitative feedback 135 
5.6.2 Areas for improvement 135 

5.7 Summary 136 

CHAPTER 6 BOOKS WITH VOICES 138 

6.1 Introduction 139 

6.2 Fieldwork into Oral Histories 140 
6.2.1 Contextual inquiry at ROHO 142 
6.2.2 Conducting oral histories 143 



 vi 

 

6.3 Background 143 
6.3.1 Technology support for oral histories 143 
6.3.2 Reading, listening, and video browsing 144 

6.4 Paper Prototype of a Paper Interface 145 

6.5 Interactive Prototype 146 

6.6 Interactive Prototype Evaluation 149 
6.6.1 Study design 150 
6.6.2 Results 151 
6.6.3 Benefits of paper for fast, direct video access 152 
6.6.4 Richer practice, minimal overhead 153 
6.6.5 Listening and watching 154 
6.6.6 The barcode scanning process 156 
6.6.7 Visual design 157 
6.6.8 Requested Features 157 
6.6.9 General remarks 158 

6.7 Summary 158 

CHAPTER 7 FIELDWORK INSPIRING PAPIER-MÂCHÉ 160 

7.1 Difficulties of Acquiring and Abstracting Input 161 
7.1.1 Group size and composition 161 

7.2 Iterative Implementation, Using the Familiar 162 
7.2.1 Paper and existing code for low-threshold prototyping 163 
7.2.2 Length of projects 164 
7.2.3 Refactoring as architecture needs became clear 164 

7.3 User Experience Goals Motivating Tangibility 165 

7.4 Development and Reuse: Architecture, Library, Functionality 166 

7.5 Events and Constraints are More Appropriate Than Widgets 167 

7.6 Declaratively Authoring Behavior 169 

7.7 Choice of programming language 171 

7.8 Choice of input technology 172 
7.8.1 Input technology portability 173 
7.8.2 “More than two serial ports” 174 



 vii 

 

7.9 Distributed Applications 174 

7.10 Importance of System Feedback for Users and Developers 175 
7.10.1 Understanding the flow of control 175 
7.10.2 Feedback over longer time scales 176 

7.11 Summary 177 

CHAPTER 8 THE PAPIER-MÂCHÉ ARCHITECTURE 178 

8.1 Introduction 179 

8.2 Input Abstraction and Event Generation 179 
8.2.1 Event generation 183 
8.2.2 RFID events 184 
8.2.3 Vision events 185 

8.3 Declaratively Associating Input with Behavior 188 
8.3.1 Events 189 
8.3.2 Factories 189 
8.3.3 Bindings 190 

8.4 Flow of Control in an Application 193 

8.5 Switchable Classes of Underlying Technology 193 

8.6 How Papier-Mâché differs from a GUI Input Model 194 

8.7 Program Monitoring: Application State Display 196 
8.7.1 Current objects and vision I/O 196 
8.7.2 Wizard of Oz control 197 

8.8 Visually Authoring and Modifying Application Behavior 199 

8.9 Summary 201 

CHAPTER 9 PAPIER-MÂCHÉ EVALUATION 202 

9.1 Overview of Evaluation Methods 203 

9.2 Performance 204 

9.3 Lowering the Threshold: A Simple Application 206 

9.4 In-lab Evaluation 207 
9.4.1 Method 207 



 viii 

 

9.4.2 Results 208 

9.5 Applications Using Papier-Mâché 209 
9.5.1 Spring 2003, graduate human-computer interaction 210 
9.5.2 Fall 2003, ubiquitous computing 212 
9.5.3 Additional projects 213 

9.6 Inspiring Applications Rewritten with Papier-Mâché 215 
9.6.1 Marble Answering Machine 215 
9.6.2 Books with Voices 215 
9.6.3 Collaborage 216 

9.7 Summary 216 

CHAPTER 10 CONCLUSIONS AND FUTURE WORK 218 

10.1 Contributions 218 

10.2 Limitations 221 

10.3 Future Work 223 

10.4 Closing Remarks 225 

BIBLIOGRAPHY 226 

APPENDIX A THE DESIGNERS' OUTPOST EVALUATION 

QUESTIONNAIRES 251 

A.1 Core Outpost Functionality 251 

A.2 Design History Mechanism 257 

A.3 Remote Collaboration 263 

APPENDIX B BOOKS WITH VOICES EVALUATION QUESTIONNAIRE 270 

APPENDIX C PAPIER-MÂCHÉ FIELDWORK QUESTIONNAIRE 279 

APPENDIX D SAMPLE PAPIER-MÂCHÉ APPLICATIONS 283 

D.1 Marble Answering Machine 283 

D.2 Books with Voices 284 



 ix 

 

D.3 Collaborage 286 

APPENDIX E PAPIER-MÂCHÉ USER MANUAL 296 

 



 x 

 

List of Figures 

 

 

FIGURE 1.1 A magazine advertisement for the Microsoft Visio software. This ad 

shows an office professional after a meeting; she is left with the task of 

migrating the physical artifacts produced in the meeting to electronic 

form. The ad suggests that abandoning physical artifacts for electronic 

ones eliminates this migration step. While true, it also removes all of the 

fluid interactions available with physical artifacts. This dissertation work 

provides tools and techniques that couple fluid physical interaction with 

the capture and access advantages of electronic tools. 5 

FIGURE 2.1 Wellner’s DigitalDesk (left) and Fitzmaurice et al.’s Bricks (right). 15 

FIGURE 2.2 Air traffic controllers working with paper flight strips. 19 

FIGURE 2.3 BuddyBugs (left) is a tangible interface for instant messaging [176]. Each 

bug represents an IM contact; the contact’s status is represented by the 

bug’s orientation. To initiate contact, a user taps on a bug avatar. It was 

created using Phidgets pressure sensors and servomotors (right). 26 

FIGURE 2.4 Ullmer and Ishii’s MCRpd model for describing tangible interfaces. 

Figure from [247, p. 917]. 32 

FIGURE 2.5 The rows of this diagram present the 24 applications in our literature 

survey, organized into four primary categories: spatial, topological, 

associative, and forms. Each column describes an attribute of the 

application: this attribute is listed textually at the top of the diagram. In 

the body of the diagram an icon is used to designate the presence of the 

column’s attribute. 35 

FIGURE 2.6 Collaborage [180], a spatial TUI where physical walls such as an in/out 

board (left) can be captured for online display (right). 37 

FIGURE 2.7 The other eight inspiring applications in the spatial category. 38 

FIGURE 2.8 This SMART technology software, based on The Designers’ Outpost 

research, extracts Post-It notes and links for import into their Smart Ideas 

software. Image from [42] 39 

FIGURE 2.9 The other four inspiring applications in the topological category. 40 



 xi 

 

FIGURE 2.10 The marble answering machine [117], an associative TUI, uses marbles as 

a physical index to recorded answering machine messages. Left: Bishop’s 

original sketch, redrawn by the author. Right: Bishop’s prototype where 

resistors are embedded in marbles. 41 

FIGURE 3.1 A designer sitting in front of a Post-it Note covered wall. Post-it notes 

represent chunks of information and are arranged spatially into groups of 

related information. These notes are linked with marker lines to show 

organizational relationships. Image courtesy Hugh Beyer and Karen 

Holtzblatt [37]. 55 

FIGURE 3.2 One of two design rooms at a Silicon Valley web site design firm visited 

by the author. 56 

FIGURE 3.3 A web site information architecture using a combination of physical Post-

it notes, physical pictures, and virtual links showing relationships between 

them. 57 

FIGURE 3.4 DENIM, shown here in sitemap view, allows web site design by 

sketching. As seen here, physical information spaces created in Outpost 

can be electronically imported into DENIM, serving as baseline sitemaps.

 58 

FIGURE 3.5 In DENIM’s storyboard view, designers can continue working with an 

Outpost sitemap by sketching out the contents of a page. 59 

FIGURE 3.6 Stanford’s PostBrainstorm system offers a high-resolution, interactive 

wall [101]. 62 

FIGURE 3.7 The sequence of prototypes used in the three design studies. 64 

FIGURE 3.8 The sequence of computer vision studies. The first prototype (left) 

explored the difference image algorithm using the Java Media Framework 

and webcams. The second prototype (center) explored the expectation-

maximization algorithm for line-fitting using Matlab. The final prototype 

(right) integrated these techniques into a functioning system with a user 

interface. 65 

FIGURE 3.9 The low-fidelity Designers’ Outpost. 66 

FIGURE 3.10 Mock-ups of the Designers’ Outpost—Collaborating on an information 

hierarchy with Post-its on a digital desk. 67 



 xii 

 

FIGURE 3.11 The board’s tool tray: styli for drawing electronic ink, a clear plastic 

square for moving electronic content, and the eraser. (Only the pens were 

available during the design study.) 70 

FIGURE 3.12 Tapping on a note invokes an electronic context menu for physical 

content. 70 

FIGURE 3.13 A design team suggested that freehand ink would be useful for both 

unstructured annotation of the artifact and for performing operations on 

groups of notes. 72 

FIGURE 3.14 This is an example of the facilitator style; one person remains at the board 

guiding the group’s process. 73 

FIGURE 3.15 This is an example of the open board style; all participants directly 

express their ideas in the artifact. 74 

FIGURE 3.16 Pierre Wellner’s comparison of advantages of electronic and paper 

documents [260]. 79 

FIGURE 3.17 Excerpts from an image sequence from our prototype steady state 

algorithm. Raw camera frames are shown in the top row, single frame 

difference images are shown in the bottom row. Raw and thresholded C2 

– C1 difference images are shown at right. 82 

FIGURE 3.18 The physical design of the Outpost system. The computer vision system 

uses two cameras as input devices for the electronic world. A rear-

mounted projector outputs electronic information onto surfaces in the 

physical world. 84 

FIGURE 3.19 Hand images (from a low-resolution detector) and equivalent rectangles, 

having the same first-order and second-order moments [84]. 87 

FIGURE 3.20 The Outpost vision pipeline at a frame where one note (“Reptile Haus”) 

was added and another was removed. 91 

FIGURE 4.1 Users’ view of the main history timeline (bottom) in the Designers’ 

Outpost, a system for collaborative web design. Outpost runs on a touch 

sensitive SMART Board. 97 

FIGURE 4.2 Kurlander’s editable graphical histories [141]. 99 

FIGURE 4.3 Rekimoto’s Time-Machine computing system [205]. 100 

FIGURE 4.4 Outpost’s electronic capture enables replacing physical documents with 

their electronic images. A pie menu operation (left) makes all notes 



 xiii 

 

electronic (right). It is easier, but not required, to work with design 

history when all of the information is electronic. 102 

FIGURE 4.5 The main timeline at the bottom of the SMART Board. The pop-up pie 

menu lets users choose available filters. Bookmark adds the current state to 

the synopsis. Bookmark Timeline adds all states in the current view to the 

synopsis. Filter Further allows users to intersect filters. 103 

FIGURE 4.6 Close-up of the global timeline. Above each thumbnail is a time-stamp. 

The main thumbnail is a scaled down version of the board, with the 

changes highlighted in green. The frame around future thumbnails is 

dark blue, past medium blue, and current light blue. 104 

FIGURE 4.7 The main timeline, with an expanded strand containing a collapsed 

strand. 105 

FIGURE 4.8 Physical jog dial for scrolling through history. 106 

FIGURE 4.9 Branched history: Actions A, B, C, D, and E form one strand; A, B, F, 

and G form the other. 107 

FIGURE 4.10 Stub-branching history presentation: the top history fully displays the 

current strand; other strands are visualized as stubs. The bottom history 

displays the full history; states not part of the current strand are placed 

between brackets. 107 

FIGURE 4.11 The electronic context menu for physical objects. The bottom element in 

the menu is the local timeline. In this case, the note was created (“C”), 

then moved (“M”), and finally a link drawn (“L”). This local timeline is 

display-only. 108 

FIGURE 4.12 The on-screen synopsis view. 109 

FIGURE 4.13 A print version of the same information. 109 

FIGURE 4.14 Two professional designers collaborate on an information architecture for 

the Oakland Zoo web site during the study. 113 

FIGURE 4.15 Creative pursuits require experimentation and exploration of possibilities, 

but interfaces typically stifle the ability to easily explore alternatives in 

parallel. Terry et al.’s work supports this exploration [243, 244]. 115 

FIGURE 5.1 Our remote system running on two SMART Boards. Notes that are 

physical in one place (see left) are electronic in the other (at right). The 

Outpost history bar at the bottom shows previous states of the board.118 



 xiv 

 

FIGURE 5.2 Krueger’s VIDEOPLACE art installation introduced vision-tracking of 

users’ shadows. A video projector in the gallery showed the user’s shadow, 

augmented with computational behaviors such as the creature shown on 

the left-hand side of the above image [138]. 119 

FIGURE 5.3 The Clearboard [116] (left) and DoubleDigitalDesk [261] (right) systems 

introduced the idea of synchronous remote collaboration through large 

displays. 120 

FIGURE 5.4 Interaction techniques for creating, deleting, and moving physical notes 

in Remote Outpost. The left column is the user’s action with the physical 

note; the right column shows the electronic display on the remote board.

 126 

FIGURE 5.5 Moving a note: A and B show the remote and local views before the 

move. In C, a remote user moves the electronic version of the ‘Cats’ note 

with the move tool. D shows the virtual ‘Cats’ note at the new location 

and the local user removing the out of date physical ‘Cats’ note (marked 

with a red shadow). 127 

FIGURE 5.6 Interaction techniques for moving (top) and deleting (bottom) electronic 

content. 128 

FIGURE 5.7 “Should this note be moved down here?” Transient ink is used to convey 

pointing information and temporary graphical material by a remote user. 

The written ink fades away after several seconds. The writer’s view is on 

the left; the receiver’s view is on the right. 129 

FIGURE 5.8 The view from the rear camera of two users, one of whom is pointing to a 

note on the board. The calculated borders of the shadows are drawn in 

white, on top of the raw pixel input. 130 

FIGURE 5.9 The distributed awareness mechanism. A blue shadow outline in the 

background represents a remote collaborator. 131 

FIGURE 6.1 Accessing digital video by scanning transcripts. 139 

FIGURE 6.2 PDA playing a video of a recorded oral history. 140 

FIGURE 6.3 The first page of Carlo Séquin’s Books with Voices transcript. The 

barcodes are aligned with speaker changes and paragraph boundaries.147 

FIGURE 6.4 Detail of an internal page including a photograph. 148 

FIGURE 6.5 The Books with Voices pipeline. 149 



 xv 

 

FIGURE 6.6 The trigger button initiates barcode scanning. 150 

FIGURE 6.7 Video stills from our evaluation: participants watching and listening to 

oral histories on the Books with Voices PDA. Note the many 

configurations of the PDA and the paper transcript. 154 

FIGURE 8.1 A toolkit is software where the user interface is an API: the architecture 

of the system, along with a set of classes and their methods. This is a 

UML diagram of a piece of the Papier-Mâché API. 180 

FIGURE 8.2 The inheritance hierarchy for physical input devices. Each device class 

encapsulates a physical input. The InputDevice is a marker interface: it is 

an interface class that contains no methods. All classes that represent a 

physical device implement the marker interface to denote that they 

represent a physical device. 181 

FIGURE 8.3 The inheritance hierarchy for PhobProducers. Producers are paired with 

InputDevices; they take input from a device and generate PhobEvents. 

The abstract PhobProducer base class manages the event listeners and the 

production of events. 183 

FIGURE 8.4 The inheritance hierarchy for factories: objects that create AssociationElts 

from Phob input. The top level is the AssociationFactory interface. The 

middle level is the DefaultAssociationFactory abstract class; this class 

provides the ability to be VisuallyAuthorable and the ability to serialize to 

XML using JAXB. 190 

FIGURE 8.5 The inheritance hierarchy for associations. Associations are the elements 

in the Papier-Mâché architecture that input is bound to. These elements 

can either be nouns or actions. The Papier-Mâché library includes five 

common media manipulation actions, and four common types of nouns.

 192 

FIGURE 8.6 The monitoring window. In the 1st column, each current object appears 

in the hierarchy beneath the producer that sensed it. The 2nd column 

displays the vision input and output. The 3rd column displays classifiers 

(in this figure, RFID tags are associated with audio clips, and vision 

objects with graphical analogues). 196 

FIGURE 8.7 The dialog box for creating a new binding between input and behavior.

 199 



 xvi 

 

FIGURE 8.8 A dialog box where developers specify the color of objects of interest. 

Dialog box designed by De Guzman and Ramírez [61]. 200 

FIGURE 9.1 The Physical Macros class project: a wall-scale, topological TUI. At left, a 

set of physical operation cards placed on the SMART Board; the resize 

operator is parameterized with an electronic slider. At top right, the image 

resulting from the operations. At bottom right, the set of physical 

operation cards available to the user. 210 

FIGURE 9.2 SiteView, a spatial UI for end-user control of home automation systems. 

Left: A physical light-bulb icon on the floor plan, with projected feedback 

above. Right: The six physical icons. 211 

FIGURE 9.3 ATN captures a bird’s-eye video feed of the physical space (left), locates 

people using computer vision (middle), and displays local actors' positions 

(orange) in a virtual space (right) shared with remote actors (green). Non-

participating remote actors are placed in an observation deck. Each 

remote actor’s circle is marked with a yellow core in his personal view. 

(Picture on right is annotated for grayscale printers). Image from [147].

 213 



 xvii 

 

List of Tables 

 

 
TABLE 3.1 The five study groups: their size and primary role. 71 

TABLE 3.2 The time breakdown of the design sessions. 71 

TABLE 6.1 Task time, access statistics, and usage style for the thirteen users in our 

study. 151 

TABLE 9.1 The task completion time and lines of code for the seven users in the 

Papier-Mâché laboratory study. 208 

 

 



 xviii 

 

Acknowledgements 

 

 

A dissertation is created with the support and inspiration of family, friends, and 

colleagues: through close collaboration, moral support, distraction, and happenstance 

discussions at conferences, coffee shops, bars, and bart stations. 

I am intensely grateful to all of the individuals that have donated their time as 

participants in my fieldwork and user evaluations, as well as the early adopters of the 

Papier-Mâché toolkit. While the need for anonymity prevents me from expressing my 

appreciation publicly to each individual, I would like to thank in aggregate: the twenty-

seven web design professionals who participated in the Designers’ Outpost studies, the 

nine oral historians and four book club members who participated in the Books with 

Voices evaluation, the nine tangible ui researchers I interviewed for Papier-Mâché, and 

the seven computer science graduate students who participated in the laboratory 

evaluation. I would also like to thank Richard Candida Smith and his colleagues at 

Berkeley’s Regional Oral History Office for our discussions on technology support for 

oral history, and my colleagues who were early adopters of the Papier-Mâché toolkit in 

their research: Chris Beckmann, Edward De Guzman, Kun Gao, Nathan Good, Jeff 

Heer, Gary Hsieh, Scott Lederer, Tara Matthews, Ana Ramírez, and Rusty Sears. 

This dissertation research was supported through a grant from the National Science 

Foundation (iis-0084367), a summer internship at Ricoh Innovations, and equipment 

donations from smart Technologies and the Intel Corporation. 

My time at Berkeley was spent in the Human-Centered Computing laboratory in 

Soda Hall and later in the Berkeley Institute for Design in the Hearst Mining Building. 

I thank John Canny for his research advice and for his impressive ability in securing this 

space, the most precious commodity on any university campus. I have been fortunate to 



 xix 

 

have a wonderful group of colleagues to work with in these labs — Francesca Barrientos, 

Danyel Fisher, Eric Paulos, and Dan Reznik were my comrades in Soda Hall, and I 

joined Chris Beckmann, Scott Carter, Dan Glaser, Jeff Heer, Jonathan Hey, Matt 

Kam, Scott Lederer, Alan Newberger, David Nguyen, and Jeremy Risner as the original 

occupants of bid. 

I’ve had an amazing group of collaborators in the Group for User Interface Research  

— Mark Bilezikjian, Kate Everitt, Ryan Farrell, Robert Lee, Jack Li, Jimmy Lin, Mark 

Newman, Ethan Phelps-Goodman, Anoop Sinha, Michael Thomsen; and at Ricoh 

Innovations — Jamey Graham, Jonathan Hull, and Gregory Wolff. I have also benefited 

from all of the other guir-heads and hci colleagues, especially Marc Davis, Anind Dey, 

Ame Elliott, Marti Hearst, Jason Hong, and Sarah Waterson. I owe a great deal to my 

dissertation committee: Jen Mankoff, Terry Winograd (who I am now fortunate to have 

as a colleague!), and Paul Wright. My advisor, James Landay, has been a tremendous 

mentor to me over the past five years. He created a wonderfully tight-knit research 

group and home for hci at Berkeley. With his boundless energy and charisma, he 

taught me self-confidence as a researcher and teacher. 

Midway through graduate school, I spent four months living and working in 

Barcelona. I thank Josep Blat and his Grup de Tecnologies Interactives at the 

Universitat Pompeu Fabra for hosting me. My housemates Javier López Prieto and 

Marçal Nebot made Barcelona a home for me. As did Sofía Gamallo, Rocío García 

Robles, Dai Griffiths, Toni Navarrete, Patricia Puentes González, and Núria Reixach 

from the upf. 

Thank you to my friends who have shared their lives with me as my Bay Area 

family — Aaron Watson, my close friend for many years and housemate in o-town for 

the last two; Daniel Scarpelli and Dorick Scarpelli, my wicked good friends; Jane van 

Gunst, one of the most thoughtful people I know; Phil Buonadonna and Jason Hill, for 



 xx 

 

all the mountain biking we’ve shared in the summer and snow in the winter. Also to 

Rozy Fredericks, Anders Fristedt, Elizabeth Goodman, Ian Jones, Nalini Kotamraju, 

Jacob Tonski, Becca Weider, Kamin Whitehouse, and Amanda Williams.  

Lastly, to my sister Sandy, and my parents Cheryl and Chris. I have been incredibly 

fortunate to have your love, friendship, and wisdom. Thank you. 



1 

1 Introduction 

“We interact with documents in two separate worlds: the electronic world of 

the workstation, and the physical world of the desk. Interaction styles in 

these two worlds do not resemble each other, functions available are differ-

ent, and interaction between the two is limited” 

— Pierre Wellner, 1993 [260, p. 87]. 

While people’s interaction with tools in the real world is highly nuanced and heteroge-

neous, traditional graphical user interfaces map all of our tasks in the electronic world 

onto a small set of tools. Tangible user interfaces (tuis) [117] address this by employing 

the physical tools we have facility with to control digital information.   

While many research groups have developed compelling applications, nearly all of 

these have been developed from scratch without the benefit of user interface develop-

ment tools. Developing tangible interfaces is problematic because programmers are 

responsible for acquiring and abstracting physical input. This is difficult, time-

consuming, and requires a high level of technical expertise in fields very different from 

user interface development — especially in the case of computer vision. Consequently, 

only a small cadre of technology experts can currently build these uis. The difficulty of 

technology development and lack of appropriate interaction abstractions make 

designing different variations of an application and performing comparative evaluations 

unrealistic. These difficulties echo the experiences of developing guis twenty years ago, 

when substantial raster-graphics expertise was required. One of the earliest gui toolkits, 



1.1 · Thesis Contributions 2 

 

MacApp [221], reduced application development time by a factor of four or five. Similar 

reductions in development time, with corresponding increases in software reliability and 

technology portability, can be achieved by a toolkit supporting tangible interaction. 

1.1 Thesis Contributions 

This thesis offers contributions in three areas. 

1 Toolkit support for tangible user interface input. The Papier-Mâché toolkit introduces 

a novel software architecture that: 

a Lowers the threshold for developing applications that employ tangible user 

interface input. This is accomplished with high-level abstractions of input 

technologies. 

b Supports switching input technologies with minimal code changes. The architec-

ture structures input from all devices in a similar fashion. 

c Makes debugging easier through monitoring facilities that include Wizard of Oz 

control. 

2 Interaction techniques that employ tangible user interface input to support professional 

work practices. The difficulty of implementing these applications inspired our research 

on toolkit support for tangible input. 

a The Designers’ Outpost integrates wall-scale, paper-based design practices with 

novel electronic tools to better support collaboration for early-phase design. This 

integration is especially helpful for fluidly transitioning to other design tools; 

access and exploration of design history; and remote collaboration. 

b The Books with Voices system introduces an augmented paper ui providing fast, 

random access to digital video while retaining the paper-based transcripts 

preferred by oral historians. 
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3 Improved user-centered methods for the design and evaluation of software tools. 

a Fieldwork with developers as a basis for the design of software tools, in order to 

better learn what software developers are really doing and what tool support 

would be beneficial. 

b A triangulation method comprising controlled laboratory study, monitoring of 

longer-term use in projects, and external metrics such as performance and code 

size for evaluating the usability of software apis. 

1.2 Solution Overview 

In this section, we outline how this dissertation addresses the thesis contributions. 

1.2.1 Toolkit support for tangible user interface input 

Developing tangible interfaces is problematic because programmers are responsible for 

acquiring and abstracting physical input. This is difficult, time-consuming, and requires 

a high level of technical expertise in a field very different from user interface de-

velopment — especially with computer vision. These difficulties echo the experiences of 

developing guis twenty years ago. An early gui toolkit, MacApp, reduced application 

development time by a factor of four or five [187]. Similar reductions in development 

time, with corresponding increases in software reliability [94] and technology portabil-

ity, can be achieved by a toolkit supporting tangible interaction. 

The central piece of this dissertation research is Papier-Mâché, a toolkit that lowers 

the threshold for developing tangible user interfaces. This toolkit enables programmers 

who are not input hardware experts to develop tuis, as gui toolkits have enabled 

programmers who are not raster graphics experts to build guis. Papier-Mâché’s library 

supports several types of physical input: interactive computer vision, electronic tags, and 

barcodes. Through technology-independent input abstractions, Papier-Mâché also 
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improves application flexibility, allowing developers to retarget an application to a 

different input technology with minimal code changes. This support is important 

because it enables application developers to explore different versions of an application 

and perform comparative evaluations based on technology cost, performance, usability, 

and other important metrics. 

A significant difficulty in program debugging is the limited visibility of application 

behavior [62] (§ 7.2). The novel hardware used in tangible interfaces, and the algo-

rithmic complexity of computer vision, only exacerbate this problem. To support 

debugging, Papier-Mâché provides monitoring facilities that display the current input 

objects, image input and processing, and behaviors being created or invoked. The 

monitoring window also provides Wizard of Oz (WOz) [128, 172] generation and 

removal of input; its graphical WOz support is the richest of any post-wimp toolkit. 

WOz control is useful for simulating hardware when it is not available, and for 

reproducing scenarios during development and debugging. 

1.2.2 TUI input supporting professional work practices 

The design of Papier-Mâché has been deeply influenced by my experiences building 

physical interfaces over the past several years. Experiential knowledge is very powerful 

— toolkit designers with prior experience building relevant applications are in a stronger 

position to design truly useful abstractions. As background research for this dissertation, 

we designed and built two significant tangible user interfaces. 

For three decades, pundits have touted the imminent arrival of the paperless office. 

However, paper remains a central artifact in professional work practices, and use of 

paper is steadily increasing. It is tangible, portable, readily manipulable, and easily 

editable. Newman and Landay’s study of web design practice found that pens, paper, 

walls, and tables were often used for explaining, developing, and communicating ideas 
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during the early phases of design [191]. Designers prefer these tools because they are 

flexible, immersive, and calm. Additionally, a wall-scale workspace allows multiple 

people to simultaneously view, discuss, and modify a design (see figure 1.1). However, 

when using paper and walls for design, it is difficult to maintain structuring marks (such 

as links and annotations), create multiple versions, or collaborate with designers at 

another location (these fieldwork results are described in § 3.1.1). 

These wall-scale, paper-based practices inspired The Designers’ Outpost, a tangible 

user interface that combines the affordances of paper and large physical workspaces 

with the advantages of electronic media to support information design. With Outpost, 

users collaboratively author web site information architectures on an electronic 

whiteboard using physical media (Post-it notes and images), structuring and annotating 

 

FIGURE 1.1 A magazine advertisement for the Microsoft Visio software. This ad shows an office 
professional after a meeting; she is left with the task of migrating the physical artifacts produced 
in the meeting to electronic form. The ad suggests that abandoning physical artifacts for 
electronic ones eliminates this migration step. While true, it also removes all of the fluid 
interactions available with physical artifacts. This dissertation work provides tools and techniques 
that couple fluid physical interaction with the capture and access advantages of electronic tools. 
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that information with electronic pens. This interaction is enabled by a touch-sensitive 

smart Board [21] augmented with a computer vision system. Thus, paper in the 

physical world becomes an input device for the electronic world. A rear-mounted 

projector outputs electronic information onto surfaces in the physical world. Through 

its electronic capture of designs, Outpost supports the transition from this early 

representation to later electronic tools. Over the three years of the project, we 

conducted in-lab evaluations of Outpost with 27 users. These studies were part of our 

iterative design process where we assessed the usability of the system at each stage of 

development, and gathered information that fueled subsequent development. 

The Designers’ Outpost supports informal history capture and retrieval. Its history 

interface comprises three novel visualizations for collaborative early-phase design. The 

most important of which, the main timeline, is a visually navigable, time-ordered 

sequence of design thumbnails. Our focus on early-phase design led us to fluid, 

informal techniques that capture information that users produce in the normal course of 

their activities, structuring this information for later retrieval.  

To better support remote collaboration, The Designers’ Outpost provides an inter-

action paradigm where objects that are physical in one space are electronic in the other 

space, and vice-versa. This system also introduced two remote awareness mechanisms: 

transient ink input for gestures and a shadow of the remote collaborator for presence. 

Our second major tui resulted from a contextual inquiry I conducted into the 

practices of oral historians. This study unearthed a curious incongruity: while oral 

historians consider interview recordings a central historical artifact, these recordings sit 

unused after a written transcript is produced. This is largely because paper books are 

more usable than recordings. Therefore, we created Books with Voices: barcode-

augmented paper transcripts enabling fast, random access to digital video interviews on 

a pda. I conducted a quantitative evaluation of Books with Voices with 13 oral 



1.2 · Solution Overview 7 

 

historians and book-club members. Their response was overwhelmingly positive. The 

study showed that this calm interface allows users to concentrate on the task and stay in 

the flow. Participants repeatedly accessed recordings while reading, finding a level of 

emotion in the recorded video interview not available in the corresponding printed 

transcript. The video also helped readers clarify the text and observe nonverbal cues. 

We often look to new technologies, like Books with Voices, to save labor. Participants 

accomplished with just a few button presses what would have otherwise consumed 

hours. More importantly, this system makes a richer practice tractable. Books with 

Voices augments reading with an audiovisual experience previously unavailable. 

The Designers’ Outpost and Books with Voices could each be implemented in a 

few person-months of software development time if the interaction was purely 

graphical. Additionally, most professional software developers would have little 

difficulty implementing either of these systems as a gui from a specification. Introduc-

ing a tangible interface substantially extended the development time, and required 

much more technical expertise.  

1.2.3 User-centered methods for the design and evaluation of software tools 

This dissertation offers two methodological contributions. 1) This is the first research to 

employ fieldwork with developers as a methodological basis for toolkit design. A toolkit 

is software where the “user interface” is an api, and the users are programmers. As part 

of our user-centered design process, I conducted structured interviews with nine 

researchers who have built tangible interfaces. 2) This dissertation introduces a method 

of “triangulating” the usability of an api through the application of multiple evaluation 

methods. Different usability methods provide different results [175]. For example, a 

laboratory study offers substantial control over the evaluation; however, it is an artificial 

task. Monitoring the use of a software tool in practice is a highly authentic method; 
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however, the experimenter has little control over the task. Our triangulation method 

comprises controlled laboratory study, monitoring of longer-term use in projects, 

reimplementing existing applications, and traditional software engineering metrics such 

as performance and code size for evaluating the usability of software apis. Aggregating 

data from these diverse methods affords a much richer picture of the usability of a 

programming tool. 

1.3 Dissertation Roadmap 

Chapter 2 covers related work, beginning with the motivations for tangible interaction 

(§ 2.1, 2.2, and 2.3). It then discusses related work in user interface software tools (§ 2.4), 

gui input models (§ 2.5), ubiquitous computing tools (§ 2.6), the 24 applications that 

inspired the toolkit needs of Papier-Mâché (§ 2.8), technology considerations for tui 

design (§ 2.9), and prior work on user-centered evaluation of programming languages 

(§ 2.10).  

1.3.1 Interaction techniques for tangible user interface input 

In chapter 3 through chapter 6, we describe the motivating fieldwork, iterative 

designs, and evaluations of two applications we have built that employ paper as a 

tangible interface. Chapter 3 introduces the Designers’ Outpost system, which 

provides a tangible user interface for collaborative web site design. It begins with the 

current wall-scale practices that inspired our system (§ 3.2). It then discusses our 

formative design studies (§ 3.3), Outpost’s interaction techniques (§ 3.4), the study we 

conducted with web design professionals (§ 3.5), and the design implications resulting 

from the study (§ 3.6). The last third of the chapter discusses the computer vision 

prototypes (§ 3.7), and the current vision system and physical tools input (§ 3.8). 
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Chapter 4 discusses Outpost’s support for design history. It begins by reviewing 

prior research in design rationale and history-enabled applications (§ 4.2), and how 

current design practices and designers’ experiences with the basic Outpost system 

motivated us to research tool support for design history (§ 4.3). It then presents the 

design history interface (§ 4.4), four scenarios that illustrate the utility of design history 

(§ 4.5), and the software architecture for the design history implementation (§ 4.6). The 

chapter closes with the design study that we conducted (§ 4.7). 

Chapter 5 describes our remote collaboration research with Outpost, beginning 

with prior work in distributed media spaces (§ 5.2) and methods that designers currently 

use for remote collaboration (§ 5.3). It then presents the interaction techniques we have 

developed (§ 5.4) and the software infrastructure that enables these techniques (§ 5.5). 

The chapter closes with feedback from users of the system (§ 5.6). 

Chapter 6 presents Books with Voices, which provides barcode-augmented paper 

transcripts for random access to digital video. It begins with the fieldwork we 

conducted into oral history practice (§ 6.2) and related work (§ 6.3). It then describes 

the paper mock-ups that we designed (§ 6.4) and the interactive system (§ 6.5). It 

concludes with the evaluation of Books with Voices (§ 6.6). 

1.3.2 Software tools for tangible user interface input 

Based on this experience, we created the Papier-Mâché toolkit, described in chapters 

7 through 9. Chapter 7 discusses the findings of our structured interviews with nine 

tui developers. It begins with broad practices and goals: that acquiring and abstracting 

input is difficult (§ 7.1), that development is conducted iteratively with familiar tools 

(§ 7.2), and that often, user experience goals motivated the interest in tangible 

interaction (§ 7.3). It then describes concrete development issues: code reuse (§ 7.4), the 

appropriateness of events (§ 7.5), a declarative programming model (§ 7.6), choice of 
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programming language (§ 7.7), choice of input technology (§ 7.8), distributed 

applications (§ 7.9), and the need for improved feedback (§ 7.10). 

Chapter 8 describes the Papier-Mâché software architecture, beginning with an 

overview (§ 8.1). It begins with how input is abstracted and high-level events are 

generated (§ 8.2), discusses the relationships between events and application behavior 

(§ 8.3), the flow of control in an application (§ 8.4), how input technologies can be easily 

interchanged (§ 8.5), and how the Papier-Mâché’s input model is distinct from gui 

input models (§ 8.6). Next, we discuss Papier-Mâché’s visual interface for monitoring 

application behavior (§ 8.7) and creating application behaviors visually (§ 8.8). 

Chapter 9 presents the evaluation of Papier-Mâché. It begins with a discussion of 

the relative merits of different evaluation techniques (§ 9.1). We then describe our 

evaluation of Papier-Mâché in terms of performance (§ 9.2) and lines of code (§ 9.3). 

The chapter then covers the laboratory evaluation of Papier-Mâché (§ 9.4), observations 

of its longitudinal use in class and research projects (§ 9.5), and three of the inspiring 

applications rewritten using Papier-Mâché (§ 9.6). 

Chapter 10 concludes the dissertation with a summary of contributions and gen-

eral research directions for the future of user interface design tools. 
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2 Related Work 

This dissertation research builds on prior work in a number of areas. This chapter 

describes this prior work, how it has inspired this dissertation, and the contributions 

that this dissertation offers beyond existing research. 

The first three sections of this chapter address the field of tangible interaction as a 

whole. Section 2.1 overviews the benefits of the physical world, the digital world, and 

motivations for and difficulties with combining these. Section 2.2 introduces seminal 

research on tangible interaction. Section 2.3 summarizes fieldwork and laboratory 

evaluations illustrating the advantages of tangible interaction. 

The next three sections address software tools. Section 2.4 outlines the benefits of 

user interface software tools. Section 2.5 reviews software architectures for graphical 

user interface input. Section 2.6 presents tool support for ubiquitous computing. 

The following three sections address tui taxonomies. In section 2.7, we present 

taxonomies for tangible uis. Section 2.8 offers our taxonomy of tangible input, and 

places 24 applications that have inspired Papier-Mâché into this taxonomy. Section 2.9 

takes a technology-centric perspective, looking at the various input technologies that are 

used in tangible interfaces and their relative merits and drawbacks. 

The chapter closes with section 2.10, which reviews existing methods for evaluat-

ing programming tools, programming languages, and software architectures.  
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2.1 Introduction 

In the Myth of the Paperless Office [222], Sellen and Harper describe their multi-year 

field research on document use in the office. The central thesis of the book is that while 

paper is often viewed as inefficient and passé, in actuality it is a nuanced, efficient, 

highly effective technology. The authors are not asserting that paper is superior to 

digital technologies or vice versa, but that the naïve utopia of the paperless office is 

mistaken. Digital technologies certainly change paper practices, but they rarely make 

paper irrelevant. An example the authors give is document distribution. Prior to 

networked computers, nearly all documents were centrally printed and distributed in 

physical form, through the postal service. Today, lengthy documents are still generally 

read on paper, however electronic distribution through email is becoming more 

common. 

The paper-saturated office is not a failing of digital technology; it is a validation of 

our expertise with the physical world. We use paper, and writing surfaces more gener-

ally, in their myriad forms: books, notepads, whiteboards, Post-it notes, and diagrams. 

We use these physical artifacts to read, take notes, design, edit, and plan. 

There are excellent reasons for researchers to embrace, not abandon, our interac-

tions with everyday objects in the physical world. Paper and other everyday objects: 

• Leverage our prehensile abilities for grasping and manipulating physical objects [161] 

• Allow users to continue their familiar work practices, yielding safer interfaces [156, 158] 

• Are persistent when technology fails, and thereby more robust [173] 

• Enable lighter-weight interaction [107] 

• Afford for fluid collocated collaboration [34, 191, 192] 

• Are higher resolution, and easier to read than current electronic displays [220, 228 §13.3] 

• Provide a verifiable record of transactions for tasks such as voting [66] 
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However, “tangible computing is of interest precisely because it is not purely physi-

cal” [67, p. 207]: it is the computational augmentation that defines the field. Researchers 

have electronically augmented paper and other everyday objects to offer: 

• An interactive history of an evolving physical artifact (see chapter 4) 

• Collaboration among physically distributed groups (see chapter 5) 

• Enhanced reading [29, 228 §13.2, 237] (also see chapter 6) 

• Physical links to electronic resources [29, 109, 204, 208, 237, 255] (also see chapter 6) 

• Physical handles for fluid editing of electronic media [250] 

• Automated workflow actions [96, 107, 122] 

Additionally, data in the physical world (e.g., post-it notes on a wall, cards in a card 

catalog, specimens in a biology collection) can only be organized according to one 

schema at any point in time. (Physical redundancy offers multiple views, but it can be 

time-consuming to produce and difficult to maintain.) Electronic augmentation offers 

the automatic generation of multiple perspectives on a physical data source.  

However, there are difficulties in employing paper and everyday objects as a user 

interface. When paper is used as an interactive dialog, the update cycle (printing) is 

much slower than with electronic displays. When multiple actors (computational or 

human) control the physical data (e.g., Post-it notes), the application needs to reconcile 

the physical objects representing an inconsistent view. This can be handled by either 

prohibiting such actions, or by electronically mediating them. Physical sensors 

(especially computer vision) require substantial technological expertise to be built 

robustly. While many developers have excellent ideas about how physical computing 

can better support a task, few have this technological expertise. The art of designing 

tangible interfaces is leveraging the unique strengths that the physical and electronic 
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worlds have to offer, rather than naïvely replicating the interaction models of one 

paradigm in the other [130]. 

2.2 Origins of Tangible Interaction 

In the 1970’s, Xerox parc transformed the computing world with the graphical user 

interface [121, 231]. In the early 1990’s, another sea change was afoot at parc. Looking 

beyond the desktop, Mark Weiser and colleagues embarked on research into a future of 

ubiquitous computing. In contrast with virtual reality, which attempts to recreate the 

physical world electronically, ubiquitous computing provides “embodied virtuality”: it 

embeds the electronic world in the physical one [257]. This parc research group 

created “computing by the inch, foot, and yard.” This yielded ParcTabs [256] 

(handheld computers), ParcPads [125] (tablet computers), and LiveBoards [72] 

(electronic whiteboards), respectively. While this vision provided the catalyst for a 

worldwide research effort on off-the-desktop, highly networked computing, these early 

research prototypes provided direct stylus input for small-, medium-, and large-scale 

raster-graphics displays: the fundamental method for user input was largely similar to 

the desktop computing standard.  

Weiser’s vision of integrating computation into the physical world also encouraged 

researchers to begin exploring interactions that integrate the physical and electronic 

worlds. Three seminal research projects in this direction are Wellner’s DigitalDesk 

[260], Fitzmaurice et al.’s Bricks [81], and Ishii and Ullmer’s Tangible Bits [117]. We 

discuss each of these in turn. 
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2.2.1 Interacting with paper on the DigitalDesk 

Pierre Wellner and colleagues at Rank Xerox EuroParc introduced the idea of an 

interface that bridges the physical and electronic worlds. Their DigitalDesk system 

comprises a ceiling-mounted projector that projects onto a physical desk and an elec-

tronic camera that tracks the movements of user’s hands on the desk (see figure 2.1). 

The camera also captures objects on the desk at standard video resolution, and a second 

camera is zoomed in on a special area of the desk, affording higher resolution capture. 

With this system, users can select areas of physical documents to be copied and pasted 

electronically. The video capture of the physical desk can also be displayed on a remote 

user’s desktop. As a proof-of-concept demonstration, the authors use this for a game of 

tic-tac-toe between remote participants. This system helped inspire our interest in this 

area in general, and our work on The Designers’ Outpost in particular. We also used 

this application to help shape the computer vision requirements for Papier-Mâché. 

2.2.2 Bricks: laying the foundations for graspable user interfaces 

Fitzmaurice, Ishii, and Buxton introduced the idea of physical bricks that can be used as 

handles for manipulating electronic content [79-81] (see figure 2.1), offering a true, 

  

FIGURE 2.1 Wellner’s DigitalDesk (left) and Fitzmaurice et al.’s Bricks (right). 
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direct manipulation interface. They observed that, “today an accountant, animator and 

graphic designer, all use the same input device set-up (i.e., a keyboard and mouse) for 

performing their very diverse activities. This ‘universal set-up’ seems inefficient for users 

who work in a specific domain. The mouse is a general all-purpose weak device; it can 

be used for many diverse tasks but may not do any one fairly well” [80] (p. 50). They 

offer the distinction between space-multiplexed input and time-multiplexed input. An 

audio mixing board is space-multiplexed: there is a one-to-one mapping between 

controls and functions. A mouse is time-multiplexed: a single input device controls all 

functions, and the function controlled changes over time. Bricks exhibit properties of 

both paradigms. It is space-multiplexed in that multiple elements can be operated in 

parallel, and each has their own controller; it is time-multiplexed in that the mapping 

between controls and functions is reconfigurable. Papier-Mâché supports both space-

multiplexed input and time-multiplexed input, as well as facilities for attaching a 

physical input to an electronic control. 

The bricks work included explorative evaluations of physical prototypes. A design 

study found a graspable interface (a stretchable box) was roughly an order of magnitude 

faster than the traditional MacDraw interface for positioning, rotating, and stretching 

rectangles. The authors implemented a bricks interface to Alias Studio, a high-end 3d 

modeling and animation program. The evaluation found that, “all of the approximately 

20 users who have tried the interface perform parallel operations (e.g., translate and 

rotate) at a very early stage of using the application. Within a few minutes of using the 

application, users become very adept at making drawings and manipulating virtual 

objects” [81, p. 447]. The experimental psychology literature (e.g., [161]) has shown the 

impressive dexterity of human hands in working with physical objects. Bricks leverage 

this dexterity; the authors’ direct comparison of bricks and graphical uis provides 

empirical justification that tangible manipulation can be both faster, and more 
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intuitively bimanual than graphical manipulation. In the commercial world, applications 

such as Photoshop are often used in a bimanual fashion: the non-dominant hand selects 

tools using the keyboard and the dominant hand performs precision, positional input. 

2.2.3 Tangible bits 

In 1997, Ishii and Ullmer introduced their Tangible Bits research agenda [117]. This 

paper and the group’s substantial subsequent work [115] offer a broad array of techniques 

for physically interacting with the digital world, and was one of the inspirations for this 

dissertation. Their work includes physical interaction techniques for both foreground 

(graspable) and background (ambient) interaction. The Papier-Mâché input toolkit 

provides excellent support for the foreground techniques described in this paper. Several 

of these systems are included in our 24 inspiring applications; see section 2.8 for 

descriptions of systems by the tangible media group. Papier-Mâché does not support 

ambient interfaces, as these uis are display (output) only. 

2.3 Motivating and Evaluating Tangible Interaction 

The emerging literature evaluating tangible uis is highly encouraging. In this section, 

we present both fieldwork motivating the need for tangible interaction, as well as a 

comparative evaluation of a tangible interface with the paper practice that inspired it.  

2.3.1 Walls for collaborative design 

Bellotti and Rogers conducted a study on web publishing workflow [34]. They too 

discovered a tension between paper-based practices and electronic practices. In 

particular, they found that people were often more comfortable working on paper, but 

felt that electronic tools were beneficial for stronger communication and awareness 

among distributed teams. One site director commented, “What I would love would be a 

flat panel I could hang on a wall… For the tacked up paper and string setup we have, a 
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video wall could be really useful, not just for the sake of more expensive equipment, but 

for working with remote group members, for ease of modification, and for keeping a 

better record of the evolution of the site” [34, p. 284]. This study helped motivate our 

interest in combining the physical and electronic worlds to gain these benefits. 

2.3.2 Web site design practice 

Newman and Landay’s investigation into web design practice [191, 192] found that pens, 

whiteboards, paper, walls, and tables were the primary tools used for explaining, 

developing, and communicating ideas during the early phases of design. Later-phase 

design, where detailed page mockups are generated, occurs mostly on the computer. 

This finding is consistent with work practice studies across many design and engineer-

ing domains [34, 114, 262].  

In one common early-phase practice, designers collect ideas about what should be 

in a web site onto Post-it notes and arrange them on the wall into categories. This 

technique, often called affinity diagramming [37], is a form of collaborative “sketching” 

used to determine the site structure. We have built a tool, The Designers’ Outpost, that 

supports this practice (see chapters 3, 4, and 5). 

2.3.3 Paper flight strips 

Mackay et al. [156, 158] conducted fieldwork with air traffic controllers, a well-studied 

domain in cscw. Controllers manage and share information through paper-based flight 

strips (see figure 2.2). While the current system was safe, “No fatalities have ever been 

attributed to French civilian controllers,” [158, p. 558] increased air traffic was encourag-

ing automation, and the computers that were part of the process were old and needed to 

be replaced, providing a window of opportunity for new technologies.  
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While most researchers, “acknowledge the importance of flight strips, they generally 

concentrate on the information they contain, rather than the controllers’ interactions 

with them.” These attempts to replace the physical world of atc with a gui “have 

ultimately been rejected by the controllers.” Mackay found “Automation need not 

require getting rid of paper strips. We suggest keeping the existing paper flight strips as 

physical objects, with all their subtlety and flexibility, and augmenting them directly by 

capturing and displaying information to the controllers.” She also felt this provided a 

more domain appropriate interface than “the old mouse and keyboard designed for 

office automation.” 

Mackay has built several other augmented paper systems, including a DigitalDesk-

based system for video editing [159] and, more recently, a system for augmenting 

biologists’ laboratory notebooks [160]. This rigorous fieldwork shows there is nuance in 

the physical world that electronic systems should preserve. Papier-Mâché facilitates 

rapid development of systems such as these three, enabling iterative design with end-

users. 

 

FIGURE 2.2 Air traffic controllers working with paper flight strips. 
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2.3.4 Comparing paper and tangible multimodal tools 

McGee et al.’s Rasa system extends the physical wall-mounted map and Post-it note 

tools currently used in military command post settings with a touch-sensitive smart 

Board behind the map, gesture recognition on ink strokes written on the Post-it notes, 

and speech recognition on verbal commands [57, 174]. They performed a comparative 

evaluation of Rasa and traditional paper tools with six users [173]. To ascertain Rasa’s 

robustness, the authors shut off the computer halfway through the study (without 

telling the users, or even letting on that they comprehended what happened). They 

found that users were able to keep working through a power failure, and with minimal 

effort, return the system to a consistent state after power was restored, showing “that by 

combining paper and digital tools, we have constructed a hybrid system that supports 

the continuation of work in spite of power, communications, and hardware or software 

failures.” 

However, the domain of technology support for military activity hides several 

shortcomings with recognition- and transformation-laden interfaces. These systems 

leverage existing military practices of a precise, consistent grammar for conveying 

information, and this highly constrained vocabulary and notation greatly eases 

recognition tasks. As such, tool support for military activity has little bearing on the 

much more fluid and ad hoc practices of most professional and domestic life. Over the 

next decade, recognition will play a larger role in human-computer interaction, and our 

group’s research agenda of informal interfaces [145] is part of this trend. While informal 

interfaces incorporate more recognition technologies (e.g., gesture recognition, or vision 

recognition of Post-its) than wimp uis, good informal interface designers work hard to 

minimize the recognition and most importantly, minimize the transformation of users’ 

input. 
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2.4 User Interface Software Tools 

The difficulties involved in building tangible interfaces today echo the experiences of 

the gui community of twenty years ago. In the early 1990s, Myers and Rosson found 

that 48% of code and 50% of development time was devoted to the user interface [187]. 

One of the earliest gui toolkits, MacApp, reduced Apple’s development time by a factor 

of four or five [221]. We believe that similar reductions in development time, with 

corresponding increase in software reliability and technology portability, can be 

achieved by a toolkit supporting tangible interaction. 

While the research community has shown the substantial benefits of tangible inter-

action, these uis are currently very difficult and time consuming to build, and the 

required technology expertise limits the development community. The difficulty of 

technology development and lack of appropriate interaction abstractions make de-

signing different variations of an application and performing comparative evaluations 

unrealistic. In each of the twenty-four research systems we have studied, at least one 

member of the project team was an expert in the sensing technology used. Contrast this 

with guis, where developers are generally experts in the domain of the application, not 

in raster-graphics manipulation.  

Gui tools have been so successful because, “tools help reduce the amount of code 

that programmers need to produce when creating a user interface, and they allow user 

interfaces to be created more quickly. This, in turn, enables more rapid prototyping 

and, therefore, more iterations of iterative design that is a crucial component of 

achieving high quality user interfaces” [188, p. 5]. Our analysis of the Outpost code base 

(see section 3.9) is inspired by this analysis. 
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2.5 GUI Input Models 

Papier-Mâché’s software architecture for input is inspired by software design patterns 

for handling input in graphical user interfaces. The elements of graphical user interfaces 

such as buttons, check boxes, and scroll bars are called widgets: small interactive objects 

that perform some editing or input task [199]. 

2.5.1 Model-View-Controller 

Model-View-Controller (mvc) [137, 199] is a software design pattern for developing 

guis that separates each widget into three pieces. In mvc-style user interfaces, a 

controller (input handler) sends input events to a model (application logic), and the 

model sends application events to a view. There are two reasons for separating this 

functionality. First, there may be multiple methods for manipulating and/or presenting 

a particular piece of application logic. For example, a set of nodes may be displayed as 

both a graph and a list. Second, this separation enables developers to more easily change 

the way that an element is manipulated or displayed. 

In practice, the communication between the view and the controller is highly 

implementation dependent, and substantially altering one piece generally requires 

altering the other as well. For this reason, most contemporary gui toolkits provide 

widgets that comprise both the controller and the view. In many toolkits, such as Java 

Swing [3], widgets also include a mini-model that stores the state of the widget. In 

these systems, the widget’s mini-model is responsible for communication with the 

application model; events are used for this communication. 

2.5.2 Interactors 

The Garnet toolkit [184] introduced Interactors [182], which are an extension of the 

mvc architecture providing higher-level input events. In Garnet, Interactors are the 
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controller, object-oriented graphics are the view, and Lisp code is the model. Interac-

tors are also featured in Garnet’s successor, Amulet [183, 186]. Interactors leverage Foley 

and Wallace’s observation that graphical interaction with a computer has a small 

number of basic input types [82, 254]. The six original Interactors are menu, move-grow, 

new-point, angle, text, and trace. This higher-level api shields application developers 

from implementation details such as windowing systems. It also separates view and 

controller more cleanly than the original mvc. Interactors are highly parameterized, 

minimizing the need to write custom input-handling code. Parameters include the start 

event (such as pressing the left mouse button), interim and final feedback to show, and 

a command object [86, pp. 233-242] to execute upon completion. These six Interactors 

fully span the space of traditional wimp interaction techniques [186]. It is possible to 

attach multiple Interactors to a view object (e.g., pressing the left mouse button operates 

a window, and pressing the right button moves that window), and it is possible for 

multiple Interactors to operate simultaneously (an important benefit of this is support 

for bimanual input). 

It should be noted that Interactors, like most input architectures, does not cleanly 

handle keyboard shortcuts. In most gui architectures, all input is routed to a focus 

widget (such as a button), and the Interactors attached to the widget handle that input. 

Keyboard shortcuts operate globally, and therefore routing to the focus object is not 

correct. To avoid this, most architectures introduce an additional component that 

monitors keyboard input for keystrokes that are shortcuts, and handle this input 

separately. 

Additionally, the Interactors architecture loses elegance for input beyond traditional 

wimp interfaces. Interactors have been extended to include gesture [143, 183], and other 

modalities, such as speech, have been proposed [186]. Two important axes of input 

include the input mode (e.g., wimp, gesture, or speech) and the type of input action (e.g., 
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select, create, or move). The original six Interactors are a set of action types that span 

the wimp modality. Wimp, Gesture, and speech are distinct modality types, each of 

which can be used for many actions. The conflation of these axes with Interactors 

indicates that a more elegant architecture should separate mode from action. Papier-

Mâché offers this separation. 

2.5.3 SubArctic 

Hudson and Smith’s SubArctic is a constraint-based gui toolkit written in Java. Its 

input handling [112] is similar to that in Garnet and Amulet: all three employ an 

Interactors architecture where all Interactors are stored in a tree organized by the spatial 

containment of widgets on the screen. It is somewhat more flexible than Garnet or 

Amulet in that it provides an extensible policy architecture for input dispatch. The two 

most common policies are positional (send input to the Interactor directly beneath the 

cursor) and focus (send input to the Interactor that has the application’s focus). Dispatch 

agents translate low-level input events (e.g., mouse press and mouse move) into higher-

level events (e.g., dragging). A manager provides a priority list of policies and agents. 

Policies and agents can receive events they are interested in, and absorb these events if 

policies and agents further down the list should not receive them. An example of an 

input policy that would use but not absorb input is a system that logs all application 

events. In general, interaction with widgets is absorbed by the relevant Interactor. 

2.5.4 Specifying non-WIMP user interfaces 

In [119], Jacob et al. introduce a software input model and specification language for 

non-wimp user interfaces, such as virtual environments. Like Papier-Mâché, this input 

model is designed to support parallel, continuous, multimodal input. The system offers 
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a dataflow programming model for continuous input and an event model for discrete 

input. Input and application data are connected using one-way constraints. 

Dataflow programming and constraints are most commonly encountered in 

spreadsheets. A simple example of a constraint is a spreadsheet cell whose value is 

defined (constrained) to be twice that of its neighbor. Introduced in the SketchPad 

system [240], constraints have been used in ui toolkits such as Garnet [184], Amulet 

[186], SubArctic [113], and Bramble [90]. Most contemporary ui toolkits, such as Java 

Swing [3], offer rudimentary constraints for widget layout. However, in general, 

constraints are a promising method that has not achieved widespread adoption [188, § 

2.3.3]. 

Jacob et al. argue that dataflow programming and constraints offer a conceptual 

model that is more appropriate for programming non-wimp uis than events. While an 

interesting hypothesis, there is little evidence to support the claim. There is a range of 

programming models between completely event-based and completely constraint-based 

systems for coupling input with application behavior. In practice, nearly all systems, 

Jacob’s and Papier-Mâché included, use constraints in some places and events in others. 

Papier-Mâché uses constraints for defining the mapping between an input object and 

application logic, and events for allowing the application logic to flexibly respond to the 

input (see chapter 8). For post-wimp user interfaces, the balance between events and 

constraints has not been rigorously explored, and is a fruitful area for further research. 

2.6 Tool Support for Ubiquitous Computing 

In the last five years, the research community has developed several tools to support 

ubiquitous computing applications. This section outlines existing tools for tangible 

interfaces, as well as other related ubicomp tools. 
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2.6.1 Phidgets: programmable physical widgets 

The work most related to Papier-Mâché is Phidgets [99]. Phidgets are physical widgets: 

programmable ActiveX controls that encapsulate communication with usb-attached 

physical devices, such as a switch, pressure sensor, or servomotor (see figure 2.3). 

Phidgets are a great step towards toolkits for tangible interfaces. The graphical ActiveX 

controls, like our monitoring window, provide an electronic representation of physical 

state. However, Phidgets and Papier-Mâché address different classes of tangible 

interfaces. Phidgets primarily support tethered, mechatronic tuis that can be composed 

of powered, wired sensors and actuators. Papier-Mâché supports tui input from 

untethered, passive objects, often requiring computer vision. 

Papier-Mâché provides stronger support for the “insides of applications” [186] than 

Phidgets. Phidgets facilitate the development of widget-like physical controls (such as 

buttons and sliders), but provide no support for the creation, editing, capture, and 

analysis of physical input, which Papier-Mâché supports. 

One of the reasons for Phidgets’ success is that the Greenberg’s original research 

  

FIGURE 2.3 BuddyBugs (left) is a tangible interface for instant messaging [176]. Each bug 
represents an IM contact; the contact’s status is represented by the bug’s orientation. To initiate 
contact, a user taps on a bug avatar. It was created using Phidgets pressure sensors and 
servomotors (right). 
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agenda was not a toolkit. The authors were originally interested in building applications 

(e.g., [98]). It was the difficulty and frustration of continuing with a research agenda of 

building and evaluating one-off applications that led the authors to develop tools. The 

Shiloh’s Teleo toolkit [225] is quite similar to Phidgets in concept, and also arose out of 

the difficulty of repeatedly building custom applications. In the Teleo case, the original 

applications were controllers for the robotic performance art of Survival Research 

Laboratories [201]. The primary distinction between Teleo and Phidgets is that Teleo is 

programmed with Max/msp [19] or Macromedia Flash [10], rather than the Microsoft 

Visual Studio environment. 

Experiential knowledge is very powerful; toolkit designers with prior experience 

building relevant applications are in a much better position to design truly useful 

abstractions. We are in a similar position of experience with Papier-Mâché. 

2.6.2 IStuff  

IStuff [30] introduces compelling extensions to the Phidgets concept, primarily support 

for wireless devices. IStuff, in conjunction with the Patch Panel [31], provides fast 

remapping of input devices into the iRoom framework [120], enabling standard guis to 

be controlled by novel input technologies. There are two main differences in our 

research agenda: First, like Phidgets, iStuff targets mechatronic tangible interfaces, 

rather than tuis controlled by everyday objects. For example, it is not possible to build 

computer vision applications using iStuff or Phidgets. Conversely, because Papier-

Mâché only provides input support, it cannot be used to control a servomotor or other 

physical output device. Second, iStuff offers novel control of existing applications, while 

Papier-Mâché does not. Unlike iStuff applications, the tangible interfaces Papier-

Mâché supports do not use a gui input model. 
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2.6.3 Image processing with crayons 

Fails and Olsen have implemented a highly successful interaction technique for end-

user training of vision recognizers, Image Processing with Crayons [75]. It enables users 

to draw on training images, selecting image areas (e.g., hands or note-cards) that they 

would like the vision system to recognize. They employ decision trees as their classifica-

tion algorithm, using pixel-level features. The resulting recognizers can be serialized for 

incorporation into standard Java software. Crayons complements our work well, 

offering a compelling interaction technique for designating objects of interest. Papier-

Mâché’s recognition methods (e.g., edge detection and perspective correction) are 

higher-level than the pixel-level processing employed by Crayons. We also offer higher-

level object information (e.g., orientation and aspect ratio), and most importantly, an 

event mechanism for fluidly integrating vision events into applications. Papier-Mâché’s 

classifiers also supports ambiguity [166], an important feature unavailable in Crayons. 

2.6.4 Hardware toolkit 

Hudson and colleagues [28, 148] have taken a clever approach to supporting tui proto-

typing with the hardware toolkit (hwtk); it integrates rfid buttons and other wired 

and wireless devices with Macromedia Director. This enables the interaction design 

community, already familiar with Director, to prototype physical devices such as remote 

controls and game controls. Fluid integration with physical mock-ups is aided by the 

small form factor of the devices. Like Phidgets and iStuff, hwtk is for mechatronic uis. 

Java is a more appropriate language for Papier-Mâché because the target audience is 

software developers. If we were to support interaction designers, it would be beneficial 

to follow the hwtk and integrate our work with Director. 
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2.6.5 Context toolkit 

The Context Toolkit (ctk) [64, 65] makes context-aware applications easier to build. 

Like Papier-Mâché and Phidgets, this work came from a research group that had 

previously spent several years building applications in the toolkit’s domain. The main 

architectural similarity is that it does not just provide a software interface to physical 

sensors (a la Phidgets); it “separates the acquisition and representation of context from 

the delivery and reaction to context by a context-aware application” [65, p. 100]. In ctk, 

a widget provides a device-independent interface to an input or output device; similar to 

Papier-Mâché’s InputSource. Papier-Mâché provides more monitoring and woz 

facilities than ctk, and it supports interactive tangible interfaces, which ctk does not. 

2.6.6 Tools for augmented reality 

One use of computer vision in hci is augmented reality (ar): electronic images are 

overlaid onto the real world, usually through a head-mounted display or handheld 

computer [76]. The ARToolKit [126] provides support for building applications that 

present geo-referenced 3d graphics overlaid on cards marked with a thick black square. 

The ARToolKit provides support for 3d graphics, while Papier-Mâché does not. 

However, the ARToolKit does not provide general information about objects in the 

camera’s view, only the 3d location and orientation of marker cards. It is not a general 

input toolkit; it is tailored for recognizing marker cards and presenting geo-referenced 

3d graphics through a head-mounted display. 

The dart tool [155] offers designers a Macromedia Director [5] environment for 

authoring ar content. Like Papier-Mâché, it abstracts technology issues such as sensor 

input (from 3d trackers or vision-based marker recognition through the ARToolKit). 

The primary difference between dart and Papier-Mâché is that dart is intended for 

media design (and media designers); Papier-Mâché is intended for application design 



2.6 · Tool Support for Ubiquitous Computing 30 

 

(and software developers). Consequently, the dart abstractions are implemented in C, 

while designers work in Director. This visual tool enables rapid design to the extent 

that the provided technology support is sufficient. With Papier-Mâché on the other 

hand, the toolkit is written in Java and application developers also work in Java. Using 

the same language for both application and tool development has a higher threshold for 

application development, but a lower threshold for moving between application 

development and toolkit extension. The Papier-Mâché visual authoring system (see 

section 8.8) provides users a low-threshold environment, with a lower wall in between 

creating applications and extending the tool. The goal of tools in this area should be 

similar to the goal of web authoring tools such as Macromedia Dreamweaver [7], where 

(for the most part) users can move fluidly between textual and visual authoring modes. 

2.6.7 OOPS: Supporting mediation and ambiguity 

The oops toolkit [164-166] provides architectural support for ambiguous input (input 

that requires interpretation) and for mediating that input (methods for intervening 

between the recognizer and the application to resolve the ambiguity). 

Oops extends the input-handler in the SubArctic toolkit [112]. Traditional ui 

software architectures only support input from a keyboard and mouse (or device that 

can generate equivalent events, such as a stylus). The oops architecture can theoretically 

support any device that can generate discrete events; the oops library includes speech 

[166] and context [65, 216] input. Ambiguity information is maintained in the toolkit 

through the use of hierarchical events [185]. The hierarchy models the relationship 

between raw input (such as mouse events), intermediate input (such as strokes), and 

derived values (such as recognition results). The hierarchy also models ambiguity 

through hierarchical ambiguous events. These events are considered tentative, and may 

be later recalled. Mediation provides a method for resolving ambiguity. An input event 
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may be mediated in different ways; two examples are  1) the user can explicitly choose 

one interpretation, or 2) she can repeat the input. 

Ambiguity is an essential property of recognition-based input support. Papier-

Mâché offers a lightweight form of ambiguity to illustrate that the architecture is 

ambiguity-aware (see section 8.1). A production implementation of Papier-Mâché 

should more fully support the ambiguity and mediation model introduced in oops. 

2.6.8 Distributed interaction architectures 

There is a rich literature on distributed programming models. Two successful examples 

of flexible distributed programming for ubiquitous computing are Grimm et al.’s 

one.world [100] and sri’s oaa [169]. Both of these systems employ a data-centric view 

of applications: computation is carried out on heterogeneous devices performing 

heterogeneous tasks, and the event model is a blackboard architecture. A blackboard 

architecture provides a central server that all services and agents post information to and 

receive information from. The newer one.world system uses xml as its data storage 

language. The advantage of a blackboard is that it is highly flexible: different services 

can provide the same data, multiple recipients can read the data, and the posting and 

reading can be asynchronous. Papier-Mâché could be integrated with a blackboard 

architecture to support distributed tangible interfaces (see section 7.9 for examples 

from our interviews).  

2.7 Taxonomies of Tangible Interfaces 

As the field of tangible interfaces has matured, a few researchers have begun to develop 

taxonomies useful for describing the behavior and experience of using these systems. In 

this section, we summarize the contributions of three efforts in this direction, and 
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discuss the similarities between these efforts and the taxonomy presented in this 

dissertation. 

2.7.1 Emerging frameworks for tangible user interfaces 

Ullmer and Ishii provide an excellent taxonomy of existing tangible interfaces [248]. We 

have drawn heavily on both this taxonomy and the innovative ideas of their Tangible 

Media Group [115] in creating our list of inspirational applications. They also propose 

mcrpd [248] as analogue to mvc for physical uis (see figure 2.4). The difference 

between mvc and mcrpd is that the view is split into two components: Rp, the physical 

representation, and Rd, the digital representation. As a means of describing the user 

experience of interacting with a tui this has some merit. However, from an implemen-

tation standpoint, it is unclear whether explicitly separating physical and digital outputs 

is beneficial. In fact, for reasons of application portability, it is important that the event 

layer be agnostic to whether the implementation is physical or digital (e.g., for proto-

typing and evaluation purposes, it would be useful to create and compare physical and 

 

FIGURE 2.4 Ullmer and Ishii’s MCRpd model for describing tangible interfaces. Figure from 
[247, p. 917]. 
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electronic versions of an application). In addition, the approach is untested: no tools or 

applications have been built explicitly using the mcrpd approach. 

2.7.2 A taxonomy for and analysis of tangible interfaces 

Fishkin offers two axes, metaphor and embodiment, as being particularly useful when 

describing tangible interfaces [77]. Fishkin’s embodiment is synonymous with our i/o 

coordination axis (see figure 2.5). Both represent how closely the input focus is tied to 

the output focus. Fishkin points out how the degree of coordination can be used as a 

design tool. When the system seeks to maximize the direct manipulation experience, 

the level of coordination should be high. For example, most of the inspiring spatial 

applications provide tight coordination (§ 2.8.1). However, when the input and output 

are cognitively dissimilar, indirect coordination is beneficial in conveying that a 

mapping is more abstract. For many of the associative applications (§ 2.8.3), the 

coordination is looser. For example, WebStickers [109], use barcode-tagged Post-it 

notes as physical hyperlinks to web content; feedback (the desired web page) is 

displayed on an adjacent monitor. Fishkin’s second axis is metaphor, describing the type 

and strength of analogy between the interface and similar actions in the real world. 

While this axis is very useful for designers, it is less important for development tools 

such as Papier-Mâché.  

2.7.3 The TAC syntax 

Shaer et al. present the token and constraint (tac) syntax for describing tangible inter-

faces. This work “enables the description of a broad range of tuis by providing a 

common set of constructs” [223, p. 359]. The idea of using tokens and constraints for 

describing tuis originated in Ullmer’s doctoral dissertation [246]. The primary element 

type in the tac syntax is a Pyfo: a physical object that is part of a tui. There are two 



2.8 · Inspiring Tangible Interfaces 34 

 

types of Pyfos: tokens and constraints. Tokens have computational significance; each Pyfo 

represents either digital information or a computational function. In the marble 

answering machine [117], the marble is a token. Constraints represent the physical 

affordances of the system; they limit the behavior of the tokens and do not have 

computational significance on their own. The physical shape of the indentation in the 

marble answering machine is a constraint. The other element type is a variable. A 

variable represents a computational function. The message corresponding to a marble is 

a variable. The tac syntax has some similarity with Papier-Mâché’s software architec-

ture (see chapter 8). There are two primary differences. First, tac’s constraints are not 

represented in Papier-Mâché because there is no software code that corresponds to a 

tac constraint. Second, Papier-Mâché decouples an input object (such as a vision-

recognized block) from the behavior associated with the object; this decoupling 

facilitates switching between input technologies. Tokens comprise both the input object 

and its computational behavior.  

2.8 Inspiring Tangible Interfaces 

To better understand the domain of tangible interfaces, we conducted a literature survey 

of existing systems employing paper and other everyday objects as input. The twenty-

four representative applications fall into four broad groups: spatial, topological, 

associative, and forms (see figure 2.5). 

We have categorized these interfaces according to four traits: input technology, 

form factor of the tangible input, form factor of the electronic output, and how tangible 

input and electronic output are coordinated. In the following sections, we discuss the 

traits of each of the four groups. 
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FIGURE 2.5 The rows of this diagram present the 24 applications in our literature survey, organized into 
four primary categories: spatial, topological, associative, and forms. Each column describes an attribute of the 
application: this attribute is listed textually at the top of the diagram. In the body of the diagram an icon is 
used to designate the presence of the column’s attribute. 
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2.8.1 Spatial applications: interactive surfaces 

In spatial applications, users collaboratively create and interact with information in a 

Cartesian plane. These applications include augmented walls, whiteboards, and tables 

[118, 134, 173, 180, 207, 249, 252, 253, 260] (see figure 2.6 and figure 2.7). A majority of 

these applications use computer vision, often in conjunction with image capture. The 

work described in this dissertation includes The Designers’ Outpost, a spatial 

application. 

Wellner’s DigitalDesk used ceiling mounted cameras to track documents and hands 

on a physical desktop, with a ceiling mounted projector to electronically augment the 

real desk [260]. The DoubleDigitalDesk [260, 261] extends this augmented paper input 

paradigm to a pair of networked DigitalDesks. Content can be either physical (drawn 

on paper by one of the users) or virtual (information that is projected, such as remote 

content.) The DoubleDigitalDesk enables a user to electronically view and copy her 

remote colleague’s physical content. The Desk does not allow her to move or delete this 

remote content. DoubleDigitalDesk also allows for spatial content selection, but objects 

have no semantic distinctive identity. Outpost continues in the direction the Digital-

Desk began by augmenting physical paper with electronic information. Each object and 

awareness cue has a distinct internal representation in Outpost. As such, this informa-

tion can be edited and displayed separately. Our mediation techniques and stronger 

semantic representation of content enable users to delete and move remote physical 

content. Lastly, while the Desk is intended as a pair-ware system, Outpost explicitly 

supports multiple users at each location. 

Ullmer and Ishii’s metadesk [249] is a digital desk employing tangible interfaces as 

the controls for and views of a map of the mit campus. Outpost employs the metadesk 
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technique of tracking objects with a rear camera; it differs in that it targets an existing 

professional design practice. 

Xerox parc has developed several influential systems for wall-scale interaction, 

including the LiveBoard [72, 178] (an electronic interface) and Collaborage (a physical 

interface) [180]. Collaborage, a spatial application, uses computer vision to capture 

paper information arranged on an ordinary wall, enabling it to be electronically 

accessed. (see figure 2.6). These pieces of paper are tagged with glyphs, a type of 2d 

barcode. The electronic capture of paper information enables remote viewing (e.g., a 

web page view of a physical in-out board), but not remote interaction.  

 

FIGURE 2.6 Collaborage [180], a spatial TUI where physical walls such as an in/out board (left) 
can be captured for online display (right). 
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Rekimoto and Saitoh’s Augmented Surfaces [207] Wellner’s DigitalDesk [260] 

Klemmer et al.’s Designers’ Outpost (CH. 3, 4, and 5) McGee et al.’s Rasa [173] 

Underkoffler and Ishii’s Illuminating Light [253] Underkoffler and Ishii’s Urp [252] 

Jacob et al.’s Senseboard [118] Ullmer and Ishii’s MetaDESK [249] 

FIGURE 2.7 The other eight inspiring applications in the spatial category. 
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Technology Transfer of Spatial TUIs 

Several of these spatial tuis have received interest from industry. David McGee and 

Phil Cohen have formed a startup, Natural Interaction Systems [20, 57], based on their 

Rasa research. Smart technologies [168], a Canadian company, has implemented 

structured capture techniques inspired by the Designers’ Outpost in their CamFire 

product. Their CamFire product is a high-resolution digital camera for whiteboard 

capture; it based on Eric Saund’s ZombieBoard technology [217, 218]. As part of the 

capture process, CamFire uses computer vision techniques to perspective correct the 

capture and clean up the image. The addition inspired by Outpost is that the capture is 

segmented so that Post-it notes and other objects are semantically abstracted and 

become objects in their Smart Ideas electronic diagramming tool. The pole project in 

Switzerland has used this system for urban planning (see figure 2.8), and discussed 

their use of it in a research paper [42]. 

 

FIGURE 2.8 This SMART technology software, based on The Designers’ Outpost research, 
extracts Post-It notes and links for import into their Smart Ideas software. Image from [42] 
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2.8.2 Topological applications: relationships between objects 

Topological applications use the relationships between physical objects to control 

application objects [93, 158, 159, 189, 250] (see figure 2.9). The simplest topological 

relationship, and the one that most of these systems use, is ordering. Palette [189] uses 

paper note cards to order PowerPoint presentations. It was released as a product in 

Japan in 2000. VideoMosaic [159] and mediaBlocks [250] use physical objects to order 

segments of a video. Paper Flight Strips [158] augments flight controllers’ current work 

practice of using paper strips by capturing and displaying information to the controllers 

as the strips are passed around (see section 2.3.3and figure 2.2). 
 

Gorbet et al.’s Triangles [93] Ullmer et al.’s mediaBlocks [250] 

Nelson et al.’s Palette [189] Mackay et al.’s Video Mosaic [159] 

FIGURE 2.9 The other four inspiring applications in the topological category. 
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2.8.3 Associative applications: physical indices 

With associative applications, physical objects serve as an index or “physical hyperlink” 

to digital media [29, 109, 117, 132, 208, 237, 255]. Durrell Bishop prototyped a marble 

answering machine [117] (see figure 2.10) that would deposit a physical marble with an 

embedded electronic tag each time a message is left. To play a message, one picks up 

the marble and drops it into an indentation in the machine. Most associative applica-

tions employ either barcodes or electronic tags. Bishop created a partially functioning 

prototype using resistors embedded in marbles. Marbles could be identified by the 

unique resistance value. The fact that this system was never fully implemented 

underscores the need for tools like Papier-Mâché.  

The Listen Reader [29] is an associative system combining the look and feel of a 

real book with an interactive soundtrack. Each rfid-tagged page has a unique 

soundtrack modified by the user’s hand position. Hand tracking is accomplished via 

capacitive sensing. This coordination of reading and listening is highly compelling. 

Lange et al.’s Insight Lab system [146] provides barcode-augmented paper on walls 

in a similar manner to Collaborage. The primary difference between the two systems is 

that Collaborage actually captures documents’ contents and spatial arrangement. With 

  

FIGURE 2.10 The marble answering machine [117], an associative TUI, uses marbles as 
a physical index to recorded answering machine messages. Left: Bishop’s original sketch, redrawn 
by the author. Right: Bishop’s prototype where resistors are embedded in marbles. 
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Insight Lab, the only computational augmentation is that the barcode can be used as an 

associative link to electronic information; the spatial location of documents on walls is 

not captured. 

 

 
Stifelman et al.’s Audio Notebook [237] Ljungstrand and Holmquist’s WebStickers [109] 

Klemmer et al.’s Books with Voices (ch. 6) Want et al.’s Electronic Tags [255] 

Rekimoto et al.’s DataTiles [208] Back et al.’s Listen Reader [29] 

FIGURE 2.11 The other six inspiring applications in the associative category. 



2.8 · Inspiring Tangible Interfaces 43 

 

2.8.4 Forms applications: offline interaction 

Forms applications provide batch processing of paper interactions [96, 107, 122]. The 

Paper pda [107] is a set of paper templates for a day planner. Users work with the 

planner in a traditional manner, then scan or fax the pages to electronically synchronize 

handwritten changes with the electronic data. Synchronization also executes actions 

such as sending handwritten email. 

2.8.5 Commonalities 

These twenty-four applications share much functionality with each other, including: 

• Physical input for arranging electronic content 

• Physical input for invoking actions (e.g., media access) 

 
Johnson et al.’s Paper User Interface [122] 

Heiner et al.’s Paper PDA [107] 

Grasso et al.’s Augmented Newspaper [96] 

FIGURE 2.12 The three applications in the forms category. 
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• Electronic capture of physical structures 

• Coordinating physical input and graphical output 

• An add, update, remove event structure — these events should contain information 

about the input (such as size and color), and should be easily extensible 

In all of these applications, feedback is either graphical or auditory. Graphical 

feedback is sometimes geo-referenced (overlaying the physical input, e.g., [134, 173]), 

sometimes collocated but on a separate display [132, 189], and sometimes non-collocated 

(e.g., Collaborage’s In/Out web page [180]). Because output is generally electronic, we 

have concentrated our current research efforts on tangible input support. This 

taxonomy omits haptic (force-feedback) interfaces (e.g., [232]) and mechatronic 

interfaces (e.g., [78]), which do provide physical output, as these uis are not the focus of 

this dissertation. 

2.9 Input Technologies for Tangible Interaction 

When designing a tangible interface, several different input technologies are available. 

At least one object needs to be “smart.” In augmented paper systems, it can be the pen, 

the paper, or the workspace. Workspace augmentation best enables informal document 

use, and informal appropriation of objects in general, as all documents/objects are 

“compatible” with a system whenever they are in the smart space. For tools that are 

included with a system, it is generally most appropriate to augment the tool (pen and/or 

paper) directly. The Anoto system [Anoto] is an example of tool augmentation. In this 

section, we review the benefits and drawbacks of different instrumentation approaches.  

2.9.1 Computer vision as a sensing technique 

We have found computer vision to be an appropriate technology for spatial applications 

because it provides automatic, untethered, and untagged tracking and capture of 
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artifacts users place on interactive surfaces. We can characterize many sensing systems 

as being either of the artificial intelligence (ai) variety, “If it has some properties of a 

duck, it is a duck,” or of the tag variety, “If it wears the tag we told ducks to wear, then 

it is a duck.” 

Tags can often be more robust, more accurate, and/or computationally cheaper; they 

are appropriate when the same object will be reused many times with the same system. 

The smart Board’s pen tray is an example of tagging: each of the four styli rests in a 

well containing an optical sensor that detects when the pen has been removed. The 

main drawbacks to tagging are the monetary cost and deployment time proportional to 

the number of objects. Because of this, there is a barrier to “suiting up” objects for use 

in the system.  

While it can sometimes be less robust, more computationally intensive, and more 

laborious to develop, ai enables informally appropriating members in the class of 

objects that are being sensed. This is because it is observing some actual properties of 

these objects, such as their color, size, or shape. This is ideal for objects like the Post-it 

notes and pictures in Outpost, where free integration of paper artifacts is critical in 

supporting the flow state of a design session.  

2.9.2 Barcodes and glyphs 

Barcodes, often the cheapest and easiest method for tagging physical objects, “have 

been used in packaging since 1974, when the first item, a pack of chewing gum, was 

scanned at a supermarket in Ohio” [181]. Reappropriating that technology for hci, 

Johnson and colleagues introduced the idea of a “paper interface” [122]. Their system 

prints a 2d barcode (in this case, a glyph) onto paper printouts, such as order forms, 

enabling users to “complete the document loop” and electronically trigger workflow 
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actions. This work illustrates the utility of barcodes as a lightweight augmentation 

mechanism. 

Glyphs are a highly flexible 2d barcode. In their most recent incarnation, they can 

even be embedded into text or images [104]. However, they require a high quality image 

scanner. CyberCode [206] is a different type of 2d barcode; it is courser than glyphs, 

enabling recognition by low-cost imaging hardware such as the cameras on mobile 

devices. High Energy Magic has developed the SpotCode barcode recognition software 

for camera phones [23]; SpotCodes are a radial barcode format similar in spirit to 

CyberCode. Cameras and laser-scanners can read barcodes displayed on lcd and 

plasma screens in addition to working on paper [224]. 

Using imaging devices for barcode recognition would be ideal for Books with 

Voices because cameras are smaller, cheaper, and more common than barcode readers. 

The Papier-Mâché library supports camera-based recognition of CyberCodes and other 

barcode format (see chapter 8), and could be used to build a future version of Books 

with Voices. 

Recently, there have been several research (e.g., Cooltown [131]) and commercial 

(e.g., Cue Cat [4]) systems that use barcodes as links to web site urls. WebStickers 

[154] are shareable physical handles (Post-it notes with barcodes) to electronic resources. 

Users can associate a note with a web url, and later scan the note to retrieve the url.  

Palette [189] provides barcode-tagged index cards to give users control over their 

presentation’s slide order. Users print their presentation onto index cards — one slide 

per card. An evaluation found the main drawback to be that “People worked on 

presentations ‘until the last minute’ and did not ‘have time to print cards’” [53, p. 751]. In 

general, paper interfaces are most successful when the electronic content is stable (e.g., 

in Books with Voices, see chapter 6), when the electronic and paper versions can 

evolve independently (e.g., the Listen Reader [29]), or when electronic mediation is 
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used to handle the discrepancies (e.g., Outpost’s design history interface, see 

chapter 4). 

2.10 Evaluating Programming Tools and Languages 

Opening the first Empirical Studies of Programming Workshop in 1986, Ben 

Shneiderman wrote, “Success in programming has been traditionally measured in terms 

of efficient use of storage and machine resources, accuracy of the numeric results, 

adherence to specifications, adaptability to change, and portability. These are vital 

criteria, but questions about the human dimension have become equally important: Is 

the program readable by other programmers who must test, debug, or maintain it? Is 

the programming language learnable, convenient for expressing certain algorithms, or 

comprehensible to novice users? Are design methods, flowcharts, documentation aids, 

or browsers helpful?” [227]. 

Almost 20 years later, very little research has been published on evaluating toolkit 

and programming language apis as a user interface. In this section, we review the 

research that has been conducted. In designing api evaluation methods, we can draw 

inspiration from both the software engineering and the empirical studies of program-

mers communities. 

2.10.1 Early evaluation of tools and languages 

Alan Kay’s Smalltalk [127] language was the first work to explicitly design a language for 

non-expert programmers (in Smalltalk’s case, middle school students) and observe how 

that community used the language. Kay, a founding member of Xerox parc in 1970, 

was awarded the acm Turing Award in 2003 for this work. Smalltalk was one of the 

first object-oriented programming languages. From the spring of 1974 through the 

spring of 1976, Adele Goldberg and Alan Kay taught Smalltalk to Palo Alto children 
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aged 9 to 15 [91, 92]. At first, they simply collected student programs as samples of what 

children could do. To learn more about the children’s programming process, they began 

videotaping the programming sessions. To ascertain comprehension, they also 

videotaped a) the children describing their software after it was complete, and b) the 

students making requested changes to the software architecture. While the evaluation 

does not include information on the utility of particular aspects of the Smalltalk 

language, the student projects are highly compelling. 

2.10.2 Empirical studies of programming 

Common evaluation metrics in the software engineering community include perform-

ance, reliability, and lines of code needed to produce an application. For an excellent 

review of metric-based evaluation, see Clements, Kazman, and Klein’s work [56]. While 

these metrics are important, they do not address the actual user experience of software 

development. 

In 1985, Alan Newell argued for the need to evaluate programming languages and 

tools in a more user-centered fashion, writing, “Millions for compilers, but hardly a 

penny for understanding human programming language use. Now, programming 

languages are obviously symmetrical, the computer on one side, the programmer on the 

other. In an appropriate science of computer languages, one would expect that half the 

effort would be on the computer side, understanding how to translate the languages 

into executable form, and half on the human side, understanding how to design 

languages that are easy or productive to use” [190, p. 212]. 

The year following Newell’s article, the first workshop on the empirical studies of 

programmers was held. John Pane’s dissertation offers an excellent review of the 

contributions of this field [200], as does Françoise Détienne’s book Software Design — 

Cognitive Aspects [62]. This community has identified several desirable properties of 
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programming languages that we believe are also relevant for evaluating a toolkit such as 

Papier-Mâché : 

• Ease of use: Programming languages and toolkits should be evaluated on how readable 

programs using the toolkit are by other programmers, how learnable the toolkit is, how 

convenient it is for expressing certain algorithms, and how comprehensible it is to 

novice users [227, p. 1]. 

• Facilitating reuse: A development tool should provide solutions to common sub-

problems, and frameworks that are reusable in “similar big problems” [62, ch. 4], 

minimizing the amount of application code. 

• Schema usage yields similar code: In our user study, we looked for similarity of code 

structure — both between programmers and for the same programmer across tasks. This 

code similarity implies that programmers employ a common schema (design pattern) to 

generate the solutions. This is desirable because it minimizes design errors, facilitates 

collaboration, and makes maintaining the code of others easier [62, § 5.2.1]. From this 

perspective, the success of a toolkit is judged by the extent to which it is leveraged to 

generate the solution. 

2.10.3 Designing usable programming systems 

Pane’s dissertation [200] effectively argues that usability should be a primary criterion 

when designing a new programming system. His research demonstrates the application 

of a traditional user-centered design process to the programming system hands: 

identifying target users, understanding their needs, and iteratively designing a system 

and evaluating it with the target users. The primary distinction between our work and 

Pane’s is that Papier-Mâché is designed for software professionals; hands is designed 

for children with no prior programming experience. This dissertation extends the 

methodological contributions of Pane’s work in two ways. First, we employed fieldwork 
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with tui designers to learn their current methods (see chapter 7). Second, in addition 

to conducting a laboratory evaluation, we also monitored Papier-Mâché’s use in longer-

term class and research projects (see chapter 9). 

2.10.4 Cognitive dimensions of notations 

Green’s “cognitive dimensions of notations” framework [39, 97] is a set of design 

guidelines for producing usable programs. These thirteen dimensions (with summaries 

included verbatim from [97]) are — 

• Abstraction Gradient: What are the minimum and maximum levels of abstraction? Can 

fragments be encapsulated? 

• Closeness of mapping: What ‘programming games’ need to be learned? 

• Consistency: When some of the language has been learnt, how much of the rest can be 

inferred? 

• Diffuseness: How many symbols or graphic entities are required to express a meaning? 

• Error-proneness: Does the design of the notation induce ‘careless mistakes’? 

• Hard mental operations: Are there places where the user needs to resort to fingers or 

penciled annotation to keep track of what is happening? 

• Hidden dependencies: Is every dependency overtly indicated in both directions? Is the 

indication perceptual or only symbolic? 

• Premature commitment: Do programmers have to make decisions before they have the 

information they need? 

• Progressive evaluation: Can a partially complete program be executed to obtain feedback 

on “How am I doing”? 

• Role-expressiveness: Can the reader see how each component of a program relates to the 

whole? 
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• Secondary notation: Can programmers use layout, color, or other cues to convey extra 

meaning, beyond the ‘official’ semantics of the language? 

• Viscosity: How much effort is required to perform a single change? 

• Visibility: Is every part of the code simultaneously visible (assuming a large enough 

display), or is it at least possible to juxtapose any two parts side-by-side at will? If the 

code is dispersed, is it at least possible to know in what order to read it? 

Steven Clarke and the Visual Studio usability group at Microsoft have taken these 

cdn guidelines and adopted them as a usability inspection technique (similar in spirit to 

heuristic evaluation [193-195]) and as a language for describing laboratory evaluation 

results of the Visual Studio .net ide, the C# language, and the .net apis [54, 55, 215]. 

These heuristics offer a nice complement to the higher-level design goals in section 

2.10.2. 

Clarke et al.’s work is the first publication by a product group taking a user-centered 

approach to designing programming languages and tools. Their work begins by using 

scenarios of small programming tasks to drive design. Then, the relevant ide, library, or 

language feature is designed. After design, the feature is evaluated in a usability test. 

Not every element in the system undergoes this rigorous treatment; only aspects that 

Microsoft feels are particularly important. In June of 2004, we visited this product 

group at Microsoft to see their usability labs and discuss their methods. Each feature is 

evaluated with approximately ten developers. Each developer participates in two 

sessions that are roughly two hours long; the two sessions are about a week apart. The 

first session is used to ascertain how usable a language/ide feature is the first time a 

developer sees it. The second session ascertains how easily the developer retains that 

knowledge, and how use changes with familiarity. This usability evaluation work is 

similar to our laboratory evaluation of Papier-Mâché, with the difference that 
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Microsoft’s larger budget affords more rigorous application of the technique. The 

primary methodological contribution that this dissertation offers beyond Microsoft’s 

work is our method of “triangulating” api usability by aggregating the results of 

multiple methods: fieldwork, controlled laboratory studies, and monitoring longer-term 

developer use of the api. This triangulation is especially important when evaluating 

tools in emerging areas such as ubiquitous computing, where best practices are unclear 

and the range of ideas is much wider. 

2.10.5 Evaluating ubiquitous computing tools 

Evaluating the usability of software tools in emerging areas such as ubiquitous 

computing poses a much greater challenge than evaluating tools for more mature areas 

such as graphical user interfaces because in emerging areas the applications and the 

tools are evolving simultaneously. Additionally, the amount of time required to build 

these novel tools dissuades many researchers from the additional step of evaluating the 

tools’ usability. This section reviews prior work that has “gone the extra mile” to 

evaluate the usability of ubicomp tools. 

The Context Toolkit (summarized in section 2.6.5) was evaluated through the 

applications that the researchers and their colleagues built with the system. These 

applications demonstrated that the toolkit supported a wide range of applications, and 

that these applications could be implemented with less time, code, and expertise than 

was previously required. 

Edwards et al. offer observations on evaluating infrastructure in [69]. This work 

draws on the authors experiences with the Placeless documents system and the Context 

Toolkit. The authors raise the issue that when infrastructure offers new technical 

capabilities, it is difficult to evaluate the usability of the infrastructure support for these 

new capabilities from the usability of the infrastructure-enabled applications that 
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actually deliver these capabilities to the end user. They advocate that infrastructure 

features and novel applications be designed iteratively and in conjunction with each 

other. Papier-Mâché differs from these systems in that it primarily lowers the threshold 

for application development, while these novel services primarily raise the ceiling. (For a 

discussion of ceiling and threshold, see [188]). Building applications as an evaluation 

technique is one aspect (see section 9.6) of our triangulation methodology. Our 

methodology also includes the application of other techniques, such as laboratory 

evaluation (see section 9.4) and use in research projects (see section 9.5), to gain a 

fuller picture of the software’s usability. 
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3 The Designers’ Outpost 

“Our experience strongly supports Alexander’s hypothesis that good fit cannot 

de directly defined or designed; it is the absence of misfit, achieved by itera-

tive design. … In a word, the computer scientist is a toolsmith – no more, but 

no less. It is an honorable calling.”  — Frederick P. Brooks, 1977 [44]. 

Studies of web design practice have found that pens, paper, walls, and tables were often 

used for explaining, developing, and communicating ideas during the early phases of 

design. These wall-scale, paper-based design practices inspired The Designers’ 

Outpost, a tangible user interface that combines the affordances of paper and large 

physical workspaces with the advantages of electronic media to support information 

design. With Outpost, users collaboratively author web site information architectures 

on an electronic whiteboard using physical media (Post-it notes and images), structur-

ing and annotating that information with electronic pens. This interaction is enabled by 

a touch-sensitive smart Board augmented with a robust computer vision system, 

employing a rear-mounted video camera for capturing movement and a front-mounted 

high-resolution camera for capturing ink. We conducted a participatory design study 

with fifteen professional web designers. Our results show that Outpost supports 

information architecture work practice, leading to the addition of fluid transitions to 

other design tools.  

P
F

ortions of this chapter were originally published by the author, Mark W. Newman, Ryan 
arrell, Mark Bilezikjian, and James A. Landay in [134] 
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3.1 Introduction 

Newman and Landay’s studies into web design [191, 192] found that pens, whiteboards, 

paper, walls, and tables were the primary tools used for explaining, developing, and 

communicating ideas during the early phases of design. Later phase design, where 

detailed page mockups are generated, occurs mostly on the computer. This finding is 

consistent with work practice studies across many design and engineering domains [34, 

114, 262].  

In one common early-phase practice, designers collect ideas about web site content 

onto Post-it notes and then arrange them on the wall into categories. This technique, 

often called affinity diagramming [37], is a form of collaborative “sketching” used to 

determine the site structure (see figure 3.1). We have built a tool, The Designers’ 

Outpost, that supports this practice. It combines the advantages of both paper and 

electronic media. A video of the Outpost system is available on the web at 

http://guir.berkeley.edu/outpost. 

FIGURE 3.1 A designer sitting in front of a Post-it Note covered wall. Post-it notes represent 
chunks of information and are arranged spatially into groups of related information. These notes 
are linked with marker lines to show organizational relationships. Image courtesy Hugh Beyer and 
Karen Holtzblatt [37]. 
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3.1.1 Current physical practice: benefits and drawbacks 

The large workspace of a wall or whiteboard offers several clear benefits for collabora-

tive design tasks. Large workspaces permit the representation of large, complex 

information spaces without the loss of contextual, peripheral information (see figure 

3.2). In contrast with the heavyweight, formal operations of the computer, it is relatively 

easy to fill a wall with pieces of paper and move them around to suggest different 

associations. Paper and walls “make information, any kind of information, tangible, easy 

to manipulate, and easy to organize” [209, p. 4]. Collaboration is aided both by the 

persistence of the design artifact, which supports asynchronous collaboration and 

constant awareness of the state of the project, as well as by the greater-than-human-

sized space allowing multiple people to simultaneously view, discuss, and modify the 

artifact. Covi et al. refer to the work posted on walls in project rooms as “coordination 

documents” [58, p. 59] because of the important role these highly visible artifacts play in 

collaboration. 

FIGURE 3.2 One of two design rooms at a Silicon Valley web site design firm visited by the 
author. 
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There are drawbacks, however, to the traditional paper-centric representation. 

When using paper and walls for design, it is difficult to maintain structuring marks 

(such as links and annotations), create multiple versions, or collaborate with designers at 

another location. Much of the information exists in the relationships between informa-

tion chunks (Post-it notes). Because structure must be maintained manually, marks that 

the designers make about the data, such as links or annotations, often fall out of sync 

with the notes as they are shifted around. At some point, whether hours after a 

brainstorming session or months after a project, the paper is removed and the web site 

structure is lost. The designers in our studies also lamented that versioning is not 

feasible in a paper-only representation. The paper-only work practice also offers few 

opportunities for remote participants, whether at a desktop down the hall or in a 

meeting room across the world. Remote users have no way to update, or even access, 

the information. We also found, as others have, that the transition from the early 

FIGURE 3.3 A web site information architecture using a combination of physical Post-it notes, 
physical pictures, and virtual links showing relationships between them. 
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paper-centric design stages to the later pixel-centric stages is highly problematic [145, 

260]. As the site structure is changed during development, the early paper artifact drifts 

further and further out of date. 

3.1.2 Supporting and extending practice with Outpost 

The Designers’ Outpost (figure 3.3) is a tangible user interface that combines the 

affordances of paper and large physical workspaces with the advantages of electronic 

media to support information design for the web. Users have the same fundamental 

capabilities in the Outpost system as in a non-computational paper-based system; one 

can create new pages by writing on new Post-it notes and organize a site by physically 

moving Post-it notes around on the board. Thus, paper in the physical world becomes 

an input device for the electronic world. A rear-mounted projector outputs electronic 

information onto surfaces in the physical world. Through its electronic capture of 

designs, our system supports the transition from this early representation to later 

electronic tools, such as denim [153, 192] (see figure 3.4 and figure 3.5). 

 

FIGURE 3.4 DENIM, shown here in sitemap view, allows web site design by sketching. As seen 
here, physical information spaces created in Outpost can be electronically imported into DENIM, 
serving as baseline sitemaps. 
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Outpost is part of the UC Berkeley Group for User Interface Research’s work on 

informal user interfaces [145]. Informal user interfaces support natural human input, 

such as speech and writing, while minimizing recognition and transformation of the 

input. These interfaces, which document rather than transform, better support a user’s 

flow state. Unrecognized input embraces nuanced expression and suggests a malleability 

of form that is critical for activities such as early-stage design. In addition to Outpost, 

this group has developed informal design tools for graphical [142, 144, 145], web [153, 

192], speech [135, 229], multi-modal [230], and cross-device [151, 152] user interfaces. 

The rest of this chapter is organized as follows. First, we discuss work in early stage 

web design and wall-scale user interfaces. Section 3.3 describes the formative design 

studies that we carried out to inform and validate our approach. Section 3.4 introduces 

the interaction techniques that give the core functionality of our system. Following this 

in section 3.5 is a description of the evaluation of the interactive system, and section 

3.6 discuses implications of that study. Section 3.7 describes the prototypes of the 

underlying vision algorithms, and section 3.8 offers a detailed description of the final 

 

FIGURE 3.5 In DENIM’s storyboard view, designers can continue working with an Outpost 
sitemap by sketching out the contents of a page. 
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vision system in Outpost. Chapters 4 and 5 describe support for design history and 

remote collaboration with Outpost, respectively. 

3.2 Background 

Our research is inspired by fieldwork into web design practice and the writings of 

designers reflecting on and prescribing effective design methods. We describe each of 

these in turn. 

3.2.1 Web site design: tools and practice 

The goal of Newman and Landay’s investigation into web design [191, 192] was to 

inform the design of systems to better support actual practice. The study comprised 

interviews with eleven professional web site designers from five different companies. 

Each interview consisted of asking the designer to choose a recent project and walk the 

interviewer through the entire project. The designer was asked to show examples of 

artifacts produced during each phase and explain their role in the process. 

Three important observations were made during the course of this study. First, 

designers create many different intermediate representations of a web site. Examples of 

pervasive and significant intermediate artifacts include sitemaps, storyboards, page 

schematics, and mockups. These representations depict the web site at varying levels of 

detail, from sitemaps, which depict sites as related blocks of labeled information to 

mockups, which depict individual pages in high fidelity. Second, the production and 

use of these intermediate artifacts dominate the day-to-day work practice for most of 

the design process. Third, web design is comprised of several sub-specialties, including 

information architecture and visual design, each of which has its own tools, products, 

and concerns. While visual designers typically focus on interaction and graphic design, 

information architects are mainly concerned with the information and navigation 
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design of a web site. Newman and Landay found that information architecture is not 

well supported by current software tools: for example, sitemaps were regularly generated 

by placing Post-it notes on walls. 

The results of these studies provided motivation for Outpost, and also provided the 

impetus for the development of denim, a sketch-based tool supporting information and 

navigation design of web sites [153, 192]. Denim supports sketching input, allows design 

at different refinement levels, and unifies the levels through zooming. In particular, 

denim supports visualizations matching the sitemap, storyboard, and page schematic 

representations of a web site. Denim also allows designers to interact with their site 

designs through a run mode, which displays the sketched pages in a limited functionality 

browser that allows the user to navigate the site by clicking active regions of the sketches 

and linking to other pages within the site. While denim supports authoring sitemaps, it 

is best suited for storyboards and page schematics. Outpost targets sitemaps. In 

addition, denim was designed as a single-user interface, whereas Outpost was designed 

for collaborative work. 

3.2.2 Affinity diagrams 

Our interest in researching computational support for information architecture was 

motivated by one specific design practice observed during the study discussed above. 

This collaborative practice consists of arranging Post-it notes on a large surface such as 

a wall, table, or desk in order to explore the information structure of a web site. 

Designers write chunks of information on Post-it notes and stick them to the wall. 

They then move the notes into spatially proximate groups representing categories of 

related information. Groups are labeled and further grouped into hierarchies of groups. 

This hierarchical structure serves as a baseline for the structure of the web site. Lines 

are drawn between notes and groups to indicate links. Early on, these links indicate 
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organizational relationships (i.e., it should be possible to navigate between the 

endpoints.) Later in the design process, these links represent hyperlinks that will appear 

in the finished site. This technique is called affinity diagramming; it is described in 

depth in Beyer and Holtzblatt’s book, Contextual Design [37]. Usability expert Jakob 

Nielsen also advocates a version of this method, using index cards to design the 

information hierarchy [196]. 

3.2.3 Electronic walls 

One of the first wall-scale user interfaces was the Xerox parc LiveBoard [72]. This 

system demonstrated pen-based interaction techniques like those of a traditional 

whiteboard. Pens are an effective method for fast, fluid, informal input. Xerox parc 

later developed the Collaborage system. Collaborage’s computer vision capture of paper 

on walls [180] inspired our work on the Designers’ Outpost. One drawback of the 

Collaborage capture system is its long latency (8-10 seconds on average). Outpost 

improves on this, with a location recognition latency of ~200 milliseconds, and an 

 

FIGURE 3.6 Stanford’s PostBrainstorm system offers a high-resolution, interactive wall [101]. 
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average capture latency of ~1.5 seconds. This improvement is primarily due to our two-

camera hardware approach, and software built on top of OpenCV, a highly optimized 

vision toolkit [40]. Outpost also incorporates other forms of input using styli and 

physical tools. 

In addition to the wall-scale tangible interfaces described in section 2.8.1, several 

researchers have developed electronic wall-scale interfaces. Streitz’s group at gmd 

developed i-land, a system of interaction techniques for working with display surfaces 

embedded in rooms and furniture [238]. As part of their work, they developed the 

DynaWall: three adjacent electronic whiteboards that take input via hand gestures. 

Winograd and Guimbretiere have developed the PostBrainstorm system, which 

provides interaction techniques for large, tiled projector surfaces [101] (see figure 3.6). 

Rekimoto and Saitoh [207] developed a system to integrate laptop computers, projected 

surfaces, and tagged physical objects. Other researchers have investigated interaction 

techniques for large electronic display surfaces and multimodal interaction with paper 

[173, 174]. This body of work on wall-scale interfaces motivates the concept that, for 

many tasks (especially in collaborative situations), manipulating physical objects on 

large surfaces is an intuitive and effective means of performing computer input. 

3.3 Initial Design Studies 

We began the Outpost research with a series of participatory design studies that 

explored the combination of physical and electronic media in depth. These three studies 

employed both low- and high-fidelity prototypes (see figure 3.7). The design teams in 

our studies encouraged us to support freeform-ink, electronic annotations to sitemap 

pages, versioning of design artifacts, fluid transitions to other tools, and opportunities 

for collocated and remote collaboration. In parallel, we built a set of prototypes for the 

underlying vision system (see figure 3.8). These prototypes led us to difference image-
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based recognition algorithms and a two-camera infrastructure: a rear-mounted video 

camera for capturing movement, and a front-mounted high-resolution camera for 

capturing ink. 

The first design study validated the general approach. It indicated a need to mini-

mize the extra user effort required to use the tool, and encouraged us to allow the 

interaction to be as freeform as possible. The second prototype fleshed out the 

interaction techniques and showed that a drafting desk is too small to support 

professional-scale web site diagrams. While our primary early interest in Outpost was to 

provide interactive support for design meetings, designers in the third study, working 

with an interactive wall-based prototype, found constant interactive feedback distract-

ing. They encouraged us to refocus our interface on: 1) supporting free ink electronic 

annotations to sitemap pages, 2) fluid transitions to tools such as denim [153, 192], 3) 

versioning of design artifacts (see chapter 4), and 4) supporting collocated and remote 

collaboration (see chapter 5). We also found this system to be more appropriate for 

information architects than for visual interface designers. 

Our research on information architecture tools began by creating prototypes that 

enabled user feedback and by designing a computer vision back-end for capture of paper 

artifacts. In the following sub-sections, we discuss the Outpost interface and design 

First: Paper desk prototype Second: Paper and pixel desk  Third: Interactive Wall 

FIGURE 3.7 The sequence of prototypes used in the three design studies. 
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studies in detail. In later sections, we describe the vision back-end. 

To explore the viability of combining physical and electronic representations for 

web site information architecture, we undertook a series of three design studies. We 

first evaluated the basic concept with a paper prototype study. Next, we built interface 

mock-ups that envisioned the combination of physical artifact state with interactive 

feedback. Finally, we created a wall-scale prototype for a set of participatory design 

sessions with fifteen professional interface designers. 

3.3.1 Low-fidelity desk: design study 

We created our initial low-fidelity prototype using cardboard the size of an iti 

VisionMaker Digital Desk (41" diagonal), evaluating this paper prototype with two 

individual participants. The participants wrote on a pad of 3" × 3" yellow Post-it notes 

using an inking pen (see figure 3.9). We asked participants to create the information 

architecture for a web site about off-campus housing for college students. To start, we 

handed them six pages of notes from mock interviews with college students seeking 

housing. The task included chunking interview information onto Post-its, arranging the 

Post-its into related groups, and merging two previously saved versions of Post-its into 

 
First: Difference Image  Second: Matlab algorithms Third: Fully Interactive   

FIGURE 3.8 The sequence of computer vision studies. The first prototype (left) explored the 
difference image algorithm using the Java Media Framework and webcams. The second prototype 
(center) explored the expectation-maximization algorithm for line-fitting using Matlab. The final 
prototype (right) integrated these techniques into a functioning system with a user interface. 
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a unified version. A wizard acting as the computer [128, 172] gave verbal feedback about 

what the computer recognized as groups, which groupings were being selected, and 

displayed widgets and dialog boxes when appropriate. 

We found that participants often forgot required system steps that had no affor-

dance or feedback, such as underlining the note representing a group or pressing an 

upload button to add a note to the system. This suggested an interface where we 

automatically recognize as many actions as possible (e.g., a new note should be 

automatically added when it is placed on the desk). Users were also confused by the 

three input devices: the inking pen for writing on notes, the virtual stylus for authoring 

note relationships, and the keyboard for entering version names. As a result, we 

removed the keyboard from our system design: this simultaneously simplifies the input 

model and better matches current practice.  

3.3.2 Pixel and paper mock-up 

Using our findings from the paper prototype, we created a mock-up of our ideas for 

combined physical/virtual interaction. We created static images using Adobe Photo-

shop to prototype Outpost’s interaction techniques and visual presentation. These 

 

FIGURE 3.9 The low-fidelity Designers’ Outpost. 
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images were displayed on an iti VisionMaker Digital Desk, which is a rear-projected 

surface with the size and slope of an architect’s drafting table. We designed the initial 

set of four interaction techniques to aid the affinity diagramming process. 1) Designers 

could create groups by placing notes near each other. 2) Links could be drawn between 

groups using an electronic stylus. 3) Groups could be given a name with a label. 4) 

Groups could be organized into hierarchies. The interface mock-up showed physical 

Post-it notes and the corresponding electronic feedback for these initial interactions 

(see figure 3.10). Through our experience with this mock-up, it quickly became evident 

that a digital desk is too small a space for professional web site information architecture. 

The desk’s surface area affords for a maximum of fifty Post-its and two or three users. 

Information architects often use upwards of 200 Post-its, and four to eight people may 

participate simultaneously in design sessions. To build the Designers’ Outpost at a full 

collaborative scale, we moved our design to a smart Board, a much larger rear-

projected surface with a whiteboard form factor [21].  

3.4 Outpost Interaction Techniques 

Our low-fidelity and mock-up prototypes informed the design of our interactive 

prototype. The physical, direct manipulation interaction techniques in Outpost provide 

 

FIGURE 3.10 Mock-ups of the Designers’ Outpost—Collaborating on an information hierarchy 
with Post-its on a digital desk. 
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for authoring content with standard pens on Post-it notes. The system tracks notes as 

users physically add, remove, and move them around the board, but does not attempt to 

recognize the content of the notes.  

Outpost supports the following interaction techniques for working with paper on 

the board. We have combined these physical interactions with interactions that are 

better suited to an electronic medium, such as digital ink annotation and specifying 

relationships using virtual arrows.  

Adding Notes: Users can write on a note with a standard pen and 

add it to the board. Our vision system recognizes it and updates 

its internal understanding of the board. The system provides 

feedback that the note has been recognized by displaying a blue 

outline around the note. 

Creating Links: To link a pair of notes, the user draws a line 

from one note to another with the board stylus. 

Removing Notes: To delete a note and its associated links, the 

user pulls the note off the board.  

 

Moving a Note: To move a note, its links, and its annotations, 

the user picks it up and places it at a new location. This provides 

a lightweight means of coupling physical and electronic informa-

tion. A simple timeout heuristic determines movement. If note 

removal and replacement occur within a specified time (Outpost 
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uses seven seconds), the system interprets this as a move opera-

tion. This heuristic has been sufficient for evaluating the proto-

type. A production implementation of Outpost should compare 

the image of the placed note to that of previously removed notes. 

This image similarity comparison is tractable using current 

computer vision techniques [129]. Shape Contexts offer the most 

promise for notes with ink content [35]; pyramid-based 

techniques may be superior for general images [83] (§ 7.7). 

Context Menus: Tapping a note invokes an electronic context 

menu, enabling the manipulation of the electronic properties 

embodied by physical objects. Sticky replaces a physical note with 

an electronic image of the note. Delete removes a note (useful if 

the vision system misses a physical removal). 

With the feedback from our participatory design study (see section 3.5), we added 

the following three physical tools for manipulating electronic content. 

Freeform Ink: In addition to being a space for interacting with 

physical Post-it notes, Outpost supports freeform drawing using 

board styli.  

Move Tool: A physical move tool provides a means of interacting 

with the system after the physical content has become electronic, 

retaining haptic direct manipulation. 

Physical Eraser: Working like a normal whiteboard eraser, the 

Outpost eraser removes ink on the board. It operates semanti-

cally, deleting each stroke it passes over. 
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Two primary benefits to structured capture of informal artifacts are 1) later recall, and 

2) export to other tools; saving enables both of these. 

Saving the Board: Users can press save to save the board state to 

disk. Then they can open it later in denim or Outpost. 

 

One important part of the Outpost visual design is that the board’s background is 

black. Because the board only emits light where the user has authored content, it avoids 

being a giant glowing presence, thus affording a calmer interaction experience [258]. 

3.5 Professional Design Study 

Our interactive prototype for the professional design study was implemented as a Java 

application running on a rear-projected 72" diagonal touch-sensitive smart Board [21] 

with a 1280 × 1024 resolution lcd projector. With this prototype, we recognized the 

location of notes on the board using the board’s touch sensor. Drawing a line from one 

note to another with the board stylus creates a link. The stylus is also used for creating 

freehand electronic ink on the board (see figure 3.11). Tapping on a note invokes a 

context menu (see figure 3.12) that in this prototype lets users either delete the note or 

define it as the label note for its group. In the vision-backed Outpost system described 

FIGURE 3.11 The board’s tool tray: styli for 
drawing electronic ink, a clear plastic square for 
moving electronic content, and the eraser. (Only 
the pens were available during the design study.) 

 

FIGURE 3.12 Tapping on a note invokes an 
electronic context menu for physical content.
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later, removing a note from the board deletes it. (The delete menu item was retained for 

the rare instance when the system fails to detect a remove event.) 

3.5.1 Study design  

Fifteen professional web designers participated in the study. There were five design 

sessions with between two and five designers per session. In four of the design sessions, 

the designers were colleagues at the same company; the fifth session mixed designers 

from two companies. Two of the five groups were composed of information architects, 

two groups were visual designers, and one group had individuals performing both roles 

(see table 3.1). 

Two researchers conducted each session. One was in charge of communication, 

explaining the system, and facilitating discussions. The other took written notes and 

videotaped the session; figure 3.13 – figure 3.15, are stills from those recordings. 

Each session lasted roughly two hours (see table 3.2). We began the sessions with 

a high-level overview of the project and a brief demonstration of the existing prototype. 

We gave each team an information architecture design task to explore using the 

Role
INFORMATION 

ARCHITECTS BOTH 
VISUAL 

DESIGNERS 

Group A B C D E 

Size 5 3 2 2 3 

TABLE 3.1 The five study groups: their size and primary role. 

Overview and Demo 15 minutes 

Design Task 45 – 60 minutes 

DENIM Demo 15 minutes 

Discussion 30 – 45 minutes 

Survey 10 minutes 

TABLE 3.2 The time breakdown of the design sessions. 
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prototype; this task took 45 to 60 minutes. We conversed freely with the designers 

during the sessions. Throughout each session, participants explained their actions and 

gave feedback and suggestions for improvement. This was followed by a fifteen-minute 

demonstration of denim and then a 45-minute discussion on Outpost’s utility and its 

relationship with denim and their current work practices. The study concluded with a 

seventeen question written survey asking participants about their background and their 

opinions about Outpost and its relevance to their work (see appendix a). 

3.5.2 Design findings 

Our findings from this participatory design study offered insight into the designers’ 

collaborative work processes and suggested an appropriate interactivity model. 

Existing work processes 

Every participant currently works with groups on whiteboards early in the web site 

 

FIGURE 3.13 A design team suggested that freehand ink would be useful for both unstructured 
annotation of the artifact and for performing operations on groups of notes. 
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design process. The information architects all said that they currently create sitemaps by 

placing Post-it notes on the board, while the visual designers sketch page designs 

directly on the board. Capturing whiteboard designs was highly valued by all five teams. 

Three of the design teams currently use a digital camera for documenting their work, 

one uses a whiteboard capture device (the Virtual Ink Mimio), and one assigns a scribe 

to save information from design meetings. One group even uses an application called 

Whiteboard Photo [25] to rectify and filter out smudges, dirt, and lighting changes in 

whiteboard photographs. In addition, every designer said that they currently use either 

the Visio or Inspiration structured drawing software for creating sitemaps. Sitemaps can 

get quite large; designers from one firm said that two to three hundred nodes is typical. 

Interactive board work process 

We observed the groups going through three general phases of design when using the 

interactive prototype. The designers stated that these same phases were part of their 

 

FIGURE 3.14 This is an example of the facilitator style; one person remains at the board guiding 
the group’s process. 
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existing practice. (Two of the groups did not start the third phase during our in lab 

sessions, but said that it would be their next activity.) 

Phase I: Brainstorming 

First, the designers brainstormed, quickly putting a large number of concepts on the 

board. One designer said, “Get all these things on Post-its.” The notes simply represent 

ideas. Sometimes, similar information was placed close together. Designers did not 

eliminate ideas or link concepts together into any formal structure at this stage. 

One designer commented that Outpost would be, “good for times with the client” 

because after a meeting they could continue to pare down and hone the artifact without 

having to start from scratch with a new tool.  

The designers were adamant about not wanting any system feedback during this 

phase. “We didn’t do anything here that we couldn’t do on a normal whiteboard.” One 

team actually turned off the board.  

 

FIGURE 3.15 This is an example of the open board style; all participants directly express their 
ideas in the artifact. 
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Phase II: Creating a top-level information architecture 

In this phase, designers migrate from a loose federation of notes on the board to a high-

level information architecture by clustering related information into groups, pruning 

unnecessary concepts, and linking notes together. 

The tool support in the interactive prototype was well suited to this phase. This was 

evident in the designers fluid work style, and their enthusiastic comments while 

designing. This was echoed on the post-test questionnaire, where several designers 

expressed interest in using Outpost to create top-level information architectures. 

Phase III: Drilling down — adding information with ink 

After the designers created a rough cut of a sitemap, we saw work process differences 

begin to emerge. The visual designers began to work out basic page designs using 

empty board space and the board stylus. In contrast, the information architects fully 

fleshed out the page structure of the site, continuing to add notes.  

A key design implication taken from this phase is the need for associating freeform 

ink with individual notes (see figure 3.13). The visual designers wanted to sketch the 

design details, and the information architects wanted to add annotations or properties. 

For example, one information architect said, “I’d like to be able to attach design 

rationale.” Design rationale is a mechanism for asynchronous communication, 

embedding in the artifact the motivations for making decisions [163]. The information 

architects also had a strong desire to use properties for project management. Two 

groups suggested tagging objects with properties, such as an issue (e.g., “will it be 

possible to get copyright clearance?”), and later searching for issues across the design. 

Based on this feedback, we implemented annotation support as part of the design 

history interface (see chapter 4). 
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Overall process 

As reflects their disciplines, the visual designers often talked explicitly about what pages 

might look like, while the information architecture groups had active discussions about 

users and tasks at a more abstract level: “What does the user know here? What is the 

user trying to do?” 

For all the teams, the site representation operated as the central shared artifact for 

discussion. Participants were actively working at the board only about half the time. In 

addition, for short periods of time (a minute or so), individuals or subgroups broke off 

from the main discussion to work. During these times, the board remained the 

anchoring reference point. 

We observed two styles of interacting with the board. In the facilitator style, one 

person, usually the senior-most individual, stands at the board (see figure 3.14). The 

entire group discusses the site, but as the discussion progresses, the facilitator creates 

notes that synthesize the discussion content. One group also referred to this style as 

“gate keeping.” This was the primary work practice in three groups, and the groups 

affirmed this to be their normal work practice. 

The second style was open board. As with facilitator, all group members actively 

discussed the site. In open board, however, there is no central person; all participants 

have agency to create notes and directly express their ideas in the artifact (see figure 

3.15). We started the sessions with a single pad of notes and a single marker next to the 

board. The first design team requested one pad and marker per person, which we 

provided for this and all subsequent groups. This paradigm affords each person their 

own paper “input device,” a working style we had not considered but that the designers 

regularly employed. In adding content to the board, information moves from a personal 

creation space to a shared viewing space.  
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Several participants commented that they valued simultaneous input with a low-

latency response. The smart Board’s touch sensor only supports one action at a time. 

(Newer smart Boards that use smart’s dvit technology support multiple simultaneous 

touch points.) Concurrent use of the board has technical design implications for the 

note sensing technology. This result encouraged us to complete a computer vision 

system. Vision lends itself both to simultaneous input and to rich sensing capabilities 

(e.g., object size, color, orientation, and capture of its contents). 

The post-test questionnaire asked: “How likely is it that you would integrate Out-

post as a regular part of your web site design practice?” Participants rated their response 

on a five point Likert scale. Four participants rated the system the top value, very likely. 

Eight gave the second value, somewhat likely. Three gave the fourth value, somewhat 

unlikely. One must be cautious about drawing strong conclusions from a participant’s 

positive ratings: the positive rating may only reflect politeness toward the researchers. 

The primary value of a self-report Likert scale is that it provides participants an 

opportunity to indicate a negative opinion. With this in mind, the most valuable 

information from these results is that three of the participants reported that they would 

be “somewhat unlikely” to regularly use the Outpost prototype. We believe the primary 

reason for these participants’ negative feelings was the distracting visual feedback in this 

prototype; the current system is much calmer. Additionally, in our research since the 

study, we introduced three substantial areas of functionality (transitions to other tools, 

support for design history, and remote collaboration) that provide important benefits 

unavailable with a whiteboard or other tools. 

Only information architects need apply 

Enthusiasm for the prototype correlated directly with two variables: the percentage of 

the designer’s work that was web-based, and how much the designer saw their role as 
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an information architect rather than a visual designer. As one visual designer said, “We 

don’t really do sitemaps so much. Our interfaces tend to end up with one or two 

screens.” Information architects saw sitemap creation as the challenging process of 

designing the core structure of a web site. The information architects praised our 

faithfulness to their current wall-scale work practices, and were enthusiastic about the 

combined tangible/virtual interaction. 

3.6 Design Implications 

This study underscored several important points about how calm [258] an informal 

design tool must be; the system feedback should not interrupt the designers flow state. 

3.6.1 Smart yet silent 

We originally felt that one benefit of the prototype was the system’s ability to auto-

matically recognize groups based on note proximity and provide visual feedback. 

However, the designers unanimously felt that automatic grouping was not useful, as 

they already knew the layout of the notes. 

Furthermore, the group, note outline, and menu feedback was considered distract-

ing during brainstorming. One designer said, “I’m totally disturbed while I’m trying to 

concentrate on what we are doing. There are too many things flashing.” In hindsight, 

this result is consistent with the negative user opinion about automatic interpretation 

and immediate feedback in silk [142, 145], a sketch-based gui design tool. In 

redesigning the system, we removed the visual feedback for proximity-based groups 

because the visual structure of the design is readily apparent — at best it can be 

redundant, and at worst it can be wrong. Additionally, we replaced the bright, crisp 

rectangles shown in figure 3.13 through figure 3.15 with the dim, penumbral shadow 
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as seen in figure 3.3. We designed this shadow to be at the just-noticeable of 

perceptual saliency. 

Several participants valued the subtle visual relationships between notes. “Auto-

matically arranging them would take away from my thinking.” One designer said that 

she wanted “to work with this before it’s turned on.” A difficulty with automatic 

refinement of informal user input is that this refinement is distracting for users engaged 

in a creative brainstorming task. This implies that only explicit user actions should 

cause visible system actions. In general, designers felt that interactive feedback and 

transformation should not be forced on them: it should be available, but not automatic. 

As designers move from brainstorming into more explicitly creating a sitemap, their use 

of the interactive features will increase. 

3.6.2 Sweet spot on the tangible/virtual spectrum 

There are appealing aspects to both virtual wall-scale interfaces [178] as well as physical 

ones [180] (see figure 3.16). The Outpost project aims to leverage the advantages of 

both interaction paradigms. 

Fluidity and physicality 

This series of design studies provided insight into a sweet spot on the tangible/virtual 

spectrum. Working physically supports collocated collaborative processes. The direct 

manipulation affordances of physical notes make them easier to see, move, and share.  

Electronic documents on a virtual desk Paper documents on a real desk 

Quick to edit, copy, transmit, share, file, and 
retrieve. Allows keyword searching, spell 
checking, instant calculations. 

Three dimensional, universally acceptable, 
cheap, portable, familiar, high resolution, 
easier to read. Tactile, can use both hands and 
fingers to manipulate, and can doodle on with 
a pencil. 

FIGURE 3.16 Pierre Wellner’s comparison of advantages of electronic and paper docu-
ments [260]. 
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We reviewed the study videotapes to quantify the pace of interaction. We found 

that on average, a note was added to the board approximately every 25 seconds. During 

active periods, a note was added every three to five seconds. Often, there was no explicit 

interaction for minutes at a time. A good portion of the meetings happened off the 

board, but referenced the board. 

One facilitator began by authoring the sitemap virtually, sketching out square notes 

and their content. Working purely in the electronic domain has the advantage that 

there is no need to switch between an ink-based pen and a board stylus. However, 

working electronically was noticeably slower (top speed of one note every seven to ten 

seconds). This is because 1) the designer had to create page boundaries rather than 

using the pre-defined pages torn from a pad, 2) authoring with plastic pens on a plastic 

surface is awkward for textual input, and 3) the projector ink feedback is much lower 

resolution than paper. These difficulties negatively affected the artifact creation process, 

discouraging descriptive input. For example, in one instance, one participant wrote “B” 

instead of “Business” when using electronic ink. Later, he started working physically, 

and the working pace and artifact quality picked up substantially. 

At least a whiteboard 

In our designs, we were careful to preserve many of the successful aspects of working on 

a traditional whiteboard; the utility of these affordances became apparent in the study. 

Our system permits the representation of large, complex information spaces without the 

loss of contextual, peripheral information. One designer referred to our interface as 

“cross-cultural” because engineers, designers, and clients are all comfortable working 

informally on whiteboards. 

Information appliances should be as easy to learn as physical appliances [198]. 

When two participants showed up half an hour late, we were pleasantly surprised to see 
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that the timely participant quickly brought her colleagues up to speed with Outpost’s 

interaction techniques. After using the tool for only five minutes, she was easily able to 

communicate the conceptual model and the functionality of the prototype. 

3.6.3 Extending the existing design process 

Every group mentioned that migrating the design artifact to other tools for further 

refinement is an essential advantage of the Outpost system. Many of the designers 

currently photograph meeting whiteboards even though this only produces a static 

artifact. They were very interested in the prospect of returning to their desk with an 

interactive site representation that they could continue to work on. 

An appropriate tool for Outpost designs to transition to is denim. Denim offers 

the ability to edit the information architecture, specify page level details, and create the 

navigational structures for a web site. Its pen-based interface is intended for a single 

designer working at a pc. Outpost is most appropriate for creating sitemaps; whereas 

denim becomes more relevant when the design team starts to storyboard the specific 

pages and create schematics. The current Outpost system and denim read and write the 

same xml file format. This enables an individual to “save out a wall” from a collabora-

tive design session and then flesh out the design on a personal computer or tablet. To 

support this, we augmented denim to handle images as page labels (see figure 3.4 and 

figure 3.5). 

Long projects magnify the benefits of having a sitemap artifact remain in use 

throughout the entire design cycle. For example, one design team we spoke with was in 

the midst of a redesign for a large web site they had originally designed almost a year 

ago. Through its electronic capture functionality, we hope Outpost will help design 

teams with such long-term projects.  



3.7 · Computer Vision Prototypes 82 

 

While an early interest in Outpost was to provide interactive support for informa-

tion architecture design sessions, designers in the third design study found additional 

fruitful directions for our research. They encouraged us to refocus our efforts toward a 

more documentary interface, supporting free ink electronic annotations to sitemap 

pages, versioning of design artifacts, fluid transitions to tools such as denim, and 

supporting collocated and remote collaboration.  

3.7 Computer Vision Prototypes 

To illuminate the technology issues involved in building wall-scale tangible interfaces, 

we now briefly present the three computer vision prototypes we built. Outpost employs 

computer vision to precisely locate and capture Post-it notes and images that users place 

on the board. Computer vision is appropriate for this task as it provides automatic 

untethered and untagged tracking and capture of artifacts from multiple users simulta-

neously. The first prototype was a simple system that computed the difference image 

between frames, and analyzed this difference image to detect changes in the board state. 

In the second prototype, we used Matlab to prototype the full set of algorithms 

necessary to support the Outpost application. The third prototype was built on top of 

OpenCV, and implemented the computer vision algorithms at interactive rate, as well 

as a socket-based network connection for communicating with the Outpost ui.  

FIGURE 3.17 Excerpts from an image sequence from our prototype steady state algorithm. Raw 
camera frames are shown in the top row, single frame difference images are shown in the bottom 
row. Raw and thresholded C2 – C1 difference images are shown at right.  
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3.7.1 Difference image vision prototype 

The foundation of Outpost’s recognition system is a technique known as a difference 

image (see figure 3.17). Subtracting camera frame m from frame n results in the differ-

ence image D(n-m). D expresses the change in board state between the two points in 

time.  

Difference image algorithm and use 

We originally employed difference images for two purposes: 1) to ascertain when users 

are working on the board and when it is calm, and 2) as an object detection primitive. A 

difference image is computed by subtracting consecutive frames (see the bottom row of 

figure 3.17). The content of a difference image expresses the activity of the board. An 

activity metric a can be computed by summing the absolute difference values of all 

pixels in the image. If a is larger than some threshold, the board is considered active. 

Otherwise, the board is considered calm. In reality, the content of a single frame 

difference image also results from noise in the camera sensor array and from lighting 

changes in the world (e.g., someone walks between a light source and the board). The 

threshold used for this prototype was an absolute value change of 2.25 units per pixel, on 

a scale of 0 to 255. The goal of ascertaining activity was to find a calm frame that could 

be compared with the current frame to find changes in the board state. This activity 

metric is a fairly crude method that usually, but not always, filtered out both sensor 

noise and lighting changes. The method is crude because the decision of whether an 

image is calm, and thereby useful for a baseline, is binary. In the wall vision prototype 

described in section 3.7.3, we replaced the activity method with spatial filtering and 

temporal averaging techniques that provide a more robust baseline image for 

comparison. Filtering and averaging obviates the need to make a binary decision about 

fitness, as the new baseline image is a moving aggregate of a number of frames. 
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This prototype also used difference images as an object-detection primitive. Out-

post does not require that notes be tracked while they are moving, but it does require 

that the system is aware of a note when it is initially placed down, placed at a new 

location, or removed. When the board becomes active, the system saves the last calm 

frame c1. When the board becomes calm again, it captures the new calm frame c2. 

Subtracting c1 from c2 and thresholding the result tells the system what has changed 

during that period of activity (the right-hand image in figure 3.17). This thresholded 

difference image becomes the input for note recognition. 

Design implications 

In building this first prototype, we realized that locating a note is a separate task from 

capturing a note. Dividing the vision task into these two distinct parts enabled us to 

realize that the system should use two cameras (see figure 3.18). To obtain an occlusion 

free view of the board for our difference image algorithm, we followed the metadesk 

 

FIGURE 3.18 The physical design of the Outpost system. The computer vision system uses two 
cameras as input devices for the electronic world. A rear-mounted projector outputs electronic 
information onto surfaces in the physical world. 
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researchers [249], mounting a video camera behind the board. Interactive frame rates 

are crucial for this camera. Because the notes are fairly large (three inches square), 

standard video resolution (640 × 480) is sufficient for location and orientation detection.  

Ink capture has the opposite set of constraints: it requires high resolution for cap-

ture but not interactive speeds because the ink capture does not control the board 

feedback. This suggests a high-resolution still camera. This two-camera approach 

obviates the need for a mechanical pan/tilt/zoom camera and image stitching 

algorithms. 

When we began this project in 1999, we found that consumer grade web cameras 

compressed images in ways that make computer vision difficult [251]. The situation has 

since improved substantially; today, consumer grade cameras are generally sufficient for 

the types of vision that Outpost uses. 

3.7.2 Matlab algorithms prototype 

Using the difference image described above as a building block, we designed and 

prototyped the complete vision pipeline in Matlab before implementing it in an 

interactive system. This prototype introduced perspective correction, segmentation, and 

feature extraction. We used Matlab because writing vision code with development 

libraries such as OpenCV takes much longer than with Matlab, prohibiting us from 

experimenting with design alternatives. This need for rapidly exploring multiple 

alternatives helped inspire the Papier-Mâché research. This pipeline performs the 

following set of operations on D(C2-C1): 

1 Rectify the perspective camera view of the board plane, bringing the board into a 2d 

plane using a 3 × 3 homography map matrix [83, § 13.1]. A homography matrix describes 

an arbitrary projective transformation. More precise algorithms for camera calibration 

exist; we chose a homography because it is very fast.  
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2 Threshold the resulting image, producing a three-level image. Positive pixels are pixels 

that have gotten significantly brighter, neutral pixels have not changed much, and 

negative pixels have become significantly darker.  

3 Segment the image using the connected components algorithm, labeling each positive 

and negative pixel with a cluster id number. The system interprets note-sized clusters of 

positive pixels to be added notes, and note-sized clusters of negative pixels to be 

subtracted notes. 

4 Compute the center of mass and the orientation of the note. Inspired by Freeman’s 

work [84] (see figure 3.19), we originally implemented orientation-finding using a 

second moment algorithm. However, we realized from our prototype that the second 

moment is undefined for squares, circles, and other objects that are symmetrical about 

both the x and y axes: for these shapes, all orientation choices yield an identical second 

moment. For this reason, we moved to an expectation-maximization (em) algorithm 

[83, § 16.1] that finds the best fitting square on the set of outline pixels of the note. This 

method is highly robust, even for a highly degraded image outline and small sample 

size. Theoretically, em is a more expensive algorithm because it is iterative. In practice, 

we have found that a very small number of iterations (in our case six) is enough for the 

solution to comfortably converge. 
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3.7.3 Interactive wall vision prototype 

We combined the system implications from our first vision prototype with the 

algorithms from our Matlab prototype to produce a wall-scale interactive prototype. 

This system employs three sensors: 1) a touch sensitive smart Board, 2) a rear-mounted 

640 × 480 industrial digital video camera, and 3) a front-mounted three megapixel usb 

still camera (see figure 3.18) to achieve the multiple person, low-latency input and 

capture desires that interested the participants in our study. This prototype offers an 

interactive-rate solution for detecting the location of notes. 

The Outpost vision system is written in C++ on top of the Intel OpenCV library 

[40]. The vision system and the user interface run as separate processes and pass 

semantic events (e.g., add [x, y, θ], remove[x, y]) through a socket network connection. 

Currently, both processes run on the same computer. A benefit of this socket architec-

ture is that it allows the processes to run on separate computers without modification. 

The only reason to avoid running the vision and the ui on different computers is 

network latency. 

When the system starts up, it automatically detects the corners of the board. It does 

      

FIGURE 3.19 Hand images (from a low-resolution detector) and equivalent rectangles, having 
the same first-order and second-order moments [84]. 
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this by projecting a white border on the board and capturing a frame, setting the 

projector completely black and capturing a frame, computing the thresholded difference 

image between the two frames, and finding the set of outline pixels. We use em here as 

well, finding the best fitting four lines on the set of outline pixels. We use these four 

corners to automatically compute the homography transform. In this prototype, our 

camera distortion is small. We originally intended to apply a homography transform to 

every c2 − c1 difference image. We substantially improved the performance of the rear 

camera’s vision system by applying the homography transform only to the logical 

coordinates of the detected note corners. Thus, we transform only four points per note 

found, as opposed to 640 × 480 pixels per difference image; a savings of roughly four 

orders of magnitude. This improvement is possible because the only relevant informa-

tion from the rear camera is the location and orientation of notes, and this information 

is uniquely determined by the four corners. This optimization is not possible with the 

front camera because Outpost uses the actual pixels from the front camera to display 

electronic notes. However, it is not necessary to transform the entire camera image, 

only each sub-region containing a note. 

We also revised our mechanism for finding the location of a note. Because the notes 

have a sticky stripe across the top, the top edge is flush with the board, straight, and 

accurate. Sometimes the bottom and side edges curl away from the board, however. 

(This observation generalizes to pictures and other paper artifacts taped onto the 

board.) Outpost solves this by computing a four-line em on the note outline, and 

selecting the top line of those four to compute orientation and location. This shortcut 

allowed us to move beyond the vision details so we could address Outpost’s user 

experience issues. A production implementation of Outpost should avoid this shortcut; 

this can be avoided with a vision algorithm that has a stronger notion of shape (such as 

Shape Contexts [35]). 
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For the most part, this prototype was successful; the main difficulty was with proc-

ess scheduling on a one-processor machine under Windows 98. Often, either the vision 

or the interface process was given use of the processor for extended periods of time. 

Because both need to run interactively to achieve interactive performance, we moved 

the system to a two-processor machine with Windows 2000. This resolved the 

scheduling issues. 

3.8 Current Implementation 

The current Outpost system consists of two main components. The interface compo-

nent handles stylus, physical tool, and touch input on the board, and provides graphical 

feedback to the user. The computer vision component tracks and captures physical 

Post-it notes and pictures.  

3.8.1 Physical tools and graphical display 

The physical tools input and graphical feedback are implemented in Java using satin, a 

toolkit for informal pen-based user interfaces [110], and the smart Board sdk. In 

Outpost, we make use of satin’s extensive support for ink handling, gesture recogni-

tion, and rendering. Free ink in Outpost is captured and saved as a stroke primitive. We 

use a tap interpreter for invoking context menus on existing notes. We also use a gesture 

interpreter for drawing links between pairs of notes. 

The smart Board’s tool tray consists of four pen tool slots and one eraser tool slot. 

The hardware detects the presence of the tools via a photometer in each slot. The 

hardware defines the active tool to be the tool most recently removed from the slot. The 

tools themselves are passive. The smart Board sdk uses callbacks to inform registered 

applications of the current tool. We use this mechanism to know when the move tool or 

the eraser is active instead of the pen. 
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3.8.2 Computer vision infrastructure 

Outpost’s vision system supports simultaneous input; essential for collaborative design. 

Our vision system is written in C++ on top of OpenCV [40]. The vision system runs as 

a separate process, passing semantic events to the Outpost ui through a socket network 

connection. 

This system offers interactive rates (~7 frames per second) for detecting the location 

of notes with the rear camera, combined with background high-resolution capture (~1.5 

second latency) for virtual display and transitioning to denim. This design achieves the 

multiple-person, low-latency input and capture that interested our study participants. 

One way to think about the board capture is as a direct manipulation scanner. One 

operation, placing a physical document on the board, specifies both the location of the 

document and that the document should be captured. 

Interactive vision techniques 

There are several processing steps that we perform with each new image from the rear 

camera (see figure 3.20). First, we employ spatial and temporal filtering techniques 

that help alleviate problems due to camera noise and lighting changes. This is a 

common and effective technique in many computer vision applications. Our temporal 

filtering computes an exponential weighted moving average (ewma) image µt by 

recursively averaging in each new frame ft with weight α. In Outpost’s case, α = 0.04, 

which is a fairly typical value.  

Each frame, we rectify the perspective camera view by bringing the board into a 2d 

plane using a projective transform matrix. There are more precise algorithms for camera 

calibration; we chose a simple perspective warp because it is fast, and works well for our 

purposes. 
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Next, we construct two thresholded difference images. Objects placed on the board 

and people moving in front of the board cast a shadow on the board’s surface. To the 

rear camera, areas with objects are darker than the empty board. When an object is 

removed, the area becomes lighter than it previously was. Added notes are found in the 

(µt-1 − f) image (darker areas are positive) and subtracted notes in the (f − µt-1) image 

(lighter areas are positive). We segment the two binary images using the connected 

components algorithm, finding note-sized components from changed pixels. 

After segmentation, we compute the center of mass and the orientation of the note 

components. We use an expectation-maximization (em) algorithm (for a good 

overview, see [38]) as a robust method for finding the best fitting square on the set of 

outline pixels of the note. We then compute the homography transform from image 

coordinates into board coordinates. 

 

FIGURE 3.20 The Outpost vision pipeline at a frame where one note (“Reptile Haus”) was 
added and another was removed. 
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As a final step, we require that added objects be found in the same place for two 

consecutive frames. We added this step to reduce false positives to a negligible level. At 

the completion of this vision pipeline, we send the semantic information about board 

state changes over the socket to the Java user interface. 

To minimize our computational overhead, the front camera only takes a picture 

when the rear camera detects that a new note n has been placed on the board. For each 

n, we add a requestor to the front camera’s request queue with [x, y, θ, id] as the 

location to capture. As soon as the front camera is available, it takes a picture. The 

system corrects for perspective skew upon receiving the picture. For each requestor, the 

system saves the rectified area of the board as a jpeg file. This method insures that note 

capture will complete soon after the note is placed on the board (capture completion 

time is bounded by twice the image transfer time). It also enables multiple notes to be 

captured from a single image. 

Outpost can run in a calibration mode, where it automatically detects the corners of 

the board and saves the calibration parameters to a file. We do this by capturing a frame 

of an entirely black board, capturing a frame of the board with a projected white 

outline, computing the thresholded difference image between the two frames, and 

finding the set of outline pixels. 

Discussion 

We designed the vision system to be highly robust at finding notes. The occasional 

recognition errors fall into three categories: 

• Missed actions: There are a few cases where the vision system misses an add or remove 

action (~1% of the time). This is usually because a person is standing in front of the 

note, casting a shadow on the board. As visual feedback, the ui displays a faint shadow 

around recognized objects. When new objects are not recognized, the user must 
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perform the add action again. Missed deletions can be fixed using the delete option on 

the context menu. 

• False positives: Rarely (~2-3 % of the time), the system reports an action that did not 

happen; this is nearly always because the system perceives a user’s closed hand to be a 

note. As a ui solution, we offer the delete option on the context menu.  

• Location and orientation misreporting: In this system, there are two kinds of accuracy: 

resolution and calibration. Our system performs adequately in both regards. As a point 

of comparison, most of the time our vision system is of higher accuracy than the board’s 

capacitance sensor; a more sophisticated camera model could improve this further. 

• Occlusion of the front camera: Currently, the front camera takes a photograph of the 

entire board whenever it is requested to. The image processing system then clips out the 

requested portion of the image, which corresponds to a photograph of the requested 

note. On occasion (~2% of the time), a person is standing between the camera and the 

board, occluding the camera’s view of the note. This happens only rarely because the 

camera is ceiling mounted and close to the board. 

These issues can be remedied with improved vision algorithms. For example, we 

may be able to assume that a cluster with three straight sides and an oddly shaped 

fourth side is really a note with a user’s hand on the fourth side. (Currently, we may 

discount this cluster because it is too large to be a note.) The system might also benefit 

from using edge detection as opposed to simple thresholding. We did not implement 

this in Outpost, but our interest in exploring different vision algorithms inspired the 

modularity in the Papier-Mâché architecture, and the inclusion of edge detection as an 

algorithm in the Papier-Mâché library (see section 8.2). 

Perhaps more importantly, these errors remind us that intelligent interfaces make 

mistakes. This has encouraged us to rely more on “simpler” sensing technologies, 
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namely the board’s touch sensor. For example, until the vision was robust we required 

that the smart board touch sensor reported a tap. This tap — possibly a user placing a 

note) created a candidate note to the model at an approximate location. The model 

then queried the vision system, asking if any notes were added in the region of the 

touch. The vision system responded either yes or no. If a note was added, the vision also 

responded over the socket connection with the precise location and orientation 

information it found. The limitation of this dual sensor approach was that the smart 

board touch sensor could only report one touch at a time. Once the vision was robust, 

we found the vision-only approach preferable, as it provides simultaneous input. 

3.9 Summary and Toolkit Motivations 

We have presented The Designers’ Outpost, a tangible interface for collaborative web 

site information design. Its functions are informed by observations of real web site 

design practice, providing many of the affordances of current paper-based practice while 

offering the advantages of electronic media.  

Outpost is implemented on top of a vision system that yields an interactive-rate 

system for robustly finding notes on a large surface. These results and those of other 

researchers show that computer vision is an effective technology for informal, 

collaborative interaction with physical media on walls. 

We validated our design with fifteen professional designers, showing that electronic 

whiteboards should be calm and that there is substantial merit in a system that is 

simultaneously tangible and virtual. The designers were enthusiastic about using 

Outpost and achieving the fluid transition from artifacts on walls to single-user tools 

such as denim. 

While the Outpost user interface is highly effective, developing this system was very 

difficult and time-consuming. Inspired by Myers’ and Rosson’s code analysis survey 
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[187], we have estimated the development time and code size of our Designers’ Outpost 

application, divided into the time and code size devoted to developing the tangible and 

the electronic portions of the system. Development time was estimated by reviewing the 

author’s calendar. By this estimate, building Outpost would have taken roughly four 

months instead of three years if it were built as a gui. 88% of the development time for 

Outpost was learning about and assessing the relevant physical sensing technologies (in 

our case, computer vision), becoming a fluent developer with the technology-centric 

apis, and implementing this complex technology enabling fluid human-computer 

interaction. 

In Outpost, 57 % of the lines of code and 88% of the development time are primarily 

concerned with the tangible aspect. This 57 % number was computed by labeling all 

software files as primarily tangible or primarily electronic. All C++ files (the vision 

engine) were primarily tangible. Each of the Java files was categorized based on its 

primary function. These results indicate that similar reductions in development time, 

with corresponding increase in software reliability and technology portability, can be 

achieved by a toolkit supporting tangible interaction. 

Outpost required us to learn a substantial amount about computer vision algo-

rithms, and design software architectures for tangible interaction. At the time we 

developed this system, tools support for this development process was minimal. While 

libraries such as OpenCV provide efficient implementations of image processing 

techniques, it is still the developer’s responsibility to 1) understand the behavior of these 

techniques, 2) string together low-level image processing primitives to achieve the high-

level user interface goal, and 3) create a software architecture for communication 

between the vision input system and the ui. The Papier-Mâché architecture, described 

in chapter 8, addresses these issues.  
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4 Electronic Design History of 
Physical Artifacts 

To form a deep understanding of the present, we need to find and engage an account of 

the past. This chapter presents an informal history capture and retrieval mechanism for 

collaborative, early-stage information design. This history system is implemented in the 

context of the Designers’ Outpost, a wall-scale, tangible interface for collaborative web 

site design. The interface elements in this history system are designed to be fluid and 

comfortable for early-phase design. As demonstrated by an informal lab study with six 

professional designers, this history system enhances the design process itself, and 

provides new opportunities for reasoning about the design of complex artifacts. 

4.1 Introduction 

To keep track of project milestones and variations, designers are forced to invent ad-hoc 

methods, usually involving saving multiple versions of files and using complex, cryptic 

file names to encode the properties of each version. In the physical world, they must 

manually photograph, photocopy, or scan an artifact to save its current state, or 

abandon this state and keep working. 

People invested in understanding the trajectory of history from the past to the 

present include decision makers, students, designers, and their successors. These 

Portions of this chapter were originally published by the author, Michael Thomsen, Ethan 
Phelps-Goodman, Robert Lee, and James A. Landay in [136] 
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stakeholders engage history through creation, revision, and reflection. In this chapter, 

we present an informal history capture and retrieval mechanism that supports these 

activities for collaborative, early-stage information design. A video of the system is 

available at http://guir.berkeley.edu/outpost/video/History.asx. 

Our history system is implemented as an extension of the Designers’ Outpost. We 

present three mechanisms for accessing design history: a main timeline, a local timeline, 

and a synopsis view. The main timeline is a visually navigable set of design thumbnails 

organized on a timeline (see figure 4.1). This view can be filtered by activity (By 

Actions, By Bookmarks, or By Meeting) or by inferred properties (By Time, By Note, 

or By Author). We employ a branched history, presenting the current branch to the 

user as a linear history. This linear history is annotated with stubs, indicating the 

existence and position of other branches. It is possible for users to jump to any point on 

 

FIGURE 4.1 Users’ view of the main history timeline (bottom) in the Designers’ Outpost, a 
system for collaborative web design. Outpost runs on a touch sensitive SMART Board. 
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the timeline, including semantic places such as when an object was created. The local 

timeline enables users to see, in the actual design, a history with just the actions relating 

to an individual object in the design. The synopsis view enables post-design review of 

key bookmarks. These bookmarked states can be annotated with text, and printed as 

hard copy for easy portability and sharing. 

We designed the history system around a set of scenarios that we distilled from 

design fieldwork studies. We present four here: 1) reaching an unproductive point, and 

heading off in a new direction from an earlier point; 2) writing a summary of a design 

session; 3) finding the rationale behind a decision; 4) creating a set of action items from 

a design session. 

In addition to supporting web design in a collaborative wall-scale system, our work 

on design history should in many aspects be transferable to other professional practices 

that center on the creation of an artifact by several individuals over an extended period 

of time. We hope that this work will inspire research on tools for other professional 

domains as well. 

4.2 Background 

Our research is inspired by work in design rationale, in history-aware systems, and in 

capture and access applications. 

4.2.1 Design rationale 

Much of our thinking about design history is motivated by Design Rationale: Concepts, 

Techniques, and Use, edited by Moran and Carroll [177]. The sixteen contributed 

chapters characterize the primary goal of design as giving shape to artifacts — design 

products — yet underscoring that “the artifact is a concrete form that does not (except in 

very subtle ways) manifest this process of creation.”  
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Semi-formal design rationale: IBIS and QOC 

A number of design rationale systems have been proposed in the past, such as the 

seminal ibis [214] system in the 1970s, and more recently, qoc [162]. These systems 

employ semi-formal syntaxes to capture design rationale in the form of argumentation 

surrounding decisions made during a design process. These systems have not achieved 

widespread use with designers, possibly because they impose a rigid structure on design 

thinking and burden designers with creating and maintaining a separate rationale 

representation in parallel with the design itself.  

VKB: history in hypertexts  

The vkb system [226] introduces the notion of “constructive time,” which is the reader’s 

experience of accessing a history in a hypertext. Our third scenario, finding the rationale 

behind a design decision, draws inspiration from the vkb notion of history being 

created for the benefit of an external viewer. Our By Meeting filter is implemented in a 

similar fashion to the vkb meeting discretization.  

 

FIGURE 4.2 Kurlander’s editable graphical histories [141]. 
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4.2.2 History-enabled applications 

The visual design of our global timeline is inspired by the Chimera graphical editor 

[141] (see figure 4.2), which introduced the comic strip metaphor for displaying a 

history of changes. Chimera also used highlighting to focus on the parts that changed 

in each frame. Our timeline extends the design in Chimera with numerous ways of 

filtering the displayed frames, and with display of branched history. 

Rekimoto introduced the Time-Machine Computing (tmc) system (see figure 

4.3) [205]. The tmc browser replaces a standard desktop browser, offering time as a 

unifying method for storing personal information such as documents, digital photo-

graphs, notes, and calendar information. Like the Outpost history system, it affords for 

time-based browsing. Additionally, like our local history system, the tmc browser 

allows users to select an object and return to the time it was created, a type of direct-

manipulation query. An interesting personal information management feature in the 

tmc browser is that it enables users to place objects in a future point in time. The major 

difference between tmc and our system is that our system is intended as a collaborative 

 

FIGURE 4.3 Rekimoto’s Time-Machine computing system [205]. 
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design aid, while tmc is intended for personal information management. Outpost also 

offers support for branched history which tmc does not. However, there are some 

techniques in tmc that might be beneficial to our system, such as a calendar view of 

information. 

The WeMet system [211] for distributed, collaborative drawing also automatically 

captures history. According to the authors, this allows users to “reconstruct the present,” 

and allows parties that join work in progress to review the work performed by the other 

participants so far. WeMet inspired us to include explicit bookmarks in the history. 

Capture and access 

Our focus on informal interaction [145] leads us to shy away from structured approaches 

and borrow from another thread of research, informal meeting capture. Informal 

capture systems attempt to collect information from users in natural ways, i.e., 

information that they produce in the normal course of their activities, and attempt to 

structure it in useful ways for later retrieval.  

The Classroom 2000 project [26, 46] captures information from multiple sources 

including audio and video of classroom lecturers, ink from students’ notes and 

annotations, and lecturers’ presentations slides. This information is then merged and 

indexed in order to support students’ task of reviewing lecture notes.  

The AudioNotebook [237] and the Dynomite system [263] both focus on personal 

information capture, and provide interaction techniques for browsing histories. 

Although they are concerned with audio, their methods for creating inferred bookmarks 

inspired us. AudioNotebook creates bookmarks based on pauses and changes in pitch, 

inspiring us to add inferred filters in our history system. Dynomite’s ink properties 

inspired us to add author information to created notes. Outpost differs from these 

systems in that it is designed to support collaborative, rather than individual, practices. 
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The coral [179] system captures and coordinates data from multiple sources such as 

audio and whiteboard notes to support meeting capture. These four systems share with 

Classroom 2000 a task-oriented focus on visualizations to support later retrieval. 

4.3 Motivations for History Support  

Before building this history system, we conducted and learned from field and design 

studies. Newman and Landay interviewed eleven professional web site designers, 

providing us with two important insights. First, designers create many different 

intermediate representations of a web site. Second, “Designers expressed a desire to 

have a unified way to manage different variations of design ideas. Variations play a key 

role during the design exploration phase, and it would behoove an effective design tool 

to help support their creation and management” [191, p. 273]. 

During the creation of the Designers’ Outpost, we conducted a design study with 

fifteen professional web site designers, which guided the design of the basic system as 

described in chapter 3. The importance of support for design history became clear in 

this study: the participants stated that they often forgot the history of how some part of 

their design came to be, or they would alter their design and then realize that they 

preferred an older design. These studies both gave us insight into the working practice 

of web designers, and motivated our focus on better supporting design history. 

 

FIGURE 4.4 Outpost’s electronic capture enables replacing physical documents with their 
electronic images. A pie menu operation (left) makes all notes electronic (right). It is easier, but not 
required, to work with design history when all of the information is electronic. 



4.4 · History Interface 103 

 

4.4 History Interface 

To promote design history, we have made the history a first-class citizen (as in 

Timewarp [70]), while keeping the design history as a relatively calm entity that does 

not distract from the main design work at hand. Our system provides three facilities for 

interacting with design history: a main timeline, a local timeline, and a synopsis view. It is 

easier, but not required, to work with design history when all of the information is 

electronic (see figure 4.4). We describe the functionality of each of these and then 

illustrate their utility in the context of the brief scenarios presented previously.  

4.4.1 Timeline visualization 

The main timeline displays a history of the design using thumbnails, as seen in figure 

4.5. Each thumbnail presents the contents of the board at the time of capture. To 

support the user in determining what has changed between adjacent frames, we 

highlight the elements that were altered in the most recent frame (see figure 4.6). 

Filtering thumbnails 

Designers use the timeline display to choose the set of thumbnails to display. In the 

most detailed view, the timeline displays all thumbnails — one thumbnail per single 

action the users have performed at the board, such as adding a note or moving a 

FIGURE 4.5 The main timeline at the bottom of the SMART Board. The pop-up pie menu lets 
users choose available filters. Bookmark adds the current state to the synopsis. Bookmark Timeline 
adds all states in the current view to the synopsis. Filter Further allows users to 
intersect filters. 
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relation. View all is useful for local undo, but more substantive interactions mandate 

using our other filters. 

There are two types of filters: activity filters and inferred filters. The activity filters 

are based on explicit actions made by the user; they comprise By Actions, By Bookmarks, 

and By Meeting. For each of these, the user can select to have a thumbnail generated for 

every n Bookmarks, Actions, or Meetings. 

Inferred filters allow a user to filter on properties that are not explicitly set by the 

user; they comprise By Time, By Note, and By Author. In the By Time filter, the user 

chooses to see only frames that correspond to actions carried out every n seconds. With 

the By Note filter, the user can select a note on the board to view only frames that 

correspond to actions performed on or in relation to that note. Finally, when using the 

By Author filter, only frames that correspond to notes altered by the chosen author are 

displayed. 

The By Author filter is one example of many possible context-sensitive history 

queries. Here, the system needs to sense who is the author of each operation. Although 

this could be implemented using an rfid tag and a reader behind the board, we 

currently simulate this using a Wizard of Oz approach [128, 172]: during design sessions 

an operator indicates the person currently at the board in a simple list of names shown 

on a secondary monitor.  

 

FIGURE 4.6 Close-up of the global timeline. Above each thumbnail is a time-stamp. The main 
thumbnail is a scaled down version of the board, with the changes highlighted in green. The 
frame around future thumbnails is dark blue, past medium blue, and current light blue. 
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Timeline navigation 

Thumbnails not only display information about the state changes of the board, they also 

provide a direct-manipulation interface for navigating the design history. Pressing any 

thumbnail causes the system to undo or redo all commands that have been issued since 

that point in time, restoring the board to that state. This multi-level undo/redo allows 

designers to experiment with the information design, as returning to a previous state is 

always possible (see figure 4.7). While the electronic touch interface works very well 

for selection, we found that electronic gui widgets are clumsy and slow for scrolling and 

browsing. To support more fluid scrolling, we integrated a Contour Design usb jog dial 

[22] (see figure 4.8) for direct physical interaction with our system. Snibbe et al. have 

shown that jog dials with haptic feedback are highly effective for browsing time-based 

media [232]. Presenting semantic information (such as branches) haptically would likely 

be of great benefit to users of design history systems. 

While our studies have shown many benefits to a paper-centric tangible interface 

for freeform design, the physicality of a design artifact becomes problematic when 

engaging its history: it is not possible for the system alone to perform an undo operation 

for all possible physical actions made by the user, such as adding or removing a note 

from the board. In our system, a combination of user actions and history manipulations 

can yield one of two degenerate cases: either the current view calls for presenting an 

object without a physical presence, or there is a physical object that should not be 

present. In the former case, we display the electronic capture of the object. In the latter, 

FIGURE 4.7 The main timeline, with an expanded strand containing a collapsed strand. 
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we give the object a red shadow to indicate it should not be present, hinting that it 

should be removed by the user. 

Branched time visualization 

As mentioned above, the system supports multi-level undo/redo. One simple example 

of multi-level undo/redo is the functionality present in Microsoft Office. This 

functionality does allow unlimited undo and redo, but one major problem is that only 

one strand of actions is held in the history. If the user performs actions a, b, c, d, e 

undoes three times, and then performs actions f and g (the sequence shown in figure 

4.9); the current action strand in the history is a, b, f, g. The fact that c, d, and e used 

to follow b is lost in a linear history. Some undo/redo systems, such as the one in Emacs 

[234], offer the user a truly branched history. However, branched histories have 

traditionally been difficult to navigate; the user is likely to get lost because it is difficult 

to build an accurate and complete mental model of the history tree. 

Our goal was to preserve the entire history, with all constituent action strands, 

without introducing unwieldy complexity. We achieved this by merging the concept of 

a branched action history with the linearity of a single stranded history. One possible 

 

FIGURE 4.8 Physical jog dial for scrolling through history. 
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way of presenting the branched history is as a branched tree as in figure 4.9. While 

this way of displaying the multiple strands presents the whole history and its two 

constituent strands, the visualization rapidly becomes complex as the number of 

branches increases. This complexity creates too large a user burden for our domain of 

informal, early stage design, and it requires substantial screen real estate. 

As a lighter weight alternative, we present the history as a linear list of actions, 

where inactive branches are represented by a collapsed stub, as illustrated in figure 4.7. 

This presentation preserves the temporal order of the actions; a frame presented to the 

right of another frame corresponds to an action that was issued after the other. It also 

scales well; multiple branches can be shown inside each other by nesting the stub 

parenthesis markers as shown along the bottom of figure 4.10. Users can open or close 

(collapse) any branch, choosing a presentation of the timeline relevant to the objects of 

interest. 

Local timeline visualization 

The main timeline visualizes the history for the whole board; the local timeline provides 

a lighter weight history for an individual object. When selecting a note by tapping it, an 

object menu is displayed (see figure 4.11). The object menu supports both common 

operations such as deleting the note or making it persistent, as well as displaying a small 

note history along the bottom. This novel in situ timeline offers the user more detailed 

 

FIGURE 4.9 Branched history: Actions A, B, 
C, D, and E form one strand; A, B, F, and G form 
the other. 

FIGURE 4.10 Stub-branching history 
presentation: the top history fully displays the 
current strand; other strands are visualized as 
stubs. The bottom history displays the full 
history; states not part of the current strand are 
placed between brackets.  
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information about a particular note without visually cluttering the entire board. 

4.4.2 Synopsis visualization 

One advantage of electronic capture is its ability to support radically different 

presentations of information. The synopsis visualization is an example of this. This 

visualization was designed to provide an annotated record of the set of changes that 

happened to a design. We provide the ability to work with this list electronically (see 

figure 4.12) or printed on paper (see figure 4.13). Because users are not always at the 

board, a printout serves as a take-away design record for sharing, discussion, and 

annotation. The synopsis visualization fills these needs. 

A synopsis can be constructed in two ways. First, it can be constructed via explicit 

user bookmarks. Bookmarks can be created at design time when a team arrives at a spot 

worth marking or they can be created after the fact by going back to a point in the 

timeline and bookmarking it. Users can view their set of bookmarks when viewing By 

bookmarks. A synopsis can also be constructed from a filtered history view (e.g., every 

twelve actions). A user can select bookmark timeline to add that set of states to the 

synopsis. These two techniques can be combined to manually augment an auto-

 

FIGURE 4.11 The electronic context menu for physical objects. The bottom element in the 
menu is the local timeline. In this case, the note was created (“C”), then moved (“M”), and finally a 
link drawn (“L”). This local timeline is display-only. 
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generated state set. For example, a user could begin a bookmark set with the states 

produced from the By Meeting filter, augmenting it manually with key points from the 

meetings. This combination of automatic and manual history echoes work by Kaasten 

and Greenberg [124] on managing web browsing histories. 

When viewing the main timeline by bookmarks, there is a button to bring up a 

synopsis view. The synopsis view displays each of the bookmarks vertically on the left-

hand side of the screen. It provides a text-box to the right of each bookmark for enter-

ing a description of that state. The synopsis view can also be printed for offline use. 

4.5 History Usage Scenarios 

Drawing on field studies of web design [191, 192], our previous laboratory studies (see 

chapter 3), and on the related research literature [34, 179, 212], we have constructed 

four scenarios that reflect current and envisioned uses for Outpost’s design history 

capture. 

Del, Erykah, Jeru, and Rahzel are designing a portal web site for hip-hop music and 

culture. This portal will enable site visitors to read music reviews, interviews with 

 

FIGURE 4.12 The on-screen synopsis 
view. 

FIGURE 4.13 A print version of the same 
information. 
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artists, and relevant news stories, as well as purchase music for download, and find out 

about local concerts. 

4.5.1 Reaching a dead-end 

In the first design session, Erykah, Jeru, and Rahzel came up with a draft of an 

information architecture for the portal, which they are now trying to refine in a second 

session. After reviewing the initial design, Rahzel points out that the music reviews 

section is completely disconnected from the purchasing music section. If they are to 

make money from the site, the two should be strongly tied. After a while, Jeru 

concludes it isn’t possible to alter the current design, so she creates an ink annotation on 

the main ‘music review’ note explaining this. She taps the ‘music reviews’ note to select 

it and then selects the by note view on the main timeline. The first thumbnail in this 

view displays the board state when the note was created. She taps this thumbnail to 

revert the board to that point in time. From there, they redesign the site so that 

purchasing is easily accessible from the music reviews area.  

4.5.2 Writing a Session Summary 

After the design session, Erykah stays in the project room. She uses the main timeline 

to review the team’s progress. As she rolls the time forward By Actions she bookmarks 

important states in the design. Upon reaching the end of the meeting, she opens the 

synopsis view (see figure 4.12) and annotates the key states with text. Finally, she 

makes a print version (see figure 4.13) for herself and the other team members. This 

portable, sharable summary serves as an overview of what has been accomplished, and 

helps the team members communicate their progress to the client. 
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4.5.3 Find the rationale behind a decision 

Del missed the design session; he was helping friends set up for a show. When he 

returns, viewing the electronic wall in the project room, he notices the strong linking 

between the music reviews and the music purchase areas. Curious why this is, he taps 

on the music reviews note, and quickly finds its local history, which he scans to 

understand the changes it underwent while he was away. From the note’s context menu, 

he brings up the note’s annotations. Reading the ink annotation written by one of the 

other designers, he quickly understands the rationale for the change.  

4.5.4 Following up on a session 

On Friday morning, the designers decide to perform a review of their work in the past 

week. Several design issues warrant further consideration; they bookmark each of these. 

They then annotate the bookmarks in the Synopsis view and print it. The print view 

serves as a to-do list that the designers bring back to their personal workspace. In the 

afternoon they reconvene and discuss the issues that each has examined, yielding a 

much cleaner sitemap. 

4.6 Implementation 

At the core of the history system is a data structure that holds command objects [86, 

185] — one command object for each action carried out by the users. A command object 

is a software design pattern that encapsulates an atomic action as a software object 

called a command. These objects are stored in a command log, facilitating robust undo 

and redo. Some command objects in the Outpost system are add note, remove note, move 

note, add link, and add ink annotation. 

These command objects are stored in a tree shaped data structure with branches. A 

new branch is added when the user jumps back to a previous state and then starts 
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modifying the board from there. The actual restoration of the board’s state from a given 

state x to the user requested state y is handled by first calculating the least common 

ancestor l of x and y, then the up-path from x to l and finally the down-path from l to 

y. Given these paths, the state is easily restored by following the path from x to l 

undoing each command on the way, and then the path from l to y redoing the 

commands found here. 

Each of the thumbnails used to visualize the command history is calculated by 

asking the main satin sheet [110] to redraw itself into a new, thumbnail-sized graphics 

context. The entire set of thumbnails is redrawn each time the filter changes: given a 

criterion, the whole tree is traversed, and the whole visualization rebuilt. It would be 

computationally more efficient to cache some of this information, but we have found, as 

others have [211], that for a research prototype rolling forward is not a substantial 

bottleneck. Computational efficiency has not been our focus so far and this simple 

approach has shown fast enough for medium-sized designs; a production implementa-

tion of this system would likely achieve faster performance by periodically caching state. 

4.7 Design Study 

We had six professional designers use the history system and offer their feedback (see 

figure 4.14). When the history system was in an early state, we brought in two 

designers from the same firm to talk with us about their current practices and try our 

system. In pre-study interviews with the pair, we learned that the participants currently 

had a difficult time managing history; their state of the art was to save “bookmarks” and 

“versions” simply as files with different names. When working with our system, they 

primarily used the main timeline at a macro scale. Working physically and electronically 

occurred in cycles. They would add content for a while, work with it, then make the 

board electronic, and delve into the history. In addition to finding the history useful for 
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reflection and design rationale, the pair commented that they would find value in using 

the history to make accountability from the client clearer. The pair’s collaborative work 

helped us to realize that knowing the author of content might be beneficial, leading us 

to implement the author wizard for the next group of participants. 

With the software completed, we brought in four more designers in three groups: 

one pair of colleagues and two individuals. The format was similar to the study 

described in chapter 3. It began with an explanation of the system, continued with a 

design task lasting roughly an hour, and concluded with a nineteen question survey (see 

appendix A.2). The participants were very enthusiastic about our bookmarking 

features, and in the ability to generate a synopsis view. 

Participants found the View all filter distracting, reminding us of the need for calm 

interaction [258]. Viewing every single command is only useful for local undo, rare 

during fluid brainstorming. (The one time it proved useful was when the system 

 

FIGURE 4.14 Two professional designers collaborate on an information architecture for the 
Oakland Zoo web site during the study. 
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misrecognized the users’ input.) One finding from our previous study was that calm 

interaction is essential to an effective electronic whiteboard. Beyond its limited utility, 

View all is the antithesis of calm; it renders a new thumbnail for every command the 

user executes. This makes for a hyperactive electronic whiteboard. Based on this, we 

changed the default filter to be the By Actions filter. This provides visual locations the 

user can move back to at a coarser interval (the default is every six). 

One participant commented that his favorite aspect of using computer-based tools 

was that easy saving enabled him to try new ideas and have different versions. After 

three of the participants had worked with the system, it became clear that save and 

bookmark should be integrated. We eliminated a separate save button, including the 

save functionality as part of the bookmarking process for the last participant. He found 

this integration intuitive. 

4.7.1 Timeline usability 

The participants were very enthusiastic about the history’s ability to easily capture 

different states. Having a simple, touch-based visual interface with the ability to 

negotiate the history of the board was highly appreciated as well. The participants used 

the history smoothly for the most part, but sometimes, the presence of branches was 

confusing. As a solution, one designer suggested that sometimes it might be valuable to 

see the entire branch structure as a traditional graph. 

4.7.2 Need for visual comparison and merging 

The designers encouraged us to provide facilities for simultaneous comparison and 

merging of history states. One participant said, “It is very important to view multiple 

versions in juxtaposition, at the same time and at a scale that we can make sense out of. 

Much of the impact is visual.” Terry et al.’s work on supporting simultaneous develop-
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ment of alternative solutions [243, 244] provides an excellent set of ui techniques for 

viewing multiple alternatives simultaneously (see figure 4.15). Outpost’s history system 

would likely benefit from such techniques. 

One designer commented that in his current practice, “When I’m working, I’ll do 

the information architecture on Post-its, and draw links on the whiteboard. I’ll take 

snapshots at different points in time. And then I’ll project earlier states onto a wall, and 

go from there.” This was a current practice uncannily similar to Outpost and its history 

facilities. (The other participants did not have this advanced a practice for dealing with 

history, possibly because such a practice is difficult with current tools.) 

4.8 Summary 

This chapter presented an informal history mechanism for collaborative design of 

information architectures that extends the Designers’ Outpost. It comprises three novel 

history visualizations for collaborative early-phase design: a stub-branching main 

timeline, an in situ object timeline, and an annotated synopsis view. 

Six professional web site designers evaluated the system. They were excited about 

the functionality with the exception of garish interactions like constantly updating 

history thumbnails, encouraging us to make calmer interactions the default, such as 

 

FIGURE 4.15 Creative pursuits require experimentation and exploration of possibilities, but 
interfaces typically stifle the ability to easily explore alternatives in parallel. Terry et al.’s work 
supports this exploration [243, 244]. 
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manual bookmarks and infrequent auto-bookmarks. 

Our design study showed that calm, lightweight history provides substantial value 

to designers. History-enabled design tools could benefit from heuristics that help build 

a concise history without distracting the user. Examples might include automatically 

bookmarking periods of intense work and bookmarking changes between creating 

content and editing. This research area could also benefit from integrating informal 

audio capture and access into the history system. We have found that in brainstorming 

sessions, the discussion among designers often captures information not expressed in 

the resulting visual artifact. 

Many professional practices center around the creation of an artifact by several 

individuals over an extended period of time (writing papers is an example that comes to 

mind at the moment). We hope that this work on exploring interfaces for history in the 

context of collaborative wall-scale design will inspire work in other professional 

domains as well. 

Through this evolution and extension of the Outpost code base, we gained an 

appreciation for user interface tools, and became aware of their absence for developing 

tangible user interface input. Where appropriate, the design history support has been 

added to the satin toolkit rather than the Outpost application. This also helped 

motivate our interest in toolkits in general and Papier-Mâché in particular. 
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5 Tangible Remote Collaboration 

A tension exists between designers’ comfort with physical artifacts and the need for 

effective remote collaboration: physical objects live in one place. Previous research and 

technologies to support remote collaboration have focused on shared electronic media. 

Current technologies force distributed teams to choose between the physical tools they 

prefer and the electronic communication mechanisms available. This chapter presents 

Distributed Designers’ Outpost, a remote collaboration system based on The Designers’ 

Outpost, a collaborative web site design tool that employs physical Post-it notes as 

interaction primitives. We extended the system for synchronous remote collaboration 

and introduced two awareness mechanisms: transient ink input for gestures and an 

outlined shadow of the remote collaborator for presence. We informally evaluated this 

system with six professional designers. Designers were excited by the prospect of 

physical remote collaboration but found some coordination challenges in the interaction 

with shared artifacts. 

5.1 Introduction 

For three decades, we have heard pundits tout the imminent arrival of the paperless 

office. However, paper remains a central artifact in professional work practices and use 

of paper is consistently increasing [222]. It is tangible, portable, readily manipulable, 

Portions of this chapter were originally published by Katherine M. Everitt, the author, Robert 
Lee, and James A. Landay in [73], and by Katherine M. Everitt in [74] 
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and easily editable [157]. Many designers we have spoken with work in collaborative 

teams at multiple locations. When working with their remote colleagues, they are 

forced to choose between the physical tools they prefer and the electronic communica-

tion mechanisms available. The designers felt that consensus building was vital to their 

work process, as it establishes deep relationships, especially when participants have 

different backgrounds [27]. However, it is more difficult to build relationships without a 

sense of physical presence.  

The remote collaboration system presented in this chapter (see figure 5.1) extends 

the Designers’ Outpost. This chapter discusses how structured capture enables fluid 

remote collaboration. To better support remote collaboration, we introduce an 

interaction paradigm where objects that are physical in one space are electronic in the 

other space, and vice versa. This paradigm has the potential to enable more fluid design 

among distributed teams, but must also overcome the problems of maintaining 

awareness between distributed groups. 

We present and evaluate two mechanisms for awareness: transient ink input for 

gestures and a blue shadow of the remote collaborator for presence. The transient ink is 

a pen-based interaction technique for conveying deictic (pointing) gestures. Users mark 

  

FIGURE 5.1 Our remote system running on two SMART Boards. Notes that are physical in one 
place (see left) are electronic in the other (at right). The Outpost history bar at the 
bottom shows previous states of the board. 
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up the board to suggest changes or relationships without permanently cluttering the 

workspace. Transient ink is displayed on both boards for a few seconds, and then fades 

away. The mechanism for presence awareness is a blue shadow that represents the 

location of the remote participants with respect to the shared workspace. Users of the 

system can get a sense of the locations and intentions of remote collaborators without 

needing their physical presence. 

The Designers’ Outpost was originally a single location interface. We extended 

Outpost to communicate between two remote hosts. The shared communication 

consists of user actions (e.g., adding and moving notes) augmented with remote 

awareness information (a vision-tracked shadow of the remote users and transient ink). 

5.2 Background 

Our remote collaboration research draws on earlier work in media spaces for remote 

interaction. We now discuss this work, and also look forward to the possibilities for 

remote actuation. 

 

FIGURE 5.2 Krueger’s VIDEOPLACE art installation introduced vision-tracking of users’ shad-
ows. A video projector in the gallery showed the user’s shadow, augmented with computational 
behaviors such as the creature shown on the left-hand side of the above image [138]. 
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5.2.1 Distributed media spaces 

In the mid-1970s, Krueger’s videoplace art installation introduced the use of computer 

vision to track a user’s shadow [138, 139] (see figure 5.2). Computer feedback was 

generated based on the user’s movement in an art space. The vision system was based 

on chroma key technology developed for broadcast news. While the gallery was 

constrained to have a solid background that enabled the chroma key technique to work, 

this system was decades ahead of its time. 

Over the last decade, there has been compelling research in distributed media 

spaces for visual collaboration tasks, such as shared drawing through electronic 

whiteboards. These researchers found, as we have, that users are interested in collabo-

rating on design artifacts from different places. Clearboard [116] (see figure 5.3) and 

VideoWhiteboard [242] are pair-ware systems that integrate visual drawings with video 

presence on a single display. Clearboard users draw on a glass board. The board is 

augmented with a live video projection, giving the appearance of “looking through the 

glass” at the remote participant’s drawing, face, and upper body. The glass board and 

video camera setup is duplicated at each end. VideoWhiteboard works in a similar 

fashion, except that the video image is the shadow of a standing remote user’s body. 

 

FIGURE 5.3 The Clearboard [116] (left) and DoubleDigitalDesk [261] (right) systems introduced 
the idea of synchronous remote collaboration through large displays. 
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Both of these systems use a direct video feed, cleverly aligned, to transmit both the 

drawing and presence information. 

While the data transmission in these systems is a raw video feed, Distributed Out-

post has a structured representation of the content. Its computer vision algorithms 

locate physical objects and users’ shadows, building an internal representation of this 

content and awareness feedback. This semantic understanding of the information 

allows for more flexibility in presentation. For example, in Distributed Outpost the 

awareness display can be removed, modified in color, or shown as an outline only. 

Distributed Outpost provides more control over content changes, allowing objects to be 

erased or moved without affecting the rest of the display. In addition, all of the 

advantages carry over to Outpost’s design history and ability to transition to other tools. 

Our research goal is to bring together tangible user interfaces and distributed media 

spaces to create and evaluate an application that supports an existing design practice. 

5.2.2 Remote actuation 

Our work with Distributed Outpost offers tangible input locally and electronic output 

remotely. An alternate approach is to use actuation for physically controlling a remote 

space. As these technologies mature, they may become feasible for design tools like 

Outpost. 

InTouch [41] provides an identical set of cylindrical rollers to participants at two 

different locations. The networked rollers behave as though they are physically 

connected. This system provided a shared mechanism for synchronous awareness of 

touch. InTouch’s compelling aesthetic experience encouraged us to explore richer 

awareness mechanisms for our design tool. 

Reznik and Canny’s Universal Planar Manipulator (upm) [210] provides a view of 

the future where physical objects can be controlled remotely. The upm is a rigid, 
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horizontal plate, which vibrates in its own plane and moves generic objects placed on it 

because of friction. However, the technology is not yet mature enough to support large 

numbers of objects, and our system is based on vertical as opposed to horizontal 

surfaces. 

5.3 Interviews and Fieldwork Informing Design 

Previous fieldwork and design studies [34, 191] have found that designers often need to 

collaborate with colleagues and clients who are not in the same office or even the same 

city. We brought six professional designers into our laboratory to provide feedback on 

Distributed Outpost. We first asked them to discuss their current remote collaboration 

practices. The designers described several important collaboration tasks including: 

consensus building, concept mapping, user focused design solutions, and defining 

project features, function, and interaction. 

5.3.1 Current experiences with remote collaboration 

Working with remote participants is a “nightmare,” stated one designer. The designers 

expressed three primary frustrations with their current collaboration tools. First, they 

felt that their interactions with remote colleagues were impoverished. Second, they felt 

the tools well suited to collaboration (e.g., email, telephone), were ill suited to design. 

Finally, all of the designers in our study had developed ad hoc methods when designing 

with remote colleagues.  

The study participants reported four different methods for working with remote 

collaborators.  

1 Whiteboard, video, and email: One group maintained their physical practice of using a 

whiteboard with sticky notes at a central office. Remote participants can view the screen 

though a video link, however, their participation is severely limited. Distributed workers 
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send email to the facilitator when they have input. Thus, they are very reliant on the 

facilitator for their participation in the design session, and there is a time lag between 

their contribution and its visibility to the rest of the group. As a group member stated, 

“This makes it almost impossible to have active participation of remote participants.”  

2 Two whiteboards and videoconference: Occasionally both offices will have sophisticated 

videoconferencing technology. Designers work on two separate, manually synchronized 

whiteboards with Post-it notes. Each side has a remote controlled pan/tilt/zoom 

camera. The technology is adequate for viewing the distributed boards, and the 

resolution is high enough to view written text. However, there are significant pauses in 

the interaction while one side zooms the camera in to see a change, and there is trouble 

keeping the separate representations consistent.  

3 Collocated meetings (and occasional conference calls): Another group was limited to only 

generating ideas when they were collocated. Once the ideas were generated, the 

potential design was typed into a computer for sharing with the remote clients. When 

meeting with clients in a conference call, each person had their own paper printouts on 

which they recorded potential changes to the design. Later, these designs were synchro-

nized by the designers in a discussion meeting to come up with the final design.  

4 Visio and email: Another participant developed designs alone with Microsoft Visio, a 

graphical diagramming tool. When it came time to collaborate, he would email the 

document to another user, who would change it and email it back. Some of his 

colleagues did not have this tool and thus worked on paper printouts and had him enter 

the changes into his document. This setup made real time collaboration impossible and 

added significant lag to the design process.  
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5.3.2 User needs for remote collaboration 

One of the largest problems we identified was a lack of a shared workspace. For large, 

remote teams, it can be hard to maintain focus without a shared artifact to discuss. It is 

also difficult for remote users to gesture or convey spatial relationships when they do 

not have access to the items under discussion. The formality and constraints of current 

technologies also interrupt the flow, making design more difficult [145].  

Many designers stressed the importance of establishing common ground with the 

people they worked with. “It’s not the end, it’s the means,” one designer explained. 

Consensus is vital for moving forward in the project. When the participants have differ-

ent backgrounds, it becomes especially important to establish deeper relationships.  

The designers we interviewed found it difficult to establish a rapport with distrib-

uted participants. They said they felt disjointed from their peers working remotely. This 

remains a problem even with a sophisticated video conferencing setup. Latency, a lack 

of presence information, and out of sync artifacts remain barriers to effective 

collaboration.  

5.4 Interaction Techniques 

Our system addresses designers’ needs in two ways. We provide a unified workspace 

with support for spatial gestures between remote colleagues. We also provide presence 

and awareness mechanisms to help remote participants establish common ground. In 

supporting these requirements, we felt it was important to keep the physical interaction 

and maintain a calm interface, such as in aroma [202, 203].  
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5.4.1 Shared workspaces and transactional consistency 

Our system consists of a shared workspace though which groups of designers can 

interact. Several designers can participate at once when working with the board. The 

computer vision system supports simultaneous input of several Post-it notes. 

A note is created by writing on a physical Post-it note and placing it on the board. 

When a local user physically adds a note to the whiteboard, the remote system electroni-

cally displays a photograph of that object (see figure 5.4 and figure 5.5, top row). The 

vision system’s rear camera locates the note and the front camera takes the photograph 

(see figure 3.20). The front camera very rarely has problems with users occluding note 

pictures (see section 3.8.2). When any user performs an action, both the local and the 

remote system are updated. Both teams can interact with any note, regardless of 

whether it exists as a physical object or remote analogue. 

To delete a note, the user simply removes it from the board (see figure 5.4, middle 

row). To move a note, the user picks it up and places it in the new position (see figure 

5.4, bottom row). Currently, the system does not recognize specific notes based on 

content and so it assumes that the note is the same if it is replaced within seven seconds 

(see section 3.4). 

We would like both teams to be able to edit and move all objects. When the objects 

are electronic (such as with links), this is easily facilitated. When the objects are 

physical (such as with Post-it notes), editing them from multiple sites introduces some 

difficulty. One option is to only allow the creator editing ability [180]; that is not very 

appealing.  

We have taken an alternate approach. Post-it notes in Outpost cast electronic 

shadows as feedback to the user that the system is aware of their presence. When a 

note’s physical state becomes transactionally inconsistent, the system casts a strong red 

shadow indicating to the user to remove the artifact (see figure 5.5 d). The red shadow 
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identifies that the physical note is no longer an information handle to the virtual remote 

analogue. This feedback is lightweight; it provides awareness that the note is out of 

date, but does not require the user take any action.  

We originally introduced the red shadow feedback in Outpost’s design history 

system (see chapter 4). There, it identifies notes that are out of date with respect to 

time. Here, it identifies notes that are inconsistent with the remote users’ board.  

There are two user actions that make a physical note transactionally inconsistent: 

deleting and moving. If the note is deleted by the remote user, the faint recognition 

shadow is replaced with a red shadow (see figure 5.5 d). The local user could remove 

the note to dismiss the shadow or re-post the note if they disagreed with its removal. 

 Local physical action Remote electronic effect 

Add 

 
 

Remove 

 

 

Move 

  

FIGURE 5.4 Interaction techniques for creating, deleting, and moving physical notes in 
Remote Outpost. The left column is the user’s action with the physical note; the right column 
shows the electronic display on the remote board. 
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When a note is moved, a red shadow displays behind the out-of-date physical note and 

a virtual note appears in the new position (see figure 5.5). The local user could then 

remove any physical note with a red shadow. 

When a note is virtual, the physical handles are missing, and must be replaced with 

electronic controls (see figure 5.6). In this case, a note context menu is available for 

deleting notes, and the physical move tool is available for moving the notes as described 

in section 3.4.  

(A) Initial view, remote user. (B) Initial view, local user. 

(C) Remote user moves note. (D) Local user acknowledges move. 

FIGURE 5.5 Moving a note: A and B show the remote and local views before the move. In C, a 
remote user moves the electronic version of the ‘Cats’ note with the move tool. D shows the 
virtual ‘Cats’ note at the new location and the local user removing the out of date physical ‘Cats’ 
note (marked with a red shadow). 
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5.4.2 Desktop Outpost 

Distributed Outpost works on any hardware with a 2d input device, e.g., a smart 

Board, a digital desk, a tablet pc, or an ordinary desktop pc. While users benefit from 

the computer vision tracking and capture of physical objects, it is possible to create 

notes with a tap and draw on them with the stylus tool. Links can be added by drawing 

a line between two notes. Erasing and moving ink and links is supported with the stylus 

button. 

Although the setup is not ideal and the tangible advantages of Outpost are not 

available, users can still work with the notes using pen-based design interaction. This 

setup is more cost effective and flexible for remote participants with limited resources. 

5.4.3 Transient ink for deictic gestures 

An important affordance of remote collaboration systems is the ability to convey deictic 

gestures. Without this, it is difficult for users to understand what their remote 

colleagues are communicating or to express their opinions on relationships. 

When users want to draw their collaborators’ attention to a particular spatial posi-

tion or artifact, they need some way to convey this deictic gesture. We found that a 

 Local electronic interaction Remote electronic effect 

Move 

  

Remove 

  

FIGURE 5.6 Interaction techniques for moving (top) and deleting (bottom) electronic content. 
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simple remote pointer did not convey enough information. For this reason, we devel-

oped transient ink as a richer interaction technique for enabling distributed users to 

convey deictic information to each other. This is similar to the technique described in 

[245], which conveyed a transient pointer to a remote site. However, our technique has 

richer interaction. It conveys an ink stroke rather than a pointer, and it allows multiple 

simultaneous strokes. 

Users draw electronic transient ink on the board with the red stylus tool (see figure 

5.7). The ink is rendered on both displays for a few seconds, and then it fades away. 

This allows users to convey relationships, suggest links, and point to notes without 

committing their changes and permanently cluttering the board. 

When using the board interface, a specific stylus is used to create transient ink 

instead of regular ink and links. From the desktop setup, it must be selected from a pie 

menu. In addition to transient ink as a mechanism for conveying gesture, we use 

computer vision techniques to provide stylized shadows of people to help provide a 

rough idea of remote collaborators’ locations around the board. 

5.4.4 Distributed presence 

A sense of presence is important to developing a working relationship with remote 

colleagues. However, the designers we interviewed did not feel that the currently 

 Local electronic interaction Remote electronic effect 

  

FIGURE 5.7 “Should this note be moved down here?” Transient ink is used to convey pointing 
information and temporary graphical material by a remote user. The written ink fades away after 
several seconds. The writer’s view is on the left; the receiver’s view is on the right. 



5.4 · Interaction Techniques 130 

 

available videoconferencing and audioconferencing technologies provide a sufficient 

sense of presence to establish a rapport. 

Our presence shadow is inspired by Clearboard [116] and VideoWhiteboard [242]. 

The seamless interaction paradigm put forth in these systems is particularly appropriate 

to support awareness for our system. It is important that the presence mechanism be 

calm and non-distracting, allowing designers to focus on the task. 

We extended the rear camera’s vision processing, used for detecting notes, to detect 

peoples’ shadows on the board (see figure 5.8). As a person casts a shadow on the 

board, we determine if it is the appropriate size and darkness for a person. If so, the 

vision system calculates the shadow boundary. If more than one person is working at 

the board, the awareness will show multiple shadows. 

An early version of the remote awareness, used for the feedback session (see sec-

tion 5.5), displayed a translucent blue oval based on the center point, width, and height 

of the detected shadow. We implemented the feedback in this manner because it was 

the simplest from an implementation standpoint. However, not surprisingly, our study 

 

FIGURE 5.8 The view from the rear camera of two users, one of whom is pointing to a note on 
the board. The calculated borders of the shadows are drawn in white, on top of the raw pixel 
input. 
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participants found that this did not provide enough detail. 

The current presence visualization is a stylized shadow outline of the remote users, 

displayed on the background of the design surface (see figure 5.9). This shadow 

conveys the remote users’ presence, gesture, and location in a lightweight fashion.  

All content and presence information is sent using sockets over ip, unlike prior 

work [116, 242], which required a dedicated video link. We present a shadow instead of 

a live video image of the user because it is calmer; live video is too distracting when 

interacting with whiteboard content. Our goal was to subtly display and communicate 

information that is not part of the user’s primary foreground task. 

5.5 Software Infrastructure 

Our remote collaboration system extends the Designers’ Outpost. Two sets of additions 

were required. First, we extended the command object system to replicate state across a 

 

FIGURE 5.9 The distributed awareness mechanism. A blue shadow outline in the background 
represents a remote collaborator. 
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network for synchronizing shared applications in a manner similar to Berlage and 

Genau [36]. Second, we added functionality to the vision system to support distributed 

collaboration. 

5.5.1 Data transfer 

The system works as a peer-to-peer system; both endpoints replicate their commands, 

sending the corresponding command objects to the opposite endpoint. Each object has 

a unique global identification tuple, composed of its creator’s hostname and an integer 

corresponding to its position in the local command queue. This identifier is used to 

refer to objects between hosts. We modified the satin command queue so that when a 

command is executed, it is also marshaled for serialization over the wire, and sent to the 

remote host. Because most of the changes were made at the toolkit level, other satin-

based applications can benefit from this infrastructure with minimal application-level 

change. 

Outpost designs are serialized to files as xml documents. We use the same xml 

serialization scheme for network communication. The connection between the 

machines is socket based. Users have the option of connecting to different remote hosts, 

or not connecting at all if they wish to work alone. 

At present, photographs of notes are stored as jpeg files on a networked file server. 

They are accessed as needed over the file system by the hosts. This could easily be 

modified to use a web server to support collaboration between distinct organizations. 

5.5.2 Vision and tracking 

Our vision system is written in C++ on top of OpenCV [40], a highly optimized library 

of computer vision and image processing primitives. The original Outpost vision 
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tracking system used the rear camera to track notes (see section 3.8). We extended this 

to find shadows of people using the system. 

The system processes the image using spatial and temporal filtering, corrects for 

perspective distortion, and computes a running average of the expected background 

image.  

We construct three thresholded difference images. Possible pixels from added notes 

are found by subtracting the current frame from the expected average image. Potential 

shadows are found the same way. They have a lower threshold than for notes, because a 

person’s shadow cast from standing in front of the board is not as dark as the shadow 

cast by a note stuck directly onto the board. Potential removed notes are found by 

subtracting the expected average image from the current frame.  

At this point, we segment the binary images using a connected-components 

algorithm. The found elements expected to be notes are subjected to size and shape 

restrictions using an expectation maximization algorithm before being classified as 

notes. The person objects are also subjected to size restrictions of 0.5 % to 40% of the 

board. 

The vision system runs as a separate process, passing events (e.g., add [x, y, θ, id], 

remove [x, y], and addPerson [x, y, w, h]) to the local Outpost ui through a socket 

network connection. 

5.6 User Feedback 

We had six professional designers visit our lab. We asked them to come prepared to 

design a web site of their own choosing. We had one group of three, one group of two, 

and one single user come in and use the system. Each session lasted 1.5 to 2.5 hours. 

First, we orally interviewed them about their current remote collaboration practices. 

Then, we introduced the remote system and had them use the system to design their 
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site. Designers were generally enthusiastic about the system’s potential to improve their 

work.  

Due to the technical constraint of having only one full Outpost board setup, the 

groups worked with one Outpost Board connected to a VisionMaker digital desk. The 

input for the digital desk was an input-only Wacom Graphire pen tablet. One of the 

participants used a mouse instead of a Wacom Tablet. Although we recognize the 

importance of audio to distributed collaboration, the current implementation has no 

audio support. This is not a major drawback, as a conference call can easily provide 

multi-user audio support. For our feedback sessions, the board and the desk were 

located in the same room. The participants were allowed to speak to each other but 

unable to see each other because of a curtain. 

During the sessions, users input ideas using physical Post-it notes for concepts and 

styluses for linking and annotation. They were able to access transient ink by using a 

specific stylus tool. The rear camera tracked their shadow location. The one difference 

between our study implementation and the final implementation is that, in the study, 

the shadow awareness was implemented as a simple oval, rather than a true shadow. 

While clearly not optimal, we chose to conduct the study with this partial prototype to 

rapidly garner feedback. The shadow transmission was also unidirectional: it was only 

transmitted from the board (with cameras) to the desk (without cameras). 

The Digital Desk side had no cameras, and thus was set up to run Desktop Out-

post. The digital desk users were seated in front of the slanted desk. Users could input 

notes and write on them using the Wacom stylus. Transient ink was available to them 

as an option through a pie menu accessed with a right click. 
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5.6.1 Qualitative feedback 

The users were very enthusiastic about the shared workspace. They felt that it would 

increase the value of working sessions with team members and clients. They appreciated 

seeing their colleagues’ input in real time. They felt it improved their collaboration, as 

spatial relationships were visible in real time to everyone. One designer mentioned that 

she preferred Distributed Outpost to the whiteboard and videoconferencing setup 

because Outpost digitizes the information for later use, and there is no pause in the 

work for zooming and panning of videoconferencing cameras. They liked the flexibility 

of the notes, and the ability to collaborate and throw out ideas quickly. 

Users also liked the concept of transient ink. One designer especially liked this 

concept because he could show relationships between elements without committing to 

the interaction. Designers found that Outpost’s functionality made it easy to make 

changes and communicate their intent to others. About half of the participants found 

the transient ink useful; the others did not use it during the test. As one user com-

mented, one may as well make marks with ordinary ink and then erase them. However, 

one of the participants rated the transient ink as being more important in remote 

collaboration than voice. 

Half of the users found the presence awareness shadow compelling. They felt it was 

vital to provide a frame of reference for the remote participant. They could thus refer to 

data objects with an understanding of how the remote person viewed them. They felt 

this gave a better understanding of participation from the remote site. 

5.6.2 Areas for improvement 

Although the users seemed generally enthusiastic about the potential of the system, 

there were some coordination problems. With a physical Post-it note, it is clear when 

two co-located people wish to move or edit the artifact at the same time. With 
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Distributed Outpost, there are no restrictions on who can change or edit notes. In our 

study, there were times when users at both ends edited the same element because they 

were working in the same area of the board. However, these conflicts were infrequent 

and easily corrected. 

Even though the remote shadow was designed to be unobtrusive, some designers 

found it a bit jumpy and distracting. They requested feedback with smoother motion 

that provided more human characteristics, such as showing hesitation and acceleration: 

“things that one can translate into feelings.” They also wanted more detail than the oval 

shadow provided; we have since implemented an outline shadow that provides this 

detail and smoothness. 

Overall, the designers we interviewed were enthused by our system and felt the 

concepts would be helpful in increasing the interactivity of their remote design 

collaboration. This study also highlighted the need for integrated audio communica-

tion; this is an important area for future research in design tools for distributed 

collaboration. 

5.7 Summary 

We have presented Distributed Designers’ Outpost, a remote collaboration system 

supporting designers’ need for both physical artifacts and distributed collaboration. Our 

remote system provides a shared workspace where the participants can edit any object, 

regardless of where it was created. We presented two novel awareness mechanisms: 

transient ink input for gestures and a vision-tracked stylized shadow for presence. Six 

professional designers provided feedback about the system, and were enthusiastic about 

its potential to support their current practices and increase their ability to work in 

distributed teams.  
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Computers have been instrumental in allowing us to communicate quickly with 

people all over the world. However, we lose some of the advantages of meeting face to 

face. Hopefully, this work will help to bridge the gap between the virtual and physical 

worlds and help remote teams to work more comfortably and effectively. 

The difficulties involved in extending the vision tracking system in Outpost encour-

aged us towards the more flexible architecture that Papier-Mâché provides. With 

Papier-Mâché, extending a vision system for capturing shadows is only a few lines of 

code. Additionally, all of the command object extensions for remote collaboration were 

implemented in the satin toolkit. Any application that uses satin for managing 

commands can automatically take advantage of the remote collaboration features 

described in this chapter. 
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6 Books with Voices 

“If the book had been invented after the laptop it would be hailed as a great 

breakthrough. It’s not technophobic to prefer to read a book; it’s entirely 

sensible. The future of computing is back in a book.”   

— Neil Gershenfeld, 1999 [88, p. 14]. 

The second project in this dissertation research on tangible user interface input is Books 

with Voices. Our contextual inquiry into the practices of oral historians unearthed a 

curious incongruity. While oral historians consider interview recordings a central 

historical artifact, these recordings sit unused after a written transcript is produced. We 

hypothesized that this is largely because books are more usable than recordings. 

Therefore, we created Books with Voices, which provides barcode-augmented paper 

transcripts for fast, random access to digital video interviews on a pda. We present 

quantitative results of an evaluation of this tangible interface with 13 participants. They 

found this lightweight, structured access to original recordings to offer substantial 

benefits with minimal overhead. Oral historians found a level of emotion in the video 

not available in the printed transcript. The video also helped readers clarify the text and 

observe nonverbal cues. 

Portions of this chapter were originally published by the author, Jamey Graham, Gregory J. 
Wolff, and James A. Landay in [132] 
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6.1 Introduction 

“Oral history is primary source material obtained by recording the spoken words — 

generally by means of planned, tape-recorded interviews — of persons deemed to harbor 

hitherto unavailable information worth preserving” [235, p. 40]. The discipline began in 

1948 when Allan Nevins founded the Columbia University Oral History Research 

Office. 

Our experiences reading the work of oral historians reflecting on practice, doing 

contextual inquiry with oral historians, and conducting oral histories ourselves led us to 

develop Books with Voices: barcode-augmented paper transcripts enabling fast, random 

access to digital video interviews on a pda. Members of the Regional Oral History 

Office (roho) at UC Berkeley [2] participated in our design process. We showed nine 

different mock-ups of barcode-augmented oral histories to twelve members of roho. 

They were excited to hear as they read and encouraged us to make our paper book 

design more usable. 

 

FIGURE 6.1 Accessing digital video by scanning transcripts. 
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We evaluated Books with Voices (see figure 6.1 and figure 6.2) with 13 users: 

eight oral historians from roho, one oral historian from the University of San 

Francisco, and four members of the UC Berkeley Computer Science Graduate Student 

Book Club. The response from participants was overwhelmingly positive. The calm 

interface allows users to concentrate on the task and stay in the flow. Participants 

repeatedly accessed recordings while reading. They did so to: a) get a sense of the 

personality of the interviewee, b) hear the tone of a particularly compelling passage, and 

c) verify the accuracy of the transcript. We found several fixable usability issues, most 

notably that the pda must be rotated into an awkward vertical position to scan. 

Motivated partially by our system, roho has begun transcribing their oral histories 

digitally. 

6.2 Fieldwork into Oral Histories 

We undertook a three-pronged approach to better understanding the discipline of oral 

history. First, we read oral historians’ reflections on practice (e.g., [11, 68, 89, 235]). 

Second, we conducted a contextual inquiry at roho. Third, we experienced the process 

by conducting oral histories with two well-known computer science professors. 

 

FIGURE 6.2 PDA playing a video of a recorded oral history. 
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Through our fieldwork and literature review, we discovered a curious incongruity. 

While oral historians consider the audio or video recording a central historical artifact, 

these recordings sit unused after a written transcript is produced. Louis Starr wrote 

about why transcripts dominate use:  

“This is not so much because those who favor the transcript have the better of the 

argument of theoretical grounds as because of practical convenience: to most 

researchers, a written document that carries page numbers, and an index to them, is 

vastly preferable. Tapes, no matter how carefully indexed, are awkward to use, 

particularly if the memoir is a massive one. … A consensus emerges: tapes are more 

suitable for some purposes, transcripts for others; but so far as possible both should 

be preserved, allowing researchers to choose for themselves” [235, p. 43]. 

Mackay, in three research projects spanning several years, also found people’s 

preference for paper. Summarizing this work, she writes: 

“Contrary to what many believe, users are not Luddites, clinging to paper as a way 

of resisting change. On the contrary: most are excited by the benefits offered by 

computers… Their resistance is, in fact, extremely practical. New computer systems 

are either less efficient or simply cannot perform many required tasks” [157, p. 81]. 

Suchman writes about how participants understand conversation, stating “contextu-

alization cues by which people produce the mutual intelligibility of their interaction 

consist in the systematic organization of speech prosody, body position and gesture, 

gaze, and the precision of collaboratively accomplished timing” [239, p. 72]. These 

contextualization cues are more available in a video recording than a written transcript.  

The written transcripts of these interviews are a wonderful artifact. However, they 

lack a humanity that is available in the videos through the interviewee’s body language 

and prosody. 
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6.2.1 Contextual inquiry at ROHO 

In our research, we spent time at roho, the third oldest oral history office, and one of 

the largest. Interviewers are generally knowledgeable about the area in which they 

interview. For example, roho is documenting the “Disability Rights and Independent 

Living Movement” (drilm) [6]. One member told us, “All of the project interviewers 

have personal experience with disability.” In other cases, the interviewer is well versed in 

the history of the area but is not a direct participant. Interviewers generally prepare with 

two to three weeks of background reading on the subject area and on the writings by or 

about the interviewee. 

A typical oral history consists of between four and twenty hours of oral interviews. 

A rule of thumb is that each interview session should last roughly an hour and a half. 

Some historians bring a still camera to photograph the interviewee or objects important 

to them. Afterwards, interviewees are generally sent a preliminary transcript for review. 

Isolated interviews are rare. Usually, a small group works together to create a set of 

12 to 20 interviews about a subject. With drilm, seven interviewers and two managers 

conducted oral histories with more than forty interviewees. 

Oral historians in general are highly enthusiastic about video and other digital 

technologies. Traditionally, interviews have been recorded on analog audiocassette. At 

roho, digital MiniDisc is rapidly replacing cassettes, and we anticipate that digital 

audio recorders (e.g., [13]) will soon replace MiniDisc as the de facto standard for audio 

recording of interviews. Digital video is gaining popularity in the oral history commu-

nity at large (as judged by traffic on the main oral history mailing list), and roho has 

begun using it in their work. 

The main barrier to adoption is that few historians feel they have the time to learn a 

new technology. One particularly compelling aspect of our system is that it augments, 

rather than replaces paper. Books with Voices paper transcripts offer the same familiar 
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affordances as current transcripts because both are ordinary paper. The user population 

is not required to change how they read. As users recognize the benefits of our system, 

they can adopt it, but they are not forced to give up their current practices. 

6.2.2 Conducting oral histories 

To better understand oral history practice, the author attended an oral history training 

workshop, and then conducted oral histories with UC Berkeley computer science 

professors David Patterson and Carlo Séquin. This comprised three interviews with 

Prof. Patterson (four hours and 77 pages worth) and four interviews with Prof. Séquin 

(six hours and 114 pages worth). These interviews were recorded on digital video and 

converted to mpeg-2. The digital files were then professionally transcribed with time-

stamps corresponding to each utterance. 

The next section offers an overview of research on oral histories and audio retrieval. 

We then discuss the paper prototype (section 6.4) and the interactive system (section 

6.5). Section 6.6 describes the evaluation of the interactive system with oral historians. 

The chapter closes with a summary in section 6.7. 

6.3 Background 

We now discuss related research on oral histories, and work on reading and video 

retrieval.  

6.3.1 Technology support for oral histories 

The topic of the May 2002 issue of Forum: Qualitative Social Research [89], an online 

journal, is “Using Technology in the Qualitative Research Process.” It offers an 

excellent overview of current work in the field and shows social scientists’ strong 

interest in using technology in their work practices. 
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Palaver Tree [71] is web-based educational software enabling middle school students 

to conduct email oral histories with elders (such as civil rights leaders). This work 

inspired us to research oral histories. While Palaver Tree’s contribution is primarily 

pedagogical, our contribution is primarily technological. 

Steven Spielberg’s Survivors of the Shoah Visual History Foundation has “collected 

more than 50,000 eyewitness testimonies in 57 countries and 32 languages” from 

Holocaust survivors [233] — a huge collection. Researchers at the University of 

Maryland are addressing the information retrieval issues in this archive (particularly 

multilingual access), and have conducted ethnographic studies detailing the needs of 

researchers using this archive [102]. Many other oral history web sites have some of 

their oral histories online; [43] has an excellent list in the appendix. 

6.3.2 Reading, listening, and video browsing 

One of the most compelling electronic book systems is XLibris [219]. XLibris, and e-

books in general [220], enable more rapid searching of text and more fluid sharing of 

annotations. However, “there is a tension between the advantages provided by 

computation and the advantages provided by paper: the choice depends on the reader’s 

goals” [219, p. 249]. We chose paper over e-books for our domain because, “People 

clearly prefer reading on paper to reading on their pcs” [220, p. 65]. 

Audio Notebook [237] and Dynomite [263] inspired our interest in using text as an 

interface to streamed media. Audio Notebook is a paper notebook that sits on top of an 

ink and audio capture device. As note-takers write, ink is time-associated with audio 

recorded at that time. Dynomite offers similar functionality, with an electronic 

notebook as opposed to a paper notebook. These projects compellingly show the use of 

one modality (written notes) as a query interface to another modality (recorded audio). 
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One aspect of our work is providing an interface to pre-recorded video. In an 

evaluation of a digital video browsing system, the authors found that “the most 

frequently used features were time compression, pause removal, and navigation using 

shot boundaries” [149, p. 169]. While these interaction techniques become less 

important in the presence of a full transcript, it would certainly benefit our system to 

incorporate them.  

6.4 Paper Prototype of a Paper Interface 

In our design, barcodes augment the paper transcript, providing a physical affordance 

for fast, random access to digital video recordings. As our first design step, we produced 

nine different paper mock-ups, brainstorming the visual design of these augmented-

paper reading artifacts. We based these mock-ups on the print format that roho 

currently uses, adding barcodes and video stills to the sides of the text and metadata to 

the header and footer (oral history title, interview date, and time-code information). 

We showed these mock-ups to twelve members of roho: the director, the head 

transcriber, several interviewers, the technology director, and two historians that use but 

do not produce oral histories. People spoke passionately about the importance of 

hearing the original voice. (With one exception: One woman felt that she was a reader 

only, and not a listener.) This echoes the feelings of other oral historians such as this 

H-OralHist list posting, “Each speaker’s voice is so distinctive! I’ve found that 

sometimes even when two speakers seem to be saying something very similar, their 

intonations can indicate subtle differences in meaning that can complement each other. 

… The unedited tapes are much more lively and interesting although of course it takes 

much longer to listen to them than to skim transcripts” [213]. The participants 

appreciated the metadata as well. 

The participants encouraged us to address two issues in the next iteration: 
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1 For this domain, people did not want many video stills in the printed book. These 

“talking head” stills are nearly identical; repeated printing would offer little value. One 

person suggested that one video still at the beginning of each section would be about 

right, and others agreed that this made sense. People also encouraged us to incorporate 

photographs and other media. 

2 People really liked the barcode access, and about three barcodes per page seemed to 

make sense. In the interest of “clean” visual design, most of our mock-ups had barcodes 

that were evenly spaced on the page (e.g., top, middle, and bottom). The users did not 

like this; they specifically asked that barcodes be visually aligned at speaker turn and 

paragraph boundaries (see figure 6.3 and figure 6.4). 

6.5 Interactive Prototype 

We used the feedback we received on the mock-ups to build an interactive version of 

Books with Voices, based on the Video Paper software [95]. Video Paper is a paper-

based interface for browsing, retrieving, and viewing pre-recorded video. The Books 

with Voices document production pipeline (see figure 6.5) is based on Video Paper, 

and comprises three phases: 

1 Creating an mpeg-2 video (at 20 fps, 208 × 160 pixels) and making jpeg thumbnails 

from a video source. 

2 Creating a paper layout (see figure 6.3) from a time-stamped transcript. We modified 

the Video Paper rendering engine to produce a document more suitable for our domain. 

3 Pocket pc software that reads the barcode and plays the corresponding video. 
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FIGURE 6.3 The first page of Carlo Séquin’s Books with Voices transcript. The barcodes are aligned with speaker 
changes and paragraph boundaries. 
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Books with Voices requires a pda with: 1) a display screen, 2) audio output, 3) a 

scanning device (such as a barcode reader or digital camera), and 4) access to a video 

store (we use a 2 gb pc card hard drive on the ipaq; this could also be achieved by 

wirelessly streaming video to the device.) 

Section 2.9 outlined the benefits and drawbacks of different tagging technologies; 

the four technologies potentially appropriate for an augmented book are: 

1 Passive electronic tags (e.g., rfid tags) 

2 Active electronic tags (e.g., motes [59]) 

3 Barcodes (including 2d variants such as DataGlyphs [103]) 

4 Vision-based content analysis (e.g., optical character recognition) 

Our inquiry found photocopying to be an important historical research practice, 

making tagging inappropriate. Tagging would also make book production more 

expensive and time-consuming. Ocr and barcodes work with photocopies and require 

FIGURE 6.4 Detail of an internal page including a photograph. 
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no additional materials or time. Barcodes are preferable for our domain because they are 

more reliable and the interaction is simpler. 

6.6 Interactive Prototype Evaluation 

To understand both professional and amateur use, we evaluated the utility of Books 

with Voices as an augmented reading tool with thirteen users: eight oral historians from 

roho (two history professors, three editors, one interviewer/editor, and two transcrib-

ers), one oral historian from the University of San Francisco (a history professor), and 

four members of the UC Berkeley Computer Science Graduate Student Book Club. 

FIGURE 6.5 The Books with Voices pipeline. 
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We conducted this study to learn a) if and when oral historians find video access 

valuable, and b) how suitable our interaction techniques are for oral histories. 

6.6.1 Study design 

Each session lasted between 90 minutes and two hours. The studies were conducted in 

the participants workplaces. We videotaped the sessions and took time-coded 

handwritten notes. 

First, we showed participants the printed transcripts, and demonstrated using the 

trigger button (see figure 6.6) to scan a barcode, invoking the corresponding video. 

We then gave the users a few minutes to practice using the system. 

In their oral histories, Professors Patterson and Séquin both talk about graduate 

school. Patterson’s discussion of graduate school is 15 pages long (42 minutes of video) 

and Séquin’s is 10 pages (28 minutes of video). For our main task, we asked users to 

spend 30 to 45 minutes reading these sections and then write a short summary of what 

they read. To watch all of the video would take 70 minutes; we intentionally designed 

the task to have more video than could be watched in the allotted time. 

 

FIGURE 6.6 The trigger button initiates barcode scanning. 
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After completing the main task, we asked the professional oral historians to com-

plete two short editing tasks (these were not relevant for the book club members). Oral 

history transcripts are nearly always edited for clarity (e.g., removing “um,” “like,” and 

false starts), and sometimes edited for flow. Hypothesizing that strongly correlating 

transcript and recording benefits editing tasks, we asked participants to edit one page of 

the paper transcript and compare an already edited page of the paper transcript with the 

recorded video. At the end of the study, we asked the participants to fill out a 35-

question survey, addressing their background, current practices, and opinions on the 

system. Twenty questions were multiple choice; the remaining fifteen were free 

response (see appendix b).  

6.6.2 Results 

The study participants (see table 6.1) took between 26 and 58 minutes to complete the 

main task (mean 43.1, median 45), successfully accessing between 2 and 21 media clips 

(mean 9.5, median 10). Eight users experienced a total of 31 failed scans (mean 2.4). One 

user accounted for 12 of the failed scans; she also had 11 successful scans. We believe six 

of the failed scans were because users did not hold the device fully orthogonal to the 

barcode, and 25 were because of hardware errors (e.g., the barcode expansion pack was 

not properly seated) or software errors (e.g., we printed a faulty barcode). 

 TABLE 6.1 Task time, access statistics, and usage style for the thirteen users in our study. 
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6.6.3 Benefits of paper for fast, direct video access  

Our study shows that users frequently and fluidly access recorded interviews when paper 

books are the interface. When asked, “Do you feel that Books with Voices would 

change your usage practices?” participants reported responses such as, “Would be easier 

to select and listen to portions of an interview — easy to find excerpts — this is what is 

way too hard and time-consuming with analog tapes” (#10); “I think the video/audio 

would frequently be useful for confusing and interesting passages” (#3); and “Yes — 

accuracy, deeper meaning” (#5). 

Participants had several motivations for accessing recordings: to get a sense of the 

personality of the interviewee, to hear the tone of a particularly compelling passage, and 

to verify the accuracy of the transcript. Participant #9 watched the video extensively at 

the beginning of the main task. At the end of the study, we asked her about this. She 

responded that watching the video helped her understand Professor Séquin’s character. 

All 13 users indicated interest in using Books with Voices for historical research. On 

a five-point Likert scale, half the users reported they would be “Very Likely” to use the 

system and half reported they would be “Somewhat Likely.” None responded “Neither 

Likely nor Unlikely,” “Somewhat Unlikely,” or “Very Unlikely.” 

When asked, “What aspects of the system do you particularly like?” several 

participants complimented the system for its ease of use and for, “Being able to sense 

tone of voice, context.” More than half specifically appreciated the direct access, e.g., “I 

like how easy it is to access specific points in the audio” (#2). Aspects of the system they 

particularly disliked included the lack of fast forward and rewind, that the audio was 

“hard to hear” (#4), the “image hard to see” (#6), and that the “scanner is bulky” (#12). 

Nine of the thirteen users reported that, “the number of barcodes” was about right. 

Three reported, “I’d like barcodes a bit more often,” and one reported, “I’d like barcode 
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a bit less often.” This indicates to us that barcodes offered enough value that their visual 

addition did not bother the participants. 

Books with Voices proved effective for the editing task. With analog tapes, the 

editing process is often compromised by the difficulty of accessing the appropriate 

media segment. While transcribers sometimes verify transcripts against the tapes, it is 

rare that the interviewer or the interviewee has time. Users fluidly integrated video 

watching into their editing process. The participants responded enthusiastically to the 

question, “What role, if any, do you think Books with Voices could play in editing 

transcripts?” writing “Very helpful to determine context, expression, figuring out certain 

words” (#1), “I think it could make the process more efficient — in time for searching for 

tape sections” (#2), and “Fantastic, accuracy, nuanced” (#5). 

Our transcripts contained the word “*inaudible” when the transcriber could not 

clearly hear what was said, and he prefaced transcribed words with a “*” when he was 

not confident the transcript was correct. Most of the participants referred to the video 

to clarify these inaudibles, and/or a sentence that appeared incorrectly transcribed to the 

participant. 

6.6.4 Richer practice, minimal overhead 

We often look to new technologies, like Books with Voices, to save labor. Our 

participants accomplished with just a few button presses what would have otherwise 

consumed hours. More importantly, our system makes a richer practice tractable. Books 

with Voices augments reading with an audiovisual experience previously unavailable. 

However, this experience takes slightly more time than just reading. In the user study, 

some participants (e.g., #4) stopped using the software when they felt rushed late in the 

task. 
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6.6.5 Listening and watching 

We found that people held the device in especially different ways, depending on their 

age, body size, personal style, and working environment (see table 6.1). 

Usability of audio 

Participants were free to listen using the ipaq’s built-in speaker or to use headphones. 

Hearing the audio clearly was of great importance to the users. Three used headphones; 

#2 and #4 worked in noisy offices; #9 worked in an open, but quiet, office cubicle space. 

Of the ten speaker users, four held the device to their ear like a telephone, and six held 

it in their hand. Five of the six subjects under 30 in a quiet work environment held the 

device in their hand. Only one of the six participants over 30 held the device in their 

hand; two used headphones and three held it like a telephone. figure 6.7 shows the 

diverse ways that participants read and interacted with the device. 

The speaker volume on the ipaq (like most pdas) is soft. In a quiet environment, it 

may be acceptable, but generally speaking, we believe that once accustomed to the 

device, users will use headphones or plug the pda into external speakers. In the 

questionnaire, one user lamented that because of the quiet audio, “I had to hold it up to 

my ear and not see the video.” 

FIGURE 6.7 Video stills from our evaluation: participants watching and listening to oral histories 
on the Books with Voices PDA. Note the many configurations of the PDA and the paper transcript. 
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Usability of video 

When listening in a telephone style, as four users did, it is not possible to watch the 

video. The nine non-telephone users sometimes watched the video, but often did not. 

Several participants explicitly complained that the video was either too small or not 

bright enough. Increasing the resolution and brightening the videos (either with 

software or a physically brighter device) would help. Our prototype’s 2 gb hard drive 

holds 20 hours of video in its current form. If file size becomes an issue, it is worth 

lowering the frame rate or using higher compression in exchange for increasing the 

resolution. Although sound is much more important than image for this domain, we 

believe a well-presented video is still valuable. 

Reading styles 

All four book club readers and two oral historians read with the transcript on their lap. 

Four historians read on a desk without a computer, and three read on a desk with a 

computer. Our transcripts were bound in three-ring binders. We never would have 

expected binder style to become a usability issue. The physical world brings both 

physical benefits and physical problems. Séquin’s binder was like a hardcover book; it 

had a cardboard spine and covers, and just plastic in between, allowing it to remain 

closed or open. Patterson’s binder was made from one piece of shaped plastic; it would 

stay closed, but not open. Participant #4 promptly got rid of the binder, and several 

other users responded by weighting the binder to keep in open. After six users, we fixed 

the problem, replacing the “paperback” binder with a “hardcover” binder. 

Multitasking: reading while listening 

Because people read three times faster than they listen, it can be difficult to do both 

simultaneously. However, we found that several users comfortably listened to one 
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section while reading another. A few users (e.g., #5) also listened while writing their 

summary. Generally, it seemed that younger users were more comfortable with this 

multi-sensory approach. 

6.6.6 The barcode scanning process 

Perhaps the largest usability issue is that the user has to rotate the pda somewhat 

awkwardly to scan barcodes. Currently, the device must be held perpendicular to the 

paper and oriented so the scanner scans vertically. We noticed that most participants had 

difficulty with this; three asked for horizontally oriented barcodes in the free-response 

section of the questionnaire (#5, #7, and #9), and a few more asked about this during 

the study. 

The perpendicular requirement is an intrinsic property of today’s infrared barcode 

scanners. (A barcode reader mounted on the back face of the device would work, 

though it might be bulky.) The vertical orientation is a design flaw of our system that 

could be remedied either by horizontal barcodes or by presenting video horizontally on 

the pda. Moving from an infrared barcode scanner to a pda with a rotatable integrated 

camera, such as some Sony cliés offer, would address both rotation issues. This way, 

the device could be oriented for viewing, and the sensor could still be oriented for 

capture. 

Making and recovering from errors 

When there were scan errors, the device notified users through an audio chirp and a 

visual error dialog. However, about half of the participants scanned with their hand 

covering the device (because of the required orientation and the device’s bulk). 

Therefore, they did not see the error dialog, and were unaware an error occurred. 
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Switching to an orthogonal sensing technology would likely remedy this; speech output 

of errors might provide additional clarity. 

We found that the buttons need to be easier to access. The hardware trigger button 

should be larger. A few users had to be told where the gui stop playback button was, 

and many had difficulty pressing it. It would be much better if stop was mapped to one 

of the four physical buttons on the lower section of the ipaq. 

Slow start latency 

It takes about 3 seconds for users to orient the device and execute a scan, and 5 seconds 

to wait for the video to begin playing. Several users effectively adapted to this latency by 

pre-scanning the media, and putting the device aside while it loaded. One unexpected 

problem with the start latency is that some users did not realize that it had successfully 

scanned, and would re-scan the same barcode. This can be fixed in three ways: by better 

visual or auditory feedback, by ignoring duplicate scans, and by lowering the latency. 

6.6.7 Visual design 

The user study encouraged us to improve the visual design of the system in two ways. 

First, page numbers should be on the outside margins as opposed to the inside. Second, 

we should produce an index (as is currently done) and augment it with barcodes. 

Participants were very excited about a barcode-augmented index. Three asked for it in 

the questionnaire’s free-response section and a few more mentioned it during the study. 

6.6.8 Requested Features 

Nearly everyone asked for fast forward, rewind, and/or backspace. Backspace is a 

technique available on transcription systems, letting transcribers auto-rewind a few 

seconds. A physical jog dial would be a good way to offer fast forward, rewind, and 

backspace. 



6.7 · Summary 158 

 

There is great potential for Books with Voices as a cscw technology. In our ques-

tionnaire, we asked, “What are your thoughts on using Books with Voices to help you 

keep track of important parts of an oral history?” and would this “functionality be useful 

for sharing? (e.g., email.) How might it work?” Participants responded enthusiastically, 

saying, “It could be pretty useful if you could keep a list of scanned sections and then 

choose to keep or delete chosen sections from the list” (#11). With regard to email, #1 

wrote, “It would be helpful to email portions to others. Esp. for editing, since many 

people work on any single transcript,” and #8 wrote, “There would have to be some way 

to add your annotations, but [email] seems useful.” 

6.6.9 General remarks 

Participants used the device differently depending on their job. One transcriber mostly 

used the device for editing and fact checking, and could not help but make edit marks 

on the transcript as she read. A senior history professor accessed the video the least 

(twice). She took care to finish the study in a timely manner as she had another meeting 

immediately afterward. 

While the current system makes text a fluid interface from text to video, there is no 

facility to go from video to text. Occasionally, participants got lost. Subtitles on the 

video indicating page and paragraph number might remedy this. 

One success of the system in our study was that, while there were usability prob-

lems, none of the users found the system conceptually difficult. The concept of using 

paper transcripts as an interface to original recordings seemed perfectly “natural.” 

6.7 Summary 

Reading is a highly evolved practice. Our evaluation showed that Books with Voices 

effectively enables active reading by scaffolding new technologies on paper, which is 
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highly familiar, cheap, and usable. Our technology support for oral histories differs 

from much current research in that it employs paper as an archival, rather than 

ephemeral, artifact. After using the Books with Voices device, the oral historians at 

roho asked us how they could switch to digital transcription tools. They saw many 

benefits to this, including the ability to use Books with Voices. They now store all of 

their audio and video digitally, and time stamp their transcriptions using the Start Stop 

transcription system [24]. 

We have worked with the Oakland Museum to explore a deployment of Books with 

Voices in a museum setting. The deployment was thwarted by the fact that Pocket pc 

devices lose all of their memory (and thereby any installed software) when they run out 

of batteries. However, the museum curators were very excited about the technology, and 

it is likely that they will adopt a technology like Books with Voices once handheld 

hardware is more reliable. 

The core technology element in Books with Voices is associating a physical tag with 

an electronic media file and a time index into that file. As with most of our inspiring 

applications, this functionality was built from scratch, and experimenting with alternate 

versions (such as vision-recognized barcodes or rfid tags) would be a substantial 

engineering effort. Additionally, even the small changes we have made to Books with 

Voices (e.g., the optional inclusion of a time to stop playback in the barcode) have been 

a time-consuming re-engineering effort. Papier-Mâché’s software architecture would 

have allowed Books with Voices to be built much more quickly. In addition, technol-

ogy, user interaction, and structural changes could have been made more easily and 

without the danger of breaking legacy code. 



160 

7 Fieldwork Inspiring 
Papier-Mâché 

“Every decision … bases itself on something not mastered, something 

concealed, confusing: else it would never be a decision.”   

— Martin Heidegger, 1971 [105]. 

Our experiences with the Designers’ Outpost and Books with Voices provided a wealth 

of experiential knowledge about the development of tangible interaction. In keeping 

with our design philosophy of “triangulation” — employing multiple methods to gain 

different types of understanding — we also endeavored to learn from the experiences of 

others. Toward this end, we conducted structured interviews [37] with nine researchers 

who have built tangible interfaces. Four of the interviewees worked in academia; the 

other five in industrial research. There were 28 interview questions addressing general 

system questions, planning and organizational structure, software design, user and 

system evaluation, and difficulties in design and implementation (see appendix c). We 

conducted these interviews in person at the workplaces of researchers in the San 

Francisco Bay Area (three), and over the phone (one) or via an email survey (five) 

otherwise. These researchers employed a variety of sensing techniques including vision, 

radio frequency and capacitance sensors, and barcodes. Here, we present the findings of 

this research; we concentrate on the difficulties encountered in designing and 

developing these systems. To maintain the anonymity of interviewees, we use examples 
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from our own research to illustrate our findings, rather than the actual systems built by 

our interviewees. 

7.1 Difficulties of Acquiring and Abstracting Input 

Employing physical objects as input devices implies the use of novel hardware: some 

physical instrumentation is required for the computer to sense the presence, absence, 

and manipulation of objects. A general theme among interviewees was that acquiring 

and abstracting input was the most time consuming and challenging piece of applica-

tion development. This is not, as the cliché goes, a “small matter of programming.” 

Acquisition and abstraction of physical input, especially with computer vision, requires 

a high level of technical expertise in a field very different from user interface 

development. 

These novel input technologies, especially vision, do not always functioning per-

fectly. We found that consequently, it is important to design a system where occasional 

errors do not prevent the system as a whole from function, and to provide feedback so 

that users can diagnose and help recover from system errors. An interviewee explained 

that, “The sensing hardware is not perfect, so sometimes we had to change interactions 

a bit to make them work in the face of tracking errors.” This error-aware design of tuis 

is similar to the techniques used for voice user interface design [170], where limiting 

grammar size and providing confirmation feedback help systems minimize errors, and 

help users diagnose and recover from errors when they do occur.   

7.1.1 Group size and composition 

The size of the nine hardware and software development groups ranged from one to 

four (both the mean and median size were three). Between one and five additional 

people were involved with interaction design and/or industrial design but not with 
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software development (the mean was 2.4 and the median 2.7). Sometimes these 

conceptual contributors were the project manager or an advisor. Other times the 

conceptual contributors were colleagues with a different project as their primary focus.  

In each of the three projects that employed computer vision, the team included a 

vision expert. Even with an expert, writing vision code proved challenging. In the words 

of one vision researcher, “getting down and dirty with the pixels” was difficult and time 

consuming. Writing code without the help of a toolkit yielded applications that were 

unreliable, brittle, or both. Additionally, in two of the non-vision projects, the person 

who developed the tangible input was different from the person who developed the 

electronic interactions. 

In the remaining cases, the developers all had a substantial technical background, 

and worked on both the physical and electronic portions. We speculate that if tools 

with a lower threshold [188], such as Papier-Mâché, were available to these individuals, 

then a larger portion of the team may have contributed to functioning prototypes, 

rather than just conceptual ideas. 

7.2 Iterative Implementation, Using the Familiar 

Iterative implementation was alive and well among our interviewees. All of the 

interviewees’ systems evolved from or were inspired by existing projects in their research 

groups. For two of these researchers, the evolution was from a virtual interface to a 

tangible interface, as in our research group, where the Designers’ Outpost was partially 

inspired by the denim pen-based sketching tool [153, 192]. For two others, the tangible 

interface was an application or evolution of a physical input technology that the group 

had previously developed or had experience with. Four researchers had experience 

building tuis prior to the project discussed in the interview. For these groups, the 

project we discussed was a continuation of work in this area. This next step was either 
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exploring an alternate point in a design space, exploring richer interactions, delivering 

greater use value, or exploring lower complexity. We see two primary reasons for this 

evolutionary iteration: 

1 Good researchers often work in a similar area for a number of years, exploring different 

points in a design space. 

2 Reusing existing code and/or technical knowledge lowers the threshold for application 

development. 

7.2.1 Paper and existing code for low-threshold prototyping 

Two of the interviewees began with paper prototypes, often trying out different 

scenarios to understand the interactions required before writing code. “The paper 

prototypes helped us understand the space considerations/constraints — Helped us work 

through the scenarios.” One of these researchers also used physical objects (without 

computation) to think through the interaction scenarios, “to get an idea of what it 

would feel like to use our system.” 

The remaining seven interviewees began prototyping with technologies and tools 

that they were familiar with or had a low threshold, later exploring less familiar or 

higher threshold tools. Working with similar technologies and tools over a number of 

years affords fluency with a medium, in much the same manner as artists tend to work 

in the same media for long periods of time. An interviewee explained to us that he “was 

able to leverage the technology that we had earlier developed to build a prototype (with 

minimal functionality) in roughly eight weeks. Extended that work into the application 

that was fielded to end-users approximately two years later.” 

An alternate method of achieving fluency, or readiness-at-hand [106], is the use of 

tools with a low threshold. One researcher appreciated Max [19], the music and 
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multimedia authoring environment because, “It’s about I can make five versions of this 

by next Tuesday.” This researcher chose to use Max for prototyping even though it was 

not appropriate for the final implementation. 

7.2.2 Length of projects 

We uncovered a somewhat surprising regularity in project duration. When responding 

to an unstructured question about the time their research project spanned, six of the 

nine interviewees reported their project as lasting two and a half to three years. Often 

this timeframe was qualified that the main research effort within this spanned about a 

year and a half, and that there was a fast and furious period of prototyping at the 

beginning. The above quote describing an eight week prototype is an example of the 

fast and furious phase. The three remaining projects were shorter, lasting six months to 

a year. This is consistent with the time-scale of all three projects described in this 

dissertation. We fast and furiously built the basic interactive Outpost over a period of 

two months in the Summer of 2000. This was preceded by almost a year of design, and 

followed by two years of refinement, feature additions, and evaluation. Books with 

Voices and Papier-Mâché followed a similar pattern.  

7.2.3 Refactoring as architecture needs became clear 

Often, the interviewees re-designed aspects of their system architectures to support a 

wider range of behavior. In Outpost, for example, we introduced a command subsystem 

to support design history and remote collaboration. This refactoring reflects positively 

on the developers; advocates of agile programming methods argue that software 

architectures should be simple at first, becoming more complex only as needed [32]. 

This heavy refactoring also reflects negatively on the current state of software tools in 

this area. Much of the modularity that our interviewees introduced could be more 
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effectively provided at the toolkit level, and indeed is supported in Papier-Mâché. 

Examples include changing the type of camera, switching between input technologies, 

or altering the mapping between input and application behavior. 

The challenge of refactoring with limited development resources is that it often is 

“hacked”— the code is altered just enough to support the additional functionality, but 

not in a manner that is robust, flexible, maintainable or understandable. One developer 

described their situation as “The code was way too complex at the end of the day” 

because there were “a lot of stupid problems” such as temporary files and global 

variables that inhibited reliability and malleability. These systems often rigidly relied 

upon all components being available and functioning properly, and did not fail 

gracefully when most, but not all, of the components were working. In one case, the 

interviewee’s group created an improved version of their core technology, but it was too 

late for use in the research prototype, and happened only “after one of the engineers 

finished what I had begun.” Toolkits can alleviate many of these development 

headaches. 

7.3 User Experience Goals Motivating Tangibility 

The primary motivation our interviewees had for building a tangible interface was the 

desire for a conceptual model of interaction [197, ch. 1] that more closely matched user’s 

behavior in the real world, often as one interviewee described it, “trying to avoid a 

computer.” This motivation is also seen in Fishkin’s discussion of embodiment [77] in 

tangible user interfaces (see the summary of this work in section 2.7.2). In addition to 

the development issues, we spoke with the interviewees about their user experience 

goals. Here are three quotes from the interviewees that illustrate some of these goals: 

• “Technology should make things more calm, not more daunting.” 
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• “People don’t want to learn or deal with formidable technology.” 

• “They’re torn between their physical and electronic lives, and constantly trying work-

arounds.” 

The central finding of The Myth of the Paperless Office [222] (summarized in section 

2.1) is that users work practices are much more successful, and much more subtle, than a 

naïve techno-utopianistic perspective might suggest. Additionally, the book illustrates 

that while digital technologies change practices, they do not supplant our interaction 

with paper and physical objects. The interviewees, through design insights and their 

own observations of practice, came to a similar conclusion. This reverence for the 

nuanced success of everyday objects inspired much of the interviewees work. These 

interviewees had many of the same goals that our literature survey found (see section 

2.1), such as avoiding projector-based solutions in order to increase robustness to failure. 

An excellent example of this appreciation for the success of our interaction with the 

physical world can be seen through one researcher’s goal that his group’s system, 

“should mimic [users] current tools as closely as possible to begin with. Functionality 

can be added that is unavailable in the paper tool, but only after [our tui] captures their 

current work practice.” 

7.4  Development and Reuse: Architecture, Library, Functionality 

A user interface software toolkit comprises two pieces: “a library of interactive 

components, and an architectural framework to manage the operation of interfaces 

made up of those components. Employing an established framework and a library of 

reusable components makes user interface construction much easier than programming 

interfaces from scratch” [188]. A particular application uses library components, 

assembling them and communicating with them using the software architecture. This is 
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then extended with the particular functionality required by the application. Ideally, 

there should be a small number of architectures, and each architecture should span a 

reasonable space of applications. A new architecture should be introduced only when a 

new class of applications is introduced. There should be a moderate number of library 

components. Some components (such as the basic gui widgets and file i/o protocols) 

can be used in a huge space of applications. Others (such as a domain-specific 

visualization or algorithm) are used in a much smaller number of applications. 

Additionally, each application will have its own functionality that developers create, or 

at the very least, they compose and customize library components. 

In our interviews, we found that for this emerging area of tangible interfaces, each 

development team was creating an architecture, a set of library components, and an 

application (though the developers did not generally describe their work with such an 

explicit taxonomy). For all of our interviewees, Papier-Mâché would have eliminated 

the need to create a software architecture, with the exception of the distributed portion 

of the applications, for those that had one. Papier-Mâché would have also drastically 

minimized the amount of library code that needed to be written. Examples of library 

code that would have remained include particular vision algorithms, support for 

particular brands of rfid readers, and support for particular flavors of barcodes. Papier-

Mâché would have also substantially reduced the amount of application functionality 

code, shifting the balance from creation from scratch toward composition of 

components.  

7.5 Events and Constraints are More Appropriate Than Widgets 

Widgets are a software abstraction that encapsulates both a view (output) and a 

controller (input); see section 2.5 for a summary of how this is accomplished with 

graphical uis. While some post-wimp toolkits have hoped to provide an analogue to 
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widgets (e.g., the Context Toolkit [65]), in practice toolkit support for the view (output) is 

distinct from toolkit support for the controller (input), and with good reason: a particular 

piece of input can be used for many different types of output and vice versa. 

In designing an architecture for tangible interaction, we can learn from the abstrac-

tions introduced in the model-based ui research (see [241] for a comprehensive 

literature survey). With model-based tools, developers specify an interface declaratively, 

and at a high level. In a traditional gui tool, a developer might imperatively specify that 

a group of radio buttons should be displayed in a pop-up menu. With model-based 

tools, a developer might specify that an application should present a widget for a user to 

designate an item from among a set. The model-based tools would then decide upon 

the most appropriate widget (radio button, drop down menu, etc.). This high-level, 

declarative specification offers a flexibility of implementation. In the era of desktop 

interfaces, the primary goals of model-based research were “increasing the quality and 

reducing the cost of developing interfaces” [241, p. 1]. With the emergence of ubiquitous 

computing, and the increased number and heterogeneity of devices, model-based 

techniques have seen increased interest. Two research directions that attempt to 

ameliorate this increase for developers and end users are tools for creating a single 

application code base that can be deployed on multiple distinct devices (e.g., [85, 140]) 

and for automatic ui personalization (e.g., [259]). Papier-Mâché’s event structure and 

behaviors draw from this literature to provide a similarly high level of abstraction, 

allowing developers to declaratively specify objects, events, and behavior at a semantic 

level, e.g., “for each Post-it note the camera sees, the application should create a web 

page.” 

The basic event-based software design patterns were uncannily similar across many 

of these systems. While each of these systems was built independently, without access 

to the source code of others, all interviewees settled on a small set of similar events for 
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defining behaviors in applications. The basic events hinged on notifying application 

objects about the presence, absence, and modification of physical objects. These events 

were used to bind manipulations in the physical world to electronic behavior. 

In the tangible world, as in the graphical world, events tend to fall into one of a few 

groups. The first group is events that carry as their payload one or more binary values. 

Examples of this flavor include events that are triggered when a button is pressed or 

released, when a pointer enters or exits an area, and when an rfid tag or barcode moved 

into or out of a sensor’s range. A related set is event properties that take on one of a 

small number of discrete states. The second group is events whose properties are one or 

more continuous scalar values. One example of this type is the planar position of the 

mouse; or for a vision-tracked object, its position, orientation, size, and other scalar 

values that the vision system reports. A third type is the rich capture of information 

from the world; for example, an audio recording, video recording, or photograph. These 

sources may have particular aspects of the recording semantically extracted (Outpost 

extracts the images of Post-it notes from images of a board). 

Using these basic primitives, some of the interviewees created higher-level events, 

and constrained the system behavior to be a function of these events. For example, one 

interviewee created a distance operator that measured the distance between objects on a 

surface, and constrained the behavior to be a function of that distance.  

7.6 Declaratively Authoring Behavior 

In general, ui programming languages and software architectures employ either an 

imperative or a declarative programming style, and sometimes a combination of the two. 

Imperative code provides a list of instructions to execute in a particular order, e.g., a Java 

program that counts the number of words in a text file via iteration. Declarative code 

describes what should be done but not how. Sql [87] is a well-known example of a 
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declarative language: with sql, database queries specify the information to be returned 

but not the technique for doing so. Spreadsheets are another highly successful example 

of declarative programming. For example, the value of a cell might be defined as the 

summation of the eight cells above it. This value updates automatically as the other cells 

change, and no “program” or control loop needs to be written to implement this 

functionality; it is handled by the system internally. Declarative programming has a 

model-based [241] flavor, and is beginning to rise in popularity for programming web 

services (e.g., Sun’s Enterprise Java Beans [9]) and graphical uis (e.g., Microsoft’s 

Avalon [1]). 

Tangible interfaces couple physical input with electronic behavior; for example, a 

marble represents an answering machine message [204]. This coupling, where the 

relationship is either discrete (such as the marbles), or continuous (such as the links in 

Outpost, which have their endpoints constrained to physical Post-It notes) can be more 

concisely and flexibly expressed declaratively than imperatively. All nine of our 

interviewees described the behavior of their system as providing tangible input coupled 

with electronic behavior through event-based bindings or queries. In associative 

applications, this binding is quite straightforward: barcodes or rfid tags serve as a 

physical hyperlink to a particular piece of electronic behavior or media. These elements 

are bound together, and the behavior is executed through an event. With spatial 

applications the binding is parameterized through the location, size, shape, and other 

identifying characteristics of the object, and with topological applications the behavior 

is influenced by the relationships between the physical objects. 

While our interviewees described their systems clearly using declarative terms, not 

everyone felt this declarative model was effectively implemented in their software. 

Several interviewees wished they had a more flexible method of defining bindings, 
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making it easier to change the input technology and to explore alternative interactions 

for a given input technology. 

7.7 Choice of programming language 

At the time of tui development, our interviewees used several different programming 

languages: C++ (three), Java (two), Prolog (one), Director (one), Visual Basic (one), and 

Python (one). Two of the non-Java teams have since switched to Java. Eight of the nine 

interviewees used a Windows pc as their development platform. 

Most of the interviewees chose a programming language based upon one particular 

requirement. They requirements cited were: 

1 Technology  integration: Sometimes, the decision was made to ease integration with a 

particular piece of input technology, e.g., the Outpost vision system was built in C++ 

because OpenCV was in C. 

2 Library support: The majority of our interviewees chose a language based on the library 

use it facilitated. Two developers chose the Windows platform and a Visual Studio 

language specifically for their easy interoperability with Microsoft Office. A third 

interviewee was constrained to the Windows platform for integration reasons, and 

chose Director for its rapid development capabilities. Two of our interviewees decided 

on Java because of its rich 2d graphics libraries. 

3 Developer fluency: For one interviewee, C++ was chosen “because [the lead software 

developer] knew it well.” The same fluency sentiment was expressed differently by 

another interviewee that C++ “was our language of the time. Now we’re Java.” 

4 Rapid development: One interviewee told us that “I used Python. This language make 

prototyping fast and easy. It can be too slow at times, but not too often thanks to 



7.8 · Choice of input technology 172 

 

Moore’s law.” Another interviewee, mentioned above, settled on Director [5] for rapid 

development reasons.  

These four reasons — technology integration, library support, developer fluency, and 

rapid development — informed our choice of Java as a programming language. Java 

offers excellent library support, many developers are fluent in it, development time is 

very fast for a full-fledged programming language, and it was tractable for us to provide 

input technology integration. The double-edged sword of Java is its platform independ-

ence. Development and execution on multiple platforms provides a wide audience of 

developers and a flexibility of deployment, and this was a feature that one interviewee 

specifically requested. However, this independence comes at a performance cost and 

makes integration with novel input technologies more difficult. In 2004, C# would 

probably be a slightly better choice for a toolkit like Papier-Mâché from a technical 

perspective. There is a very real technical and political cost in losing platform independ-

ence, but the performance and integration gains may be more valuable in many cases. 

7.8 Choice of input technology 

Section 2.9 addressed the benefits and drawbacks of different input technologies and 

tagging approaches. The technology that can offer the greatest benefit is vision, but it 

brings along with it reliability concerns and development headaches. Our interviews 

uncovered how these tradeoffs manifested themselves in practice. A great appeal of 

vision was that, “it gives you information at a distance without a lot of hassle, wires, and 

instrumentation all over the place. It puts all the smarts in one device and instrumenta-

tion is limited. It also is possible to retrofit existing spaces.” 
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7.8.1 Input technology portability 

Most of the interviewees either experimented with different input technologies, or were 

interested in trying different input technologies for their application. As with tools and 

languages, the choice of sensing technologies sometimes also shifted between proto-

typing and implementation. One interviewee prototyped his spatial interface with a 

smart Board as the sensor. Later, he replaced the smart Board’s touch sensor with 

vision for two reasons: First, smart Boards are expensive and bulky, while cameras are 

inexpensive and small. Second, the resistance-based smart Boards provide single-input 

of [x, y]. (The newer dvit smart Boards support multi-touch interaction by using four 

cameras mounted in each corner, orthogonal to the input surface.) Vision offers a much 

richer input space. This vision task is exactly the kind of task that Papier-Mâché can 

support. While vision offers many benefits, all of the interviewees shared the sentiment 

that, as one researcher explained, “The real-time aspects of camera interfacing were 

probably the hardest.” Another researcher, after having completed his project lamented 

that, “it’s not always worth it to live at the bleeding edge of technology. … Make sure 

you have a very good reason if you choose to work on a problem whose solution requires 

pushing more than one envelope at most.” 

One interviewee explored several input options before settling on rfid because, “we 

didn’t know what to do” for input. As an experiment, “I had an intern that did a version 

with optical sensors (vision).” Another rfid user first, “spent a lot of time looking into 

barcodes and glyphs, but they didn’t seem right.” 

Myers, Hudson, and Pausch [188] point to rapid prototyping as a central advantage 

of tool support. Vision is an excellent technology for rapid prototyping of interactive 

systems. It is a highly flexible, software configurable sensor. There are many applica-

tions where the final system may be built using custom hardware, but the prototypes 
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could be built with vision. The one challenge, prior to Papier-Mâché, is that it is 

difficult to rapidly prototype applications with computer vision. 

7.8.2 “More than two serial ports” 

When we asked for specific toolkit functionality requests, one researcher quipped, 

“more than two serial ports.” In nearly all contemporary software architectures, a single 

mouse and keyboard are presumed to be the only input devices. Employing alternative 

input mandates a large software engineering effort. In some cases, the hardware- or 

software-imposed ceiling on the number of input devices prevented the researchers 

from realizing their ideal designs. As most hardware has migrated to usb or FireWire, it 

is becoming less true that the number of “serial ports” per se are a limiting factor, but the 

software’s ability to handle and program these simultaneous inputs is still a limitation. 

7.9 Distributed Applications 

Three of the nine applications provided the ability for multi-device, networked 

interaction. These systems were designed roughly around a distributed mvc architec-

ture, where a database served as the server and central connection point. In these 

systems, the clients supported sensing input, information presentation, or both. Clients 

would report events to a server hosting the model, and then the server notified all of the 

other clients. In the most sophisticated system, the interaction clients were heterogene-

ous. Board clients reported data to a board server, and this server then sent events to 

applications, which were often web apps, but could also be devices like a printer. The 

Papier-Mâché toolkit targets single-machine applications. By virtue of the fact that 

Papier-Mâché integrates easily with the satin ink ui toolkit [110], there is a remote 

command system available for replicating events between hosts (see section 5.5.1). A 

toolkit that more explicitly supports distributed interaction and data storage could draw 
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upon much of the literature in ubiquitous computing toolkits (see section 2.6), and is 

an area for future research. 

7.10 Importance of System Feedback for Users and Developers 

Good feedback is a central tenet of user interface design [197 ch. 4, 228 §11.2]. One 

researcher found that, “One key issue was that sensing errors were pretty mysterious 

from the users’ perspective.” Providing visual feedback about the system’s perception of 

tracked objects helps users compensate for tracking errors. Feedback is particularly 

important to developers, because the complexity of their task is so high.  

Debugging is one of the most difficult parts of application development, largely 

because of the limited visibility of dynamic application behavior [62]. The novel 

hardware used in tangible uis, and the algorithmic complexity of computer vision, only 

exacerbate this problem. One interviewee had “the lingering impression that the system 

must be broken, when in fact the system was just being slow because we were pushing 

the limits of computation speed.” The current state of debugging tools in this area is 

quite poor; another interviewee used Hyperterm, the Microsoft Windows command 

line tool designed for modem communication, to debug the serial communication of 

their input hardware. 

7.10.1 Understanding the flow of control 

Imperative software languages make it very difficult to see the flow of control of an 

application, especially one that is highly reliant on events. Control flow moves rapidly 

between class files, making it so that understanding a particular behavior can be quite 

difficult. One interviewee explained that, “The debugging of incorrect or missing 

elements within the fusion operation was the most cumbersome and time-consuming 

parts of the development process.” This should not be taken as a critique of object-
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oriented design, but rather as a critique of relying solely on textual information for 

software understanding. Well-designed visual tools can be more effective for creating 

and debugging dataflow. Successful examples of visual dataflow graphs include the Max 

midi authoring system [19] and spreadsheets [47, 123].  

7.10.2 Feedback over longer time scales 

Visualizations explaining the current state of an application are useful at short time 

scales, and Papier-Mâché provides this. An area for future research would be to provide 

logging and feedback of application behavior at longer time scales. One interviewee told 

us that he “Put it up, and ran it for about six months in two or three locations in the 

building.” To evaluate the robustness of the system, he then watched for failure mode. 

“These failure modes helped drive further development. This failure mode analysis is 

key.” Another told us that, “We were worried about robustness. So I made a prototype 

and left it in the hall for months.” There are three broad areas where long-term 

monitoring could help: software errors (such as crashes), recognition errors, and 

usability errors (where the software behaved as expected, but the user interface was 

poor). The first could be addressed by self-evaluating software techniques similar to 

those of Liblit et al. [150]. The second could be addressed through logging user 

mediations. The last could be addressed by logging access to help systems (when 

available) and undo actions, or by introducing a user feedback system (a simple example 

would be an “I don’t understand” button that could log application state). 

Several participants specifically asked us for better error diagnostic tools. One 

researcher gave us some example questions that she hoped tools would solve: “This 

crashed, what happened? Why won’t it boot? How far does it get?” Interviewees also 

asked us for the ability to remotely administer and diagnose deployed systems. They 
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wanted to be able to find out answers to questions such as, “Which sensors did they 

use? In the way you think or something else completely?” 

7.11 Summary 

The threshold for developing robust tangible interfaces in the absence of tools is 

tremendously high. This high threshold discouraged experimentation, change, and 

improvement, limiting researchers’ ability to conduct user evaluation, especially 

longitudinal studies. One interviewee avoided these studies because his team lacked the 

resources to “add all the bells and whistles” that make a system usable. 

The results that had the greatest effect on the Papier-Mâché architecture were: 1) 

all of the interviewees used an event-based programming model; 2) interviewees 

experimented with different input technologies, and that each of these prototypes was 

built from scratch; and 3) understanding the flow of an application and debugging 

failures is quite difficult. 
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8 The Papier-Mâché Architecture 

The preceding six chapters of this dissertation provide a design space of existing 

applications and related toolkit work (chapter 2), an in depth description of two 

applications our group has designed and evaluated (chapters 3 – 6), and an under-

standing of the architectural decisions and development challenges that represent 

current practice (chapter 7). This literature survey, experiential knowledge, and 

fieldwork data show that a toolkit for tangible input should support: 

• Techniques for rapidly prototyping multiple variants of applications as a catalyst 

for iterative design  

• Many simultaneous input objects 

• Input at the object level, not the pixel or bits level 

• Heterogeneous classes of input 

• Uniform events across the multiple input technologies, facilitating rapid application 

retargeting 

• Classifying input and associating it with application behavior 

• Visual feedback to aid developers in understanding and debugging input creation, 

dispatch, and the relationship with application behavior 

Portions of this chapter were originally published by the author, Jack Li, James Lin, and James 
A. Landay in [133]. 
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8.1 Introduction 

These goals provided the basic framing for the architectural decisions in Papier-Mâché. 

A toolkit is software where the user interface is an api, and the users are software 

developers (see figure 8.1). Papier-Mâché is an open-source Java toolkit written using 

the Java Media Framework (jmf) [17] and Advanced Imaging (jai) [15] apis. It abstracts 

the acquisition of input about everyday objects tracked with a camera, or tagged with 

barcodes or rfid tags. These three technologies span the vast majority of input needs of 

our 24 inspiring applications. (The exceptions are systems that employ tethered 3d 

tracking [81], speech input [173], or capacitive sensing [29].) This library supporting 

input technologies also illustrates Papier-Mâché’s capability for a developer to originally 

implement a system with one technology and later retarget it to a different technology. 

The need for rapidly retargeting input encouraged our use of event-based bindings — 

rather than widgets — as an architecture for tangible interaction. 

We explain the Papier-Mâché architecture using two examples: 1) an rfid imple-

mentation of Bishop’s marble answering machine [117] (see section 2.8.3), and 2) a 

simplified version of parc’s Collaborage In/Out Board [180] (see section 2.8.1) using 

computer vision and barcodes. For each of these applications, a developer has two 

primary tasks: declaring the input that she is interested in and mapping that input to 

application behavior. 

8.2 Input Abstraction and Event Generation 

Papier-Mâché represents physical objects as Phobs. (In this dissertation, Java class 

names are designated in italics.) The input layer acquires sensor input, interprets it, and 

generates the Phobs. A developer is responsible for selecting input types, such as rfid or 

vision. She is not responsible for discovering the input devices attached to the com-

puter, establishing a connection to them, or generating events from the input. 
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FIGURE 8.1 A toolkit is software where the user interface is an API: the architecture of 
the system, along with a set of classes and their methods. This is a UML diagram of a piece 
of the Papier-Mâché API. 
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These “accidental steps” [45] are not only time-consuming, but require substantial 

hardware and computer vision expertise, a field very different from user interface 

development. For example, the marble answering machine developer adds her 

application logic as a listener to an rfid reader but does not need to manage a 

connection to the hardware. Similarly, the Collaborage developer tells Papier-Mâché 

that he is interested in receiving computer vision events with a video camera as the 

source. 

A piece of physical hardware that is attached to the computer needs to implement 

the InputDevice marker interface (see figure 8.2, top row). The Java programming 

language makes a distinction between classes, which contain an implementation, and 

interfaces, which define a set of methods that implementing classes must support. A 

marker interface is a design pattern where a programmer creates an interface without 

any methods; implementing a marker interface is a technique for tagging the imple-

menting class as providing a certain type of support. Using the inheritance mechanism 

as a tag provides for both compile-time and run-time verification that class instances 

provide the necessary support. In this case, each input device has a unique api for 

dealing with the underlying hardware. The InputDevice marker interface tags the 

implementing classes as being responsible for input acquisition. 

For each category of input hardware, there is a class implementing the marker 

 

FIGURE 8.2 The inheritance hierarchy for physical input devices. Each device class 
encapsulates a physical input. The InputDevice is a marker interface: it is an interface class that 
contains no methods. All classes that represent a physical device implement the marker interface 
to denote that they represent a physical device. 
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interface that provides a general api to Papier-Mâché for handling that type of input 

(see figure 8.2, middle row). The ImageInputDevice and RFIDInputDevice are the two 

library examples that Papier-Mâché includes for general device types. 

For each device class, there are several different apis currently available. Papier-

Mâché abstracts the varying aspects of particular members of an equivalent device class. 

For example, different types of cameras have different types of apis for image acquisi-

tion. These specific device styles use the public interface and event dispatch from their 

superclass, adding acquisition functionality that is particular to their type (see figure 

8.2, bottom row). Device drivers obviate the need to create implementations for all 

camera models; only one library element needs to be written for each imaging standard. 

The two main imaging standards are webcams and twain. The Papier-Mâché library 

supports webcams through the Java Media Framework. Jmf supports any camera with a 

standard driver, from inexpensive webcams to high-quality 1394 (FireWire) video 

cameras. Papier-Mâché supports twain capture, an alternate protocol designed for 

scanners but increasingly used for digital cameras, through Java twain [18]. Addition-

ally, Papier-Mâché supports the use of simulated input through the FilesImageInput 

class. Simulated input is useful for creating and testing code when a camera or the 

environment is not available, and also for unit-test-style repeated verification of 

functionality of a system as it changes over time. 

Still digital cameras were designed to be used by a human photographer. In our 

research, we have also found it useful to control these high-resolution low-frame-rate 

cameras computationally, both for structured image capture and for computer vision. 

However, currently, there is no widely adopted computational control standard for this 

class of device. In a few years, twain and/or the Windows Imaging Acquisition 

standard will likely emerge as a commonly adopted standard. In the interim, we have 

provided the PowerShotImageInput class in the Papier-Mâché library. This acquires 
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images from Canon’s PowerShot cameras. We chose these cameras because they are 

high-quality, readily available, and have the best developer support for computational 

control. Papier-Mâché calls native Windows code for controlling these Canon digital 

cameras (the binding of native code to Java code is accomplished through the Java 

Native Interface [236]); and for communicating with the Phidgets rfid tags (this is 

accomplished through the ibm Bridge2Java system [12], which is a tool that automati-

cally generates jni stubs for ActiveX objects). 

8.2.1 Event generation 

Once the developer has selected an input source, Papier-Mâché generates events repre-

senting the addition, updating, and removal of objects from a sensor’s view. Event types 

are consistent across all technologies. Providing high-level events substantially lowers 

the application development threshold and facilitates technology portability. The class 

responsible for this event generation is the PhobProducer (see figure 8.3, top row). 

PhobProducer is an abstract class — it contains the event dispatch mechanisms and 

maintains the set of objects currently in a sensor’s view, but not the techniques for 

interpreting and packaging input from an InputDevice. These techniques are delegated 

to the subclasses (see figure 8.3, bottom row). There is a 1:1 mapping between 

InputDevice instances and PhobProducers instances. The separation of input acquisition 

from event dispatch is an important one. 

The bottom level of the InputDevice hierarchy — the library classes that wrap 

FIGURE 8.3 The inheritance hierarchy for PhobProducers. Producers are paired with 
InputDevices; they take input from a device and generate PhobEvents. The abstract 
PhobProducer base class manages the event listeners and the production of events. 
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particular types of input devices — can be seen as high-level device drivers in the 

tradition of uims systems. It is quite possible, as with mouse-based uims tools, that 

improvements in the device driver space will minimize the need for the bottom level of 

the InputDevice hierarchy. (The top two levels of the hierarchy comprise the Papier-

Mâché architecture and will continue to be needed.) The rfid world is headed in this 

direction; both the iso [14] and epcglobal [8] are in the process of creating standards 

that cover the “air interface” (how tags and readers communicate), and industry appears 

to be slowly headed towards an xml standard for how rfid hardware and applications 

communicate. 

While all technologies fire the same events, different technologies provide different 

types of information about the physical objects they sense. Rfid provides only the tag and 

reader ids. Vision provides much more information: the size, location, orientation, 

bounding box, and mean color of objects. Size, location, and orientation are computed 

using image moments [84]. Because this set is commonly useful, but not exhaustive, 

VisionPhobs support extensibility: each stores a reference to the image the object was 

found in. Application developers can use this for additional processing. Barcodes 

contain their id, their type (ean, pdf417, or CyberCode [206]), and a reference to the 

VisionPhob containing the barcode image. The BarcodePhob class includes an accessor 

method that returns this VisionPhob, allowing developers to access all of its information, 

such as location and orientation. 

8.2.2 RFID events 

Generating rfid events requires minimal inference. Each reader provides events about 

tags currently placed within range. We currently use Phidgets [99] rfid readers, which 

sense only one tag at a time. The inclusion of Phidgets demonstrates the architecture’s 

ability to handle rfid tags and enables users to rapidly develop rfid-based interfaces. If 
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a final implementation required a particular brand of rfid (or a reader that supported 

simultaneous tag reads), it would be fairly straightforward for a developer to add an 

additional rfid library element. 

When a tag is placed within range of a reader, Papier-Mâché generates a phobAdded 

event. Each subsequent sensing of the same tag generates a phobUpdated event. If the 

reader does not report a tag’s presence within a certain amount of time, Papier-Mâché 

infers that the tag has been removed, generating a phobRemoved event. This inference 

technique was introduced by Want et al. [255]. Rfid events contain both the tag id and 

the reader id. Applications can use either or both of these pieces of information to 

determine application behavior. 

8.2.3 Vision events 

Generating vision events requires much more interpretation of the input. Image analysis 

in Papier-Mâché has three phases: 1) camera calibration, 2) image segmentation, and 3) 

event creation and dispatching. Additionally, each of these processing steps can be 

overridden by application developers if they are so inclined. The contribution of the 

Papier-Mâché research is not in the domain of recognition algorithms; the vision 

techniques we use are drawn from the literature. The Papier-Mâché contribution here 

is a software architecture that provides a) a high-level api for the use of computer vision 

in the user interface so that non-vision experts can build vision-based interfaces, and b) 

provides a separation of concerns between ui design and algorithm design. 

We have implemented camera calibration using perspective correction — an efficient 

method that most contemporary graphics hardware, and the jai library, provide as a 

primitive. More computationally expensive and precise methods exist, see [83, 

chapters 1–3] for an excellent overview of the theory and methods. 
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The segmentation step partitions an image into objects and background; see [83, 

chapters 14–16] for an overview of image segmentation. There are two broad classes of 

segmentation techniques: stateless techniques that process images individually without 

regard to earlier information, and stateful techniques that take into account prior 

information. The Papier-Mâché library includes an example of each category of 

SegmentationTechnique: edge detection is stateless and background subtraction is 

stateful. Vision developers can create additional techniques by implementing the 

SegmentationTechnique interface. Each segmentation technique takes as input a raw 

camera image and generates a bi-level image where white pixels represent object 

boundaries and all other pixels are black. We will now discuss both of the library’s 

techniques. 

Edge detection 

Edge detection is a segmentation technique inspired by the low-level human visual 

system, and was suggested as a potential computer vision algorithm by Marr [167]. 

Canny developed an edge detection method and demonstrated its optimality [48, 49]. 

Nearly all current edge detection implementations use the Canny technique, including 

the jai library that Papier-Mâché uses. Edge detection is a stateless segmentation 

technique. In each frame, the raw image is processed for “edges”: edges divide an image 

into regions that correspond to abrupt changes in pixel values. The Collaborage 

reimplementation developed by Andy Kung (see the code in appendix D.3 and 

discussion in section 9.6.3) used edge detection to find the 2d barcode glyphs that 

individuals moved on a wall to indicate whether they were in or out. 

While the Canny method is an optimal edge detector, and sufficient for most tuis, 

there are applications for which edges are not an appropriate segmentation technique. 

For example, segmenting an image containing a Zebra (an animal with black and white 
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stripes) using edge information will not yield a useful result. While human-quality 

segmentation is still an open problem in computer vision, substantial strides have been 

made. (See Carson et al.’s BlobWorld system [51] for an example of the current state of 

the art). Papier-Mâché would certainly benefit from improved techniques, both existing 

and future. However, the included techniques are sufficient for many tuis, and more 

importantly, the basic object information that is used to compute behavior is largely 

consistent across segmentation techniques. More sophisticated applications that require 

specific domain information (e.g., the species of an animal) could accomplish this by 

extending the VisionEvent class. For all of our inspiring applications, this would not be 

necessary. 

Background subtraction 

Background subtraction, the other technique included in the Papier-Mâché library, is 

an example of a stateful segmentation technique. At a high level, background subtrac-

tion works by comparing the current camera image to a prior camera image or an 

aggregate of prior images. The theory behind this technique is that the constant 

portions of an image represent the background (for example, the wooden surface of a 

desk) and the changed portions of an image represent the foreground (for example, 

documents placed on the desk). In practice, comparing against an aggregate performs 

better than comparing against a static background image because aggregates enable the 

inclusion of slowly changing information as background information (for example, as 

the sun moves across the sky the light on the desk changes). A standard technique for 

creating an aggregate image is to use an exponential weight moving average (ewma) 

filter.  

At each time step t, the current image It is subtracted from the aggregate image IA; 

the resulting difference image IA−t represents the change in the scene. A new aggregate 
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IA' is then computed by a weighted addition of the current image It with the earlier 

aggregate IA: the current image is given weight α and the earlier aggregate is given 

weight (1 − α); the value of α is between 0 and 1. The technique is called “exponential 

weight” because this recursive addition is equivalent to the summation (In × αt−n). 

The fraction or “weight” of each individual image In is α raised to the exponent t − n; 

the weight of old images approaches 0 in the limit. 

The Designers’ Outpost used an ewma-based background subtraction technique 

(see section 3.8.2). Lederer and Heer developed the initial version of Papier-Mâché’s 

background subtraction code for ceiling-mounted camera tracking of individuals in an 

office for their All Together Now system [147] (see section 9.5.3).  

Ewma techniques show up in many domains; one of the most common uses is for 

the prediction of file download times. The displayed remaining download time is the 

average rate multiplied by the remaining amount of data to be downloaded. This 

average rate is updated at each time step by factoring in the current rate. File download 

times are often seeded with a rate of 0 so that the prediction is conservative. 

Labeled foreground pixels are grouped into objects (segments) using the connected 

components algorithm [111]. We create a VisionPhob class for each detected object. At 

each time step, the vision system fires a phobAdded event for new objects, a phobUpdated 

event for previously seen objects, and a phobRemoved event when objects are removed 

from view. 

8.3 Declaratively Associating Input with Behavior 

Papier-Mâché provides three levels of abstraction for handling behaviors associated 

with the objects it detects. 1) PhobEvent instances carry information about objects 

detected by a PhobProducer. 2) AssociationFactory instances provide a mechanism for 

creating and modifying application logic (AssociationElts). 3) The BindingManager is 
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built using the two previous primitives: it receives all PhobEvents from all PhobProducers 

and uses AssociationFactory instances to create AssociationElts. We discuss each of these 

architectural abstractions in turn. 

8.3.1 Events 

Events are the basic input dispatch primitive: at this level, developers manually 

instantiate producers and devices, register themselves as listeners, and receive the events 

that these producers generate. All application logic, and the relationships between input 

and application logic must be programmed manually. 

8.3.2 Factories 

A factory [86, p. 87-96] is a design pattern that provides an interface for creating 

families of related objects. In Papier-Mâché, an AssociationFactory (see figure 8.4) 

creates AssociationElts. The AssociationFactory is an interface that contains one method: 

createAssociationEltForPhob(Phob phob); it creates an AssociationElt and returns it. In 

some cases, the AssociationElt created is parameterized by capture from the current 

environment. An example of this type is the marble answering machine, where each 

AudioClip created records an audio clip from a microphone. In other cases the created 

AssociationElt is parameterized by the properties of the Phob passed in. All of the 

inspiring spatial tuis require this behavior. These systems use the location (and often 

the orientation) of the physical object to control spatial aspects of graphical objects. In 

the remaining cases, when an AssociationElt is created, it prompts the user with a dialog 

box to specify its parameters. The WebStickers system for using barcodes as physical 

hyperlinks, if written with Papier-Mâché, might pop up a dialog box asking the user to 

specify a url. Some of the factories (such as the AudioClipFactory, MediaFactory, and 

StringFactory provided in the Papier-Mâché library) are agnostic to the type of input 
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device that created the Phob. Others require that a particular type of information be 

available in the Phob. The VisualAnalogueFactory requires a VisionPhob, as it uses the 

location and orientation of the Phob. While the creation and invocation of behaviors is 

handled through the factory, the management of multiple devices and/or multiple 

behaviors must be handled manually by a developer. 

8.3.3 Bindings 

In section 7.6, we introduced the technique of declaratively authoring application 

behaviors by binding a specific set of physical input to a particular piece of application 

logic. This need inspired the BindingManager class in Papier-Mâché. The binding 

manager automatically registers itself with all available PhobProducers, manages the flow 

of events, and automatically creates behaviors. The binding manager contains {classifier, 

behavior} pairs and it is the recipient of these events. It invokes application behavior for 

each element the classifier matches. Developers select PhobProducer(s) that will create 

input events, ObjectClassifier(s) that select a subset of generated input, and Association-

Elt(s) that the factory should create.  

The BindingManager contains a map data structure that maintains past and present 

bindings and creates new bindings in response to physical input. The manager listens 

for new PhobEvents. When a new Phob is seen, or when a Phob is updated, the 

 

FIGURE 8.4 The inheritance hierarchy for factories: objects that create AssociationElts from 
Phob input. The top level is the AssociationFactory interface. The middle level is the 
DefaultAssociationFactory abstract class; this class provides the ability to be VisuallyAuthorable 
and the ability to serialize to XML using JAXB. 
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PhobProducer fires an event with the Phob as its payload. The BindingManager receives 

this event, and compares it to the table of classifiers (such as a MeanColorClassifier that 

selects for objects of a certain color). 

Here, the developers’ primary goal is instantiating and parameterizing classifiers and 

behaviors. Many of our inspiring applications can be created solely by parameterizing 

existing library classes. This parameterization-based approach is inspired by Interactors 

[182], and lends itself to visual programming [52]. We have built a visual programming 

tool that enables this (see section 8.8). When more complex functionality is required, 

developers can implement their own application logic by creating a custom behavior. 

We will now illustrate how developers employ this declarative programming style in 

Papier-Mâché, using the In/Out board as an example. In this system, a barcode id 

represents a person, and its location represents whether they are in or out. Developers 

author these representation mappings by implementing a BehaviorFactory, which listens 

to events from the input sources. The example in section 9.3 and the Books with 

Voices rewrite presented in appendix D.2 both demonstrate applications that use the 

BindingManager. The factory receives a callback to create a new AssociationElt (see 

figure 8.5) representation instance (e.g., a “person”) for each new Phob created, and an 

update callback to modify that element’s state (e.g., whether they are in or out) each 

time a Phob is updated. 

Each AssociationElt either represents a particular piece of content (we call these 

Nouns) or they operate on a piece of content (we call these Actions). This distinction is 

also used in Fishkin’s survey of tangible user interfaces [77]. Operationally, a Noun can 

be the selection focus of an application, while an Action controls the current selection 

focus. In the In/Out board, each person would be a Noun. 

The Papier-Mâché library includes four common types of nouns and five common 

media manipulation actions (see figure 8.5). The FileBrowser wraps files and urls, the 



8.3 · Declaratively Associating Input with Behavior 192 

 

ImageBrowser wraps images, and the MediaClip wraps audio and video files. All of the 

topological and associative applications can be built with these three nouns (with the 

exception of Paper Flight Strips [158], which requires air traffic control information). 

The fourth noun, AssociationWrapper, is more general purpose. It wraps any functional-

ity that the developer provides. For example, an AssociationWrapper can wrap a JPanel or 

other graphical element. An AssociationWrapper would be used to wrap each person in 

the In/Out board. The five media manipulation actions in Papier-Mâché’s library were 

also chosen because media manipulation operations cover a majority of the behavior of 

our inspiring applications. FastForward, Pause, and Rewind perform their respective 

action on a MediaClip. RandomAccess moves the current position of a MediaClip to a 

designated place. Reset moves the current position of a MediaClip to the beginning. 

There are two reasons why actions are encapsulated as objects. Logically, the pro-

gramming task for behaviors is to provide a binding between the application input and a 

behavior that operates on a pre-existing focus object. This description implies that a 

clear technique for doing this would be to use the binding manager to store a mapping 

between input and a pointer to a function. However, Java does not have function 

pointers. Function pointers can be simulated by using a reflection to query an object 

about its methods, and creating an object that encapsulates the desired method. Using 

FIGURE 8.5 The inheritance hierarchy for associations. Associations are the elements in the 
Papier-Mâché architecture that input is bound to. These elements can either be nouns or 
actions. The Papier-Mâché library includes five common media manipulation actions, and four 
common types of nouns. 
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reflection for this purpose is both more complex and provides fewer runtime reliability 

guarantees than creating a set of separate action classes. Perhaps more importantly, 

action classes provide for using the same api for both objects and the actions that 

control their behavior. 

8.4 Flow of Control in an Application 

To recap, the basic flow of control in a Papier-Mâché application is that PhobEvents are 

created from a PhobProducer; the BindingManager contains a set of {ObjectClassifier, 

AssociationFactory} pairs; events matching a classifier are passed to the factory. 

8.5 Switchable Classes of Underlying Technology 

The Papier-Mâché library provides a software api to three classes of physical devices: 

1 Electronic tags (e.g., rfid tags) 

2 Barcodes 

3 Image Analysis of arbitrary physical objects 

The first two involve manually tagging objects; before an object can be used with 

the system, it must be properly “suited up.” The visual signature of an object can also be 

used as a tag (e.g., using the content of Outpost notes as a tag signature), with the 

caveat that this higher-level recognition task may at times decrease robustness. The 

main benefit is that any object can be appropriated for use (see section 2.9). The main 

drawback is that because these “tags” are human-generated, not machine-generated, 

there are no guarantees that the tag-space is well-partitioned, or even partitionable. 

Two blank notes in Outpost have the same signature, for example. 

Image analysis deserves some comment because it is substantially more flexible than 

the other channels. In addition to being a recognition technology, cameras can be used 

as a capture technology. Papier-Mâché supports the use of vision for pure recognition, 
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for pure capture, and for using both together for structured capture, such as capturing 

the contents of recognized notes in the Designers’ Outpost. 

Image capture — acquiring input from an image source — is the first step in any 

vision system. Additionally, some tuis use the raw capture as simply an image, and no 

further processing is required. The Peripheral Display Toolkit [171] is an example of a 

system that used Papier-Mâché for its flexible and low-threshold image acquisition api. 

This project’s use of Papier-Mâché is described in further detail in section 9.5. 

One benefit of Papier-Mâché’s vision architecture is that it provides a separation of 

concerns. Application developers can quickly develop a functional prototype using the 

provided libraries. Because the architecture is already provided, vision developers can 

work in parallel (or after the completion of the ui) to customize or replace the 

underlying vision algorithms as dictated by the domain.  

8.6 How Papier-Mâché differs from a GUI Input Model 

Papier-Mâché events have some similarities to gui events, but they also differ in 

important ways. We will use the vision implementation of these events to illustrate this. 

Applications receive VisionEvents from an ImageSourceManager by registering 

VisionListeners. A VisionListener receives events about all objects larger than a specified 

minimum size. This minimum size constraint is solely for performance; it avoids an 

inappropriately large number of events from being generated. VisionEvents have a 

similar api to Java’s MouseEvents, a descendant of the Interactors research. There are 

several important differences, however. 

1 A mouse is a temporally multiplexed [81], generic input device; the meaning of its input 

is constructed entirely through the graphical display. In traditional guis there is always 

exactly one mouse (though some research systems have extended this, providing 

multiple mice). The behavior of moving the mouse or pressing a mouse button changes 
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over time, as a function of the mouse’s position and the application state. In contrast, 

tangible interfaces nearly always employ multiple input devices, and these inputs are 

spatially multiplexed, as in the knobs and sliders of an audio control board or the pages 

of a book in Books with Voices (see chapter 6). The audio board contains many 

knobs: each knob is always available and always performs the same function. In most 

tuis, the functionality of an input object is conveyed by its physical form factor, 

markings on the object, and the object’s location. In these systems, the input devices are 

lightweight; multiple objects appear and disappear frequently at runtime. While 

MouseEvents offer only position and button press updates, VisionEvents offer Add, 

Update, and Remove methods. 

2 With a traditional mouse, the only input is (x, y) position and button presses. With 

physical objects on a plane, the captured information is position (x, y), orientation (θ), 

size, shape, and visual appearance. Papier-Mâché provides bounding box, edge pixel set, 

and major and minor axis lengths as shape information. It provides the mean color, as 

well as access to the source image data, for visual appearance. 

3 While the position of a mouse and the state of its buttons is unambiguous, the 

information retrieved through computer vision is often uncertain. To address this, 

Papier-Mâché provides a lightweight form of classification ambiguity [166]. In Papier-

Mâché, classifiers are responsible for reporting ambiguity; this is currently achieved 

through a scalar confidence value. 

4 Similarly, with computer vision, the raw input (a camera image) contains a richness 

unavailable in the high-level events. These high-level events are an appropriate match 

for most of a developer’s goals, but there are two cases where access to the original 

source data is beneficial: when a developer would like to conduct additional processing 

beyond object detection (such as recognizing an object as a unique instance, rather than 
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simply a member of a class) or when a developer would like to capture the raw image 

data for subsequent display. To accommodate this, Papier-Mâché provides access to the 

original pixel data along with the region of interest (roi) that the object was located in.  

8.7 Program Monitoring: Application State Display 

In addition to the Java programming api, Papier-Mâché provides application 

developers monitoring facilities (see figure 8.6). It displays the current input objects, 

image input and processing, and behaviors being created or invoked through the 

binding manager. 

8.7.1 Current objects and vision I/O 

At the left-hand side of the monitoring window, Papier-Mâché displays a three-level 

tree. This allows developers to see the current state of the system. The top level presents 

FIGURE 8.6 The monitoring window. In the 1st column, each current object appears in the hierarchy 
beneath the producer that sensed it. The 2nd column displays the vision input and output. The 3rd 
column displays classifiers (in this figure, RFID tags are associated with audio clips, and vision objects 
with graphical analogues). 
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the PhobProducer types. These are the broad input classes: rfid, vision, and barcode. 

The second level presents the PhobProducer instances. These are instances of objects 

creating input events; each instance is listed beneath its type. The bottom level presents 

the currently visible Phobs. Each Phob appears in the hierarchy beneath the producer 

that sensed it. The Phob displays a summary of its properties; VisionPhobs also have a 

circular icon showing their mean color.  

Raw camera input is displayed at the top of the second pane. At the bottom of the 

second pane is the processed image; it displays each object’s outline, bounding box, and 

orientation axis. Clicking on an object in either the “Current Phobs” view or the vision 

view highlights it in both views. 

8.7.2 Wizard of Oz control 

Papier-Mâché provides the richest Wizard of Oz (woz) input generation and removal 

of any tools for tangible interaction. This control is provided by the add and remove 

buttons at the bottom-left of the monitoring window. The functionality of these 

buttons change based on the selection in the left-hand column of the window. Selecting 

a producer type (the top-level of the hierarchy) and pressing the add button creates a 

new PhobProducer. The system queries the available devices, and presents a dialog box 

allowing the user to create a producer that uses real input or a “fake” producer that will 

be controlled by the user’s woz input. When a producer is selected, the remove button 

will remove it from the system, and the add button will create a new Phob with the 

selected producer as the source. For example, with computer vision, selecting a 

VisionPhobProducer and pressing add generates a Phob with a reference to the camera’s 

current image. When a Phob is selected, it can be removed by pressing remove, and its 

information can be updated by pressing update. In all cases, the created events appear 

exactly the same as if they had come from the sensor. This woz control is useful when 
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hardware is not available, and for reproducing scenarios during development and 

debugging. 

For example, Andy Kung developed the Collaborage rewrite on this laptop, and he 

did not always bring a camera with him. He saved several camera frames of the 

whiteboard in different states onto his laptop, and this allowed him to test the 

application when the camera was not connected to his computer. It also allowed him to 

repeatedly test the same exact scenarios so that he could verify that his code was 

functioning correctly. 

Papier-Mâché offers developers control over two axes that directly impact perform-

ance. The first is the time that the image processing thread should sleep between 

processing of images. Developers modify this through the slider at the top of the middle 

column of figure 8.6 (interframe sleep time). Applications requiring interactive 

feedback, such as Outpost, would benefit from a short sleep time (five or ten millisec-

onds); applications where there is no interactive feedback could reduce processor load 

by opting for a longer sleep time (perhaps half a second). The second choice developers 

must make is the minimum size of objects. This choice helps limit a flood of events 

about “objects” that may simply be noise in the image sensor. The slider in the middle 

of the monitoring window controls this parameter (minimum object size in pixels). To 

aid developers in making this choice, the size of currently detected objects is listed with 

each object on the left-hand panel and the size of all objects that match a classification 

is displayed with each object on the right-hand panel. Developers then choose a value 

that is safely below the smallest item. 
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8.8 Visually Authoring and Modifying Application Behavior 

Papier-Mâché’s graphical interfaces provides both monitoring information and author-

ing information. Section 8.7 described the monitoring uses of this system. This section 

describes the authoring functionality. Interacting with the visual authoring facilities 

allows developers to create and modify the application’s runtime code. Papier-Mâché 

uses xml as a persistent representation of the visually authored program. This is 

accomplished via jaxb, a tool for serializing Java objects [16]. 

To create new behaviors, developers select the technology that will provide the 

input on the left-hand side of the monitoring window and press the “add new classifier” 

button in the lower-right of the monitoring window. This invokes a dialog box to 

create a new binding between a class of physical input and an application behavior (see 

figure 8.7). A developer selects an input classifier on the left-hand side of the dialog; 

the set of available classifiers is based on the technology selected in the monitoring 

window. The developer then selects the type of application behavior that should be 

created on the right-hand side. The list comprises the set of all AssociationElt objects 

that have registered themselves with the monitoring window. By default, this is the five 

FIGURE 8.7 The dialog box for creating a new binding between input and behavior. 
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AssociationActions and four AssociationNouns that the Papier-Mâché library provides.  

Developers can implement their own AssociationElts and register them to provide 

custom behaviors. Developers then specify the parameters for the physical input they 

are interested in; one of these dialogs — for finding objects of a specified color — is 

shown in figure 8.8. The parameter specification dialogs were created by De Guzman 

and Ramírez [61]. Each dialog provides a graphical user interface where developers 

specify each of the classifiers parameters; visual feedback about the currently specified 

class is presented in the lower-left. The parameters of the classifier are initially set to 

the currently selected Phob in the monitoring window. For example, when the developer 

begins creating a new classifier in figure 8.7, a pair of olive-brown sunglasses is 

selected. Upon selecting MeanColorClassifier, the corresponding dialog appears with 

olive-brown as the selected color (see figure 8.8). This color-based classifier offers 

control over the mean color and the tolerance, specifying the span of colors to include.  

In the future, it may be more appropriate to have this value selected automatically 

by the system using techniques similar to Crayons [75]. 

FIGURE 8.8 A dialog box where developers specify the color of objects of interest. Dialog box 
designed by De Guzman and Ramírez [61]. 
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8.9 Summary 

The Papier-Mâché architecture presented in this chapter provides a low threshold 

development tool for tangible user interfaces. This architecture provides high-level 

events for input technologies such as computer vision, and separates the acquisition of 

device input from the interpretation of device input. This modularity enables different 

members of an equivalent device class (such as cameras with different apis) to use the 

same interpretation framework. It also enables vision developers to create different 

algorithms that perform the image interpretation task. The application receives 

information about this interpreted input through events. The event architecture is 

equivalent across all technologies; making it possible to rapidly explore different input 

technology alternatives. The binding manager contains {classifier, behavior} pairs and it 

is the recipient of these events. It invokes application behavior for each element the 

classifier matches. This manager facilitates multiplexed input, and, as with all elements 

of Papier-Mâché, it is instrumented such that its relevant information appears in the 

monitoring window. The monitoring window provides feedback about application 

behavior: input, how input is interpreted, and what behaviors are created. This Papier-

Mâché architecture successfully meets all of the design goals articulated at the 

beginning of the chapter.  
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9 Papier-Mâché Evaluation 

“Millions for compilers, but hardly a penny for understanding human 

programming language use. Now, programming languages are obviously 

symmetrical, the computer on one side, the programmer on the other. In an 

appropriate science of computer languages, one would expect that half the effort 

would be on the computer side, understanding how to translate the languages 

into executable form, and half on the human side, understanding how to 

design languages that are easy or productive to use.”  

— Alan Newell, 1985 [190]. 

In this chapter, we present the results of our evaluations of the Papier-Mâché 

architecture. The ui tools, psychology of programming, and empirical studies of 

programmers communities have demonstrated the utility of several types of evaluation. 

Through the application of these methods, this chapter contributes an understanding of 

the Papier-Mâché architecture and design considerations for tui software architectures 

more generally. Additionally, this dissertation is the first work to “triangulate” the 

design and usability issues of a software api by employing these methods in concert. 

Through the findings of these studies, we demonstrate in this chapter that different 

m

t

P
A

ethods yield different types of results, and composing the results of different 

echniques yields a fuller picture of the use issues of a software api. 

ortions of this chapter were originally published by the author, Jack Li, James Lin, and James 
. Landay in [133]. 
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9.1 Overview of Evaluation Methods 

While there has certainly been prior work on evaluating software tools, this area is 

much more limited than might be expected, perhaps because, as Détienne writes, “The 

dominant problems have been perceived as technical rather than as related to the usabil-

ity of the systems. The introspective approach, which is the common approach in this 

field, carries the illusion that usability problems are automatically handled: tool devel-

opers will use their own experience as the basis for judging the usefulness of the tools 

they develop” [62, p. 118]. 

The design of the Papier-Mâché architecture was informed by our application of 

three methods: 

• literature review (see section 2.8) 

• more than three years of experiential knowledge of the domain (see chapters 3–6) 

• structured interviews with nine tui developers (see chapter 7) 

In building the Designers’ Outpost and Books with Voices, we learned from our 

own experience. We learned from “explorers” in tangible interfaces through our litera-

ture review and interviews. We learned the scope of research in tangible interfaces, that 

there were substantial commonalities and repeated development effort across projects, 

and that researchers either tried or were curious about exploring different input technol-

ogy options for their projects. 

The resulting Papier-Mâché architecture was then evaluated using: 

• performance metrics (see section 9.2) 

• code metrics (see section 9.3) 

• a laboratory study with seven participants (see section 9.4) 

• analysis of longitudinal use by nine projects (see section 9.5). 

• reimplementing three inspiring applications (see section 9.6) 
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The performance metrics assess how well the Papier-Mâché architecture meets the 

performance needs of intended applications. The code metrics provide an understand-

ing of the complexity involved in building an application. 

A laboratory study helped us understand the novice use of Papier-Mâché in a 

controlled setting. The results of this study demonstrate that even first-time users could 

build tangible interfaces and easily adapt applications to another technology. Testing 

with novices users provides a lot of usability information, such as the understandability 

of class names, the quality of documentation, and where the system model is different 

than users’ initial conceptual model [197, ch. 1]. 

We also examined how application developers used Papier-Mâché in their own 

work. This technique has the opposite set of trade-offs from a laboratory study. The 

developers chose their own tasks, offering a realism and breadth unavailable in the 

laboratory. The time-scale was much longer, ranging from one week to several months. 

However, it is difficult to directly compare results between projects precisely because 

they are all different. 

A difficulty of our fieldwork is that the researchers we interviewed were technology 

experts in their area. One of the goals of the Papier-Mâché architecture was to open up 

tui development to a larger community. The laboratory study and project use overcome 

this difficulty by evaluating a developer’s first experience with programming (in the 

laboratory), and their longer use of the tool (in the developers’ own applications). 

9.2 Performance 

On contemporary hardware, Papier-Mâché runs at interactive rates. On a dual Pentium 

iii computer running Windows xp, the vision system runs at 5.0 frames per second 

without monitoring and 4.5 fps with monitoring, at a cpu load of 80 %. With the vision 

system and two rfid readers, the performance is 3.0 fps. The performance is more than 
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sufficient for forms and associative applications, and sufficient for topological and spatial 

applications with discrete events. There are two reasons why associative applications 

have weaker performance constraints. First, associative apps generally work as “physical 

hyperlinks,” and a few hundred milliseconds latency is not an issue for this goal. 

Second, the input and output is not generally geo-referenced and there is no continuous 

motion in these systems, so there is no need to very rapidly update the electronic 

information. Where tangible input provides a continuous, interactive control, current 

performance may be acceptable in some cases, but a minimum of 10 fps is required for 

these controls to feel truly interactive [50]. Of the 24 applications we surveyed, five 

required this continuous manipulation. Tuis built with tethered, 3d tracking systems 

[81, 108] (which are outside the application space that Papier-Mâché supports) also 

require this higher level of performance. 

The vast majority of this computation time is in the image processing code. While 

our code is reasonably optimal, Java is not a language known for its speed. The jai 

architecture partially addresses the traditional performance limitations of Java: jai is 

released as both a pure-Java cross-platform addition and with platform specific per-

formance packs. At runtime, image manipulation operations use the native performance 

pack code if it is available, and use cross-platform code otherwise. Porting Papier-

Mâché to Microsoft’s C# language would retain the benefits of the Papier-Mâché 

architecture and programming using managed code (e.g., garbage collection and 

security), and gain a significant performance increase. Jai’s performance attempts are 

reasonable, but it is not comparable to all native code. The drawback to a native code 

approach is that it would not be platform independent. Needless to say, most machines 

sold today are faster than the dual-processor Pentium iii used for these benchmarks, 

and thus performance is unlikely to be an issue for even continuous interactive control. 
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9.3 Lowering the Threshold: A Simple Application 

In addition to measuring how rapidly applications built with the toolkit execute, it is 

important to measure how rapidly a developer can build an application. A metric of the 

threshold for using a toolkit is the number of lines of code required by a basic 

application. The following Java code comprises the complete source for a simple 

application that graphically displays the objects found by the vision system. It is only 

four lines of code, three of which are constructor calls. 

Have the vision system generate objects from camera input. 

1 PhobProducer prod = new VisionPhobProducer (new 

CameraImageInput()); 

Create a factory that associates each object seen by the camera with a JPanel. The factory 

creates a JPanel for each object seen and adds the JPanel to the specified window. 

2 AssociationFactory factory = new VisualAnalogueFactory(new 

PMacheWindow(prod, CALIBRATE), JPanel.class); 

Create a binding manager that will receive events; this map contains the factory. 

3 BindingManager bindingMgr = new AssociationMap(factory); 

Attach the binding map to the camera, which will create, update, and remove JPanels 

according to what the camera sees. 

4 prod.addPhobListener(bindingMgr); 

This simple example illustrates that the threshold for creating an application with 

Papier-Mâché is quite low. The applications built in sections 9.4 to 9.6 demonstrate 

the small code size for more involved tui applications.  
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9.4 In-lab Evaluation 

We conducted a controlled evaluation of Papier-Mâché to learn about the usefulness of 

our input abstractions, event layer, and monitoring window. Seven graduate students in 

our university’s computer science department participated in the study: one in graphics, 

three in programming languages, two in systems, and one in ai. (We excluded hci 

students due to potential conflicts of interest, and theory students because their 

background is less appropriate.) All participants had experience programming in Java. 

9.4.1 Method 

We began each evaluation session by demonstrating an application associating rfid tags 

with audio clips, including an explanation of the monitoring window. We then asked 

the participant to read a seven page user manual introducing the toolkit (see appendix 

E). Next, we gave participants a warm-up task and two full tasks. The evaluation was 

conducted in our lab on a 400 mhz dual Pentium ii running Windows xp with the 

Eclipse 2.1.1 ide. We verbally answered questions about Java and Eclipse; for toolkit 

questions we referred participants to the user manual and online Javadoc. We asked 

participants to “think aloud” about what they were doing, and we videotaped the 

sessions and saved participants’ Java code for further review. 

The warm-up task was to change an application that finds red objects so that it 

finds blue objects. The first full task was to change an In/Out board written using 

computer vision to use rfid tags instead. The second full task was to write an applica-

tion that used rfid tags to control a slideshow. One tag represented a directory of 

images; the two other tags represented next and previous operations. 
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9.4.2 Results 

Every participant completed every task, though not without moments of difficulty. We 

take this to be a success of the api. In our first task, participants converted an In/Out 

board from vision to rfid in a mean time of 31 minutes using a mean of 19 lines of code 

(see table 9.1). This shows that technology portability is quite achievable with Papier-

Mâché. 

Participants appreciated the ease with which input could be handled. In addition to 

their verbal enthusiasm, we noted that no one spent time looking up how to connect to 

hardware, how input was recognized, or how events were generated. In our second task, 

participants authored an rfid-based image browser in a mean time of 33 minutes using 

a mean of 38 lines of code. Note that participants on average wrote code twice as fast in 

the second task as in the first, indicating that they quickly became familiar with the 

toolkit. Two of the participants directly copied code; one said, “So this is like the 

marble answering machine [in the user manual].” 

Ironically, the warm-up task — changing a colored-object finder from red to blue — 

proved to be the most challenging. The problem was that the classifier took a color 

parameter represented in the intensity-hue-saturation (ihs) color space, highly effective 

for image analysis but not intuitive to most computer scientists, who are used to the rgb 

color space. Participants had difficulty even though we explained that the color space 

 

TABLE 9.1 The task completion times and lines of code for the seven users in the Papier-Mâché 
laboratory study. 
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was ihs, not rgb. Once a color in the proper color space was found, it took less than a 

minute to make the change. Ideally, these parameters should not be specified textually 

at all. These results inspired our investigation of visual authoring tools (see section 

8.7). 

Overall, participants found the monitoring window to be very useful. For the warm-

up task, they used it to understand the (confusing) color classifier. For the In/Out board 

task, they used the monitoring window to get information about the attached rfid 

readers. When participants had errors in their code, they also used the monitoring 

window to verify that the input was not the source of these errors. 

We also uncovered several usability issues. The most glaring was an inconsistency in 

naming related elements: the superclass was named PhobGenerator, a subclass 

RFIDReader, and the accessor method getSource. The term generator is also inconsistent 

with how similar classes in the Java library are named (Java uses the term producer for 

similar classes). We addressed these issues by renaming the abstract superclass 

PhobProducer, the subclass RFIDPhobProducer, and the accessor method getProducer(). 

Other points of confusion highlighted places where our documentation was insufficient. 

We have since addressed these usability issues by improving the api, documentation, 

and method names based on the feedback from this study. 

9.5 Applications Using Papier-Mâché 

A more open-ended, longitudinal evaluation of Papier-Mâché was conducted by 

observing its use in class and research projects at UC Berkeley. In addition to providing 

valuable feedback about the toolkit, the availability of a low-threshold toolkit benefited 

the students and researchers to conduct research that otherwise would not have been 

possible. Between February 2003 and May 2004, nine groups of graduate and under-

graduate students used Papier-Mâché for their class and research projects: two groups 
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in a graduate hci course in the Spring of 2003 (section 9.5.1), four groups in a graduate 

ubiquitous computing course in the Fall of 2003 (section 9.5.2), and three other groups 

in the 2003-2004 academic year (section 9.5.3).  

9.5.1 Spring 2003, graduate human-computer interaction 

Two groups in the Spring 2003 offering of the graduate hci class at UC Berkeley built 

projects using Papier-Mâché. 

Physical Macros [60] (see figure 9.1) is a topological tui for programming macros, 

such as “actions” in Adobe Photoshop. In this system, users compose physical function 

blocks that represent image editing functions. When examining their code, we found 

that presenting geo-referenced visual feedback was a substantial portion of the code. 

Reflecting on this, we realized that many of our inspiring applications, including The 

Designers’ Outpost (see chapters 3, 4, and 5), also require this feature. For this reason, 

    

    

FIGURE 9.1 The Physical Macros class project: a wall-scale, topological TUI. At left, a set of 
physical operation cards placed on the SMART Board; the resize operator is parameterized with an 
electronic slider. At top right, the image resulting from the operations. At bottom right, the set of 
physical operation cards available to the user. 
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we introduced bindings where the location of physical input and electronic output could 

be coordinated. 

SiteView [33] (see figure 9.2) is a spatial tui for controlling home automation 

systems. On a floor plan of a room, users create rules by manipulating physical icons 

representing conditions and actions. The system provides feedback about how rules will 

affect the environment by projecting photographs onto a vertical display. SiteView 

employs a ceiling-mounted camera to find the location and orientation of the thermo-

stat and the light bulbs, and three rfid sensors for parameter input (weather, day of 

week, and time). 

The thermostat is distinguished by size; the bulbs are distinguished by size and 

color. In general, the system worked well, but human hands were occasionally picked 

up. This inspired our addition of an event filter that removes objects in motion. With 

this in place, human hands do not interfere with recognition. SiteView is roughly 3000 

lines of code; the input portion of the application is written in Papier-Mâché with only 

about 30 lines access. As a point of comparison, the Designers’ Outpost (see chapters 

3, 4, and 5) was built with OpenCV and required several thousand lines of vision code to 

     

FIGURE 9.2 SiteView, a spatial UI for end-user control of home automation systems. Left: A 
physical light-bulb icon on the floor plan, with projected feedback above. Right: The six physical 
icons. 
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provide comparable functionality. We consider this substantial reduction in code to be a 

success of the api. 

9.5.2 Fall 2003, ubiquitous computing  

Four students in the Fall 2003 offering of a graduate course on ubiquitous computing at 

UC Berkeley [63] used Papier-Mâché for a one-week mini-project. The goals of the 

mini-projects were tracking laser pointers, capturing Post-it notes on a whiteboard, 

invoking behaviors such as launching a web browser or email reader, and reading 

product barcodes. The quotes in this section are drawn from the students’ project 

reports. 

These programmers were impressed with the ease of writing an application using 

Papier-Mâché. One student was amazed that, “It took only a single line of code to set 

up a working vision system!” Another student remarked, “Papier-Mâché had a clear, 

useful, and easy-to-understand api. The ease with which you could get a camera and 

basic object tracking set up was extremely nice.” 

The students also extended the toolkit in compelling ways. One student’s extension 

to the monitoring system played a tone whenever an object was recognized, mapping 

the size of the recognized object to the tone’s pitch. This provided lightweight monitor-

ing feedback to the recognition process. 

These projects also unearthed some shortcomings of the Papier-Mâché library’s 

current vision algorithms. For example, the system tended to lose track of an object and 

then immediately find it again, causing the undesired firing of phobRemoved and 

phobAdded events. One student observed that vision algorithms are inherently 

ambiguous and requested better ways of dealing with the ambiguity. The vision 

requirements for our inspiring applications and for the projects created here can be 

reliably handled by contemporary techniques. The challenge is that these techniques are 
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more computationally intensive than the techniques currently included with the Papier-

Mâché library, indicating that the Java language would probably not be appropriate. 

Porting Papier-Mâché to C# would remove the performance limitations of the Java 

virtual machine while retaining the benefits of a managed, object-oriented language. 

This port would enable us to use more sophisticated techniques. Additionally, Papier-

Mâché should offer a richer model of ambiguity, and support techniques for mediating 

ambiguous input such as those introduced by Mankoff [165, 166]. 

9.5.3 Additional projects 

Three other Berkeley projects have used Papier-Mâché. The first is De Guzman and 

Ramírez’s ObjectClassifierViews [61]. This system provides a set of graphical user 

interface dialogs that allow users to create classifiers and modify their parameters (see 

figure 8.8). This work inspired us to integrate their code into Papier-Mâché and to 

provide a mechanism for saving applications created visually. This system, as integrated 

with Papier-Mâché, is discussed in section 8.8. 

The second is Lederer and Heer’s All Together Now [147] (see figure 9.3). All 

Together Now is an awareness tool: the locations of individuals in a space are captured 

 

FIGURE 9.3 ATN captures a bird’s-eye video feed of the physical space (left), locates people 
using computer vision (middle), and displays local actors' positions (orange) in a virtual space 
(right) shared with remote actors (green). Non-participating remote actors are placed in an 
observation deck. Each remote actor’s circle is marked with a yellow core in his personal view. 
(Picture on right is annotated for grayscale printers). Image from [147]. 
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through computer vision and presented abstractly on a web page. Remote individuals 

can “interact” with the local individuals by placing a marker of themselves on the space. 

Prior to All Together Now, the Papier-Mâché library only included edge detection, a 

stateless vision technique. The complexity of this scene and the low fidelity of the 

camera make stateless techniques impractical. Lederer and Heer implemented the 

background subtraction algorithm to overcome this. We incorporated their background 

subtraction code into the Papier-Mâché library. This experience showed us that it is 

possible for individuals interested in “getting under the hood” to change the vision 

algorithms used by Papier-Mâché, and that its overall architecture is modular enough to 

easily accommodate new algorithms. 

The last application that used Papier-Mâché is Matthews et al.’s Peripheral Display 

Toolkit (ptk) [171]. The ptk lowers the threshold for developing peripheral displays — 

systems that provide ambient awareness of information (such as the fluctuation of a 

stock price) without being obtrusive. Ptk uses the image acquisition portion of Papier-

Mâché as one of its input sources; ptk then abstracts this input and renders aspects of 

the input to an ambient display. All of our vision-based inspiring applications use 

continuous image processing. Ptk’s needs are distinct in two ways: 1) it does not use the 

built-in processing, only the acquisition, as it does its own processing to find motion in 

images, and 2) it needs new images so sporadically that it is more appropriate to ask for 

them than to have them pushed at a regular interval. This use of Papier-Mâché 

demonstrates that the input acquisition and vision processing are sufficiently distinct 

that the former could be used without the latter. It also encouraged us to include the 

ability to request images, rather than enforcing an event-driven model. 
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9.6 Inspiring Applications Rewritten with Papier-Mâché 

To complete the circle and validate Papier-Mâché’s ability to build some of our 

inspiring applications, Jack Li and Andy Kung, undergraduates working with the 

author on Papier-Mâché, reimplemented three applications: the marble answering 

machine [204], Books with Voices (see chapter 6), and Collaborage [180]. 

9.6.1 Marble Answering Machine 

The marble answering machine is an associative tui where physical marbles correspond 

to answering machine messages (see summary in section 2.8.3). Bishop’s prototype was 

never built. Jack Li’s code for this application is presented in appendix D.1. An elegant 

application, this is straightforward for a developer to create with Papier-Mâché. 

Excluding comments, white space, and imports, it comprises 18 lines of code. Note that 

this prototype does not communicate with the telephone system; it uses the audio 

system of a desktop pc. When an rfid tag is seen for the first time, the user records a 

message to it. Each subsequent time that a tag is seen, that recorded message is played 

back. Li also developed an alternate version that uses two readers: one reader designates 

recording, the other designates playback. This enables tag reuse. This marble answering 

machine implementation demonstrates a prototype that is more realistic than the 

original designer of the system was able to create. 

9.6.2 Books with Voices 

Books with Voices links physical transcripts to the recorded interviews they were 

derived from (see chapter 6). Jack Li implemented two alternate versions of this 

application: one uses rfid tags and the other uses barcodes. This simplified version of 

the application handles the user interaction but not the document creation software. 

The code for both is presented in appendix D.2. Excluding comments, white space, 
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and imports, the rfid version comprises 22 lines of code and the barcode version 30 

lines. The difference between the two versions lies in the initialization. The barcode 

version uses barcodes detected in a camera image. The developer must specify in the 

initialization what camera they would like to use for input, and then connect that input 

to the BarcodePhobProducer. This minimal difference between versions of this applica-

tion buttress the results of section 9.4.2, demonstrating that Papier-Mâché facilitates 

easily retargeting applications. 

9.6.3 Collaborage 

The Collaborage application connects documents on walls with database information 

(see summary in section 2.8.1). Andy Kung reimplemented a version of the Collab-

orage In/Out board, including connecting to a sql database back-end. This example is 

the most complex of the three. It consists of three files; the code is included in 

appendix D.3. Run.java is the primary application file; it contains 146 lines of code. 

Network.java provides the connection to the sql database; it contains 136 lines of code. 

Log.java prints a time-stamped log as elements are shifted between “In” and “Out”; this 

file contains 81 lines of code. This example, along with the results of section 9.5, 

illustrates that Papier-Mâché can be used to build more complex applications, and that 

it can be integrated with other tools that are needed to build these applications. 

9.7 Summary 

The results of the multiple evaluation techniques described in this chapter show that 

Papier-Mâché achieves its primary goals of 1) providing a low-threshold architecture for 

developing tangible interfaces, and 2) enables developers to rapidly switch input 

technologies. They also demonstrated that the monitoring facilities helped developers 

better understand application behavior. The longitudinal use of Papier-Mâché 
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demonstrates its ability to support novel tui applications, and that its modularity 

separating input acquisition, input interpretation, and application behavior enabled 

developers to incorporate and/or modify each of these independently. This longitudinal 

use also found that more sophisticated vision algorithms would lower recognition 

errors. Increased transfer of technology from the computer vision community to the hci 

community would greatly benefit the hci community, and as interfaces such as those 

presented in this dissertation become more commonplace, tuis could provide an 

important domain for computer vision researchers. 

 



218 

10 Conclusions and Future Work 

This dissertation demonstrated that an event-based software architecture employing 

high-level input abstractions can lower the threshold for tangible user interface 

development. This architecture also supports switching input technologies with 

minimal code changes. These architectural contributions are embodied in the Papier-

Mâché toolkit, which makes debugging easier through monitoring facilities that include 

Wizard of Oz control. Papier-Mâché is open-source software available at 

http://hci.stanford.edu/research/papier-mache. An important benefit of this low-

threshold, flexible architecture is that it opens development in this area to a wider 

community and enables rapid, iterative design. 

These architectural insights are grounded in our experience building two tangible 

interface applications: The Designers’ Outpost and Books with Voices. These systems 

contributed novel interaction techniques for merging the whiteboards and books found 

in our physical world with benefits of the electronic world: documents that flexibly 

move between tools, that offer design history and remote collaboration, and that 

provide direct-manipulation hyperlinks to a richer media experience.  

10.1 Contributions 

In this section, we restate the contributions listed at the beginning of the dissertation 

and summarize how each of these contributions was achieved. 

http://hci.stanford.edu/research/ papier-mache
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1 Toolkit support for tangible user interface input. The Papier-Mâché toolkit introduces a novel 

software architecture that: 

a Lowers the threshold for developing applications that employ tangible user interface 

input. This is accomplished with high-level abstractions of input technologies. 

Papier-Mâché provides input at the object level, rather than at the pixel or bits 

level; it also provides a library of interactive-rate computer vision algorithms and an 

architecture that separates the creation of additional algorithms (the domain of 

computer vision development) from the application (the domain of interface 

development). The evaluation results described in sections 9.3 to 9.6 demonstrate that 

the toolkit achieved this goal.  

b Supports switching input technologies with minimal code changes. The architecture 

structures input from all devices in a similar fashion. 

The Papier-Mâché architecture provides a common, event-based architecture for 

input technologies. The evaluation results described in sections 9.4, where novice tui 

developers were able to migrate an application to a different technology, and 9.6.2, 

which present two variants of an inspiring application, demonstrate that the 

architecture achieved this goal. 

c Makes debugging easier through monitoring facilities that include Wizard of Oz 

control. 

The monitoring window provides a visual interface that displays raw and 

interpreted input, as well as application behaviors. The Papier-Mâché toolkit is 

instrumented so that this information is updated as the application executes. The 

laboratory evaluation results described in section 9.4 demonstrate that it achieved this 

goal. 
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2 Interaction techniques that employ tangible user interface input to support professional work 

practices. The difficulty of implementing these applications inspired our research on toolkit 

support for tangible input. 

a The Designers’ Outpost integrates wall-scale, paper-based design practices with novel 

electronic tools to better support collaboration for early-phase design. This integration is 

especially helpful for fluidly transitioning to other design tools; access and exploration of 

design history; and remote collaboration. 

The Designers’ Outpost system (see chapters 3, 4, and 5) was evaluated with 27 

professional web site designers over a three-year period. The study of the initial 

interactive system (described in section 3.5) demonstrated the utility of the tangible 

interaction model. The study described in section 4.7 demonstrated the benefits of 

integrating design history. The study described in section 5.6 demonstrated the 

benefits of integrating remote collaboration. 

b The Books with Voices system introduces an augmented paper ui providing fast, 

random access to digital video while retaining the paper-based transcripts preferred by 

oral historians. 

The Books with Voices system (see chapter 6) was evaluated with 13 participants 

(see section 6.6). The study found that this lightweight, structured access to original 

recordings offered substantial benefits with minimal overhead. The study showed that 

integrating recordings offered a level of emotion in the video not available in the 

printed transcript. The video also helped readers clarify the text and observe nonverbal 

cues. 

3 Improved user-centered methods for the design and evaluation of software tools. 
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a Fieldwork with developers as a basis for the design of software tools, in order to better 

learn what software developers are really doing and what tool support would be 

beneficial. 

The fieldwork described in chapter 7 provided us with an important 

understanding of developers’ successes, limitations, design practices and requirements 

for tools supporting tangible interaction. 

b A triangulation method comprising controlled laboratory study, monitoring of longer-

term use in projects, and external metrics such as performance and code size for 

evaluating the usability of software apis. 

Each of the evaluation methods that we employed provided different information 

about the usability of Papier-Mâché. The performance metrics (section 9.2) 

demonstrate that the performance is sufficient for most of our inspiring applications. 

The code size metrics (section 9.3) demonstrate the low development threshold. The 

laboratory study (section 9.4) showed that first-time Papier-Mâché users could create 

and modify applications; it also allowed us to compare performance across users. 

Observing Papier-Mâché’s use in others’ work (section 9.5) enabled us to understand 

longitudinal use of the toolkit, and its use in a wider variety of applications of the 

developers’ own choosing. Lastly, reimplementing some of our inspiring applications 

(section 9.6) demonstrated that the toolkit could indeed build the systems it was 

designed for. This application of multiple methods offers a much fuller picture of a 

system’s usability. 

10.2 Limitations 

The Papier-Mâché toolkit attempts to satisfy three disparate groups of users: those 

interested in very rapid interaction prototyping, those interested in more detailed 
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interaction implementation, and those interested in computer vision algorithms. When 

architecture trade-offs forced us to privilege the needs of one of these groups, we chose 

those interested in interaction implementation. The results of chapter 9 show that we 

were successful in this endeavor. Our work on visual programming shows that there is a 

space of applications that can be prototyped very rapidly through a visual ui. This ui 

has a very low threshold, but also a low ceiling. The difficulty with any prototyping tool 

that generates a different format than the programming language does is that there is a 

seam between the two. Visual programs written with Papier-Mâché cannot be easily 

extended with Java code. While some environments support both visual authoring and 

scripting (such as Macromedia Director [5]), there is much work to be done on more 

seamlessly integrating these two programming styles. 

While prior work has largely concentrated on aiding the technologists (e.g., Intel’s 

OpenCV [40]), Papier-Mâché concentrates on supporting novel interaction design. 

This dissertation provides tools that enable a wider range of developers to create 

tangible interfaces. Additionally, the separation of concerns between vision 

development and interaction design in Papier-Mâché does indeed enable the two 

groups to work simultaneously. However, the tradeoff is that Java is an awkward 

language for computer vision. For those solely interested in prototyping vision 

algorithms, Matlab is a better choice, primarily because of its language-level support for 

computations involving arrays and matrices, and because of its extensive mathematical 

libraries. For those interested in writing production code, C and C++ are preferable 

because, while awkward for vision programming, they are fast at runtime. A general 

open problem in ubiquitous computing software tools is that the component pieces of 

these heterogeneous applications are best individually served by different programming 

models. One solution is to offer each community its ideal programming model, but this 

has the drawback that an individual must alternate between many languages and tools 
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to accomplish a single task or that applications can only be built by large groups. 

Balancing these design issues is an area of future research. 

10.3 Future Work 

This dissertation suggests several areas of future work. First, because the Papier-Mâché 

toolkit lowers the threshold for tui development and makes development available to a 

broader range of users, there is increased opportunity for applications research, for 

creative designs, for technology transfer of tui research, and for longitudinal 

deployment and evaluation of these systems. 

Second, ubiquitous computing tools would benefit from tools that provide 

integrated support for design, evaluation, and analysis. Klemmer et al.’s suede system 

for designing speech user interfaces [135] first introduced this integrated support. 

Ubicomp tools in this vein would support both Wizard of Oz evaluation and evaluation 

of functioning systems. Such tools could also provide visualizations illustrating what 

aspects of applications are actually used, the user and system performance aspects of 

these systems, and when recognition errors occur or when users have difficulty 

understanding the system (these could be flagged by the user or by an observer). 

Logging behavior over periods of extended behavior and visualizing that information is 

also an important area for future research.  

Third, as discussed in section 10.2, the heterogeneous technologies used in 

ubiquitous computing suggest research on improving the methods by which members 

of a design team collaborate through design tools. Tools should aid conversations by 

affording designers some understanding of the technical constraints of a system and 

technologists an understanding of the user needs, without requiring that either be an 

expert in the other’s domain. This is especially true for recognition-based technologies, 
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where the perplexity of the system (a term used in speech ui design to describe 

grammar size) has an impact on recognition rate. 

Fourth, the heterogeneous ubicomp technologies make it challenging to limit the 

size of a toolkit’s library components. With graphical user interfaces, there is a standard 

set of widgets, and these widgets span nearly all common applications. As research 

progresses, new interaction techniques are developed, but this rate of development is 

very small when compared to the size of applications. Papier-Mâché was able to limit 

the required library size by limiting applications to everyday objects: nearly all of our 

inspiring applications can be completely built with the three technologies in our library. 

It is an open research question how to limit the library size of tui support beyond 

everyday objects. 

Fifth, the heterogeneity of ubicomp technologies will benefit from continued 

research on model-based design techniques [241]. One example where model-based 

techniques could be applied is that Papier-Mâché’s architecture for rapidly changing 

input technologies could be extended to mechatronic and haptic user interfaces. 

Continued work on model-based techniques could aid designers in exploring 

applications of different form factors with radically different input and output 

technologies. This would benefit both designer’s abilities to explore alternatives and 

work iteratively and their ability to create interfaces that can be customized for 

individual situations and user needs. 

Lastly, there is continued research to be conducted on user-centered methods for 

interface design tools, and toolkits more generally. 

The work suggested here represents just a few of the many open research problems 

in creating design tools for tangible interaction. 
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10.4 Closing Remarks 

Our direct interactions with computers largely consist of planar pointing devices and 

alphabetic and numerical keyboards. Our interaction in the physical world is much 

richer and more heterogeneous. In exchange for this constrained model of interaction, 

computers offer highly dynamic media that we can search, visualize, edit, and share. 

The disciplines of graphic and industrial design create documents and artifacts that 

honor our intuitions and capabilities, but the benefits of computation have largely been 

absent from these creations. This dissertation takes steps toward interaction techniques 

and design tools for creating artifacts that offer computation in concert with intuitions. 
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A P P E N D I X  

A The Designers’ Outpost 
Evaluation Questionnaires 

1 Core Outpost Functionality 

This questionnaire was used in the study conducted in section 3.5 

1 How likely is it that you would integrate Outpost as a regular part of your web site 

design process? 

O Very Likely  

O Somewhat Likely  

O Neither Likely nor Unlikely  

O Somewhat Unlikely  

O Very Unlikely 

2 If you would use Outpost as part of your design process, what would you use it for? 

 

3 What would you see as the primary advantage of using Outpost as compared with your 

current practices? 

 

4 What effect do you think incorporating Outpost into your process would have on each 

of the following factors? (Use a scale from 0 to 10 where 0 means “A very negative 

effect” and 10 means “A very positive effect.”) 

a) Ability to communicate with clients 
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b) Ability to communicate with programming/development team members 

c) Ability to communicate with information architects 

d) Ability to communicate with user interface designers 

e) Ability to communicate with graphic designers 

f) Ability to communicate with copywriters 

g) Ability to communicate with design team members 

h) Ability to communicate with internal managers 

i) Ability to communicate with usability engineers/testers 

j) Ability to communicate with users 

k) Ability to conduct usability tests 

l) Overall expressiveness 

m) Overall efficiency 

5 What aspects of Outpost do you particularly like? 

 

6 What aspects of Outpost do you particularly dislike? 

 

7 What additional features would you like to see in Outpost? What would it take for 

Outpost to be truly useful to you? 

 

8 Which of the following activities do you engage in as part of your current web site 

design responsibilities? 

[ ] Information architecture 

[ ] Navigation design 

[ ] User interface design 

[ ] Interaction design 

[ ] Graphic design 
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[ ] Usability testing 

[ ] Usability evaluation (e.g., Heuristic Evaluation, Cognitive Walkthroughs) 

[ ] Project management 

[ ] Web site programming/development 

[ ] Development of interactive prototypes 

[ ] Copywriting 

[ ] Other 

9 Which of the following best describes your primary responsibility with respect to web 

site design? 

O Information architecture 

O Navigation design 

O User interface design 

O Interaction design 

O Graphic design 

O Usability testing 

O Usability evaluation (e.g., Heuristic Evaluation, Cognitive Walkthroughs) 

O Project management 

O Web site programming/development 

O Development of interactive prototypes 

O Copywriting 

O Other 

10 What percentage of your current workload is made up of web site design projects? 

O 0-25% 

O 26-50% 

O 51-75% 

O 76-100% 
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11 What other types of design projects are part of your current workload? 

[ ] User interface design for non-web-based productivity software 

[ ] Game design  

[ ] Other multimedia design  

[ ] Print design  

[ ] Industrial design 

[ ] Other type of design  

12 How long have you been involved in web site design? 

O Less than one year 

O 1-2 years 

O 2-3 years 

O 3-5 years 

O More than 5 years 

13 How long have you been involved in any kind of design (including user interface, print, 

multimedia, etc.)? 

O Less than one year 

O 1-2 years 

O 2-3 years 

O 3-5 years 

O 5-10 years 

O More than 10 years 

14 Other than web site design, which of the following best describes your background? 

O Graphic design 

O Industrial design 

O User interface design for non-web software 

O Other design 
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O Programming/Computer Science 

O Other engineering 

O Business 

O Other 

15 Including ongoing projects, how many web sites have you helped design? 

O 1-5 

O 6-10 

O 11-20 

O 20-50 

O More than 50 

16 What is the highest level of education that you have completed? 

O Some High School 

O High School Diploma 

O Some College 

O College Degree 

O Some Graduate School 

O Graduate or Professional Degree 

17 Which of the following degrees/higher education experiences do you have? 

[ ] A.A., field: 

[ ] Professional Certificate, field:  

[ ] B.A., field: 

[ ] B.F.A., field: 

[ ] B.S., field: 

[ ] Other bachelor’s or equivalent 

[ ] Some Graduate School, field: 

[ ] M.A., field: 
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[ ] M.F.A. field: 

[ ] M.S., field: 

[ ] M.F.A., field: 

[ ] Ph.D., field: 

[ ] Other graduate or professional degrees 
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2 Design History Mechanism 

This questionnaire was used in the study conducted in section 4.7 

1 How likely is it that you would integrate Outpost as a regular part of your web site 

design process? 

O Very Likely  

O Somewhat Likely  

O Neither Likely nor Unlikely  

O Somewhat Unlikely  

O Very Unlikely 

2 If you would use Outpost as part of your design process, what would you use it for? 

 

3 What would you see as the primary advantage of using Outpost as compared with your 

current practices? 

 

4 What effect do you think incorporating Outpost into your process would have on each 

of the following factors? (Use a scale from 0 to 10 where 0 means “A very negative 

effect” and 10 means “A very positive effect.”) 

a) Ability to communicate with clients 

b) Ability to communicate with programming/development team members 

c) Ability to communicate with information architects 

d) Ability to communicate with user interface designers 

e) Ability to communicate with graphic designers 

f) Ability to communicate with copywriters 

g) Ability to communicate with design team members 

h) Ability to communicate with internal managers 
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i) Ability to communicate with usability engineers/testers 

j) Ability to communicate with users 

k) Ability to conduct usability tests 

l) Overall expressiveness 

m) Overall efficiency 

5 What aspects of Outpost do you particularly like? 

 

6 What aspects of Outpost do you particularly dislike? 

 

7 What aspects of Outpost’s history system do you particularly like? 

 

8 What aspects of Outpost’s history system do you particularly dislike? 

 

9 What additional features would you like to see in Outpost? What would it take for 

Outpost to be truly useful to you? 

 

10 Which of the following activities do you engage in as part of your current web site 

design responsibilities? 

[ ] Information architecture 

[ ] Navigation design 

[ ] User interface design 

[ ] Interaction design 

[ ] Graphic design 

[ ] Usability testing 

[ ] Usability evaluation (e.g., Heuristic Evaluation, Cognitive Walkthroughs) 

[ ] Project management 
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[ ] Web site programming/development 

[ ] Development of interactive prototypes 

[ ] Copywriting 

[ ] Other 

11 Which of the following best describes your primary responsibility with respect to web 

site design? 

O Information architecture 

O Navigation design 

O User interface design 

O Interaction design 

O Graphic design 

O Usability testing 

O Usability evaluation (e.g., Heuristic Evaluation, Cognitive Walkthroughs) 

O Project management 

O Web site programming/development 

O Development of interactive prototypes 

O Copywriting 

O Other 

12 What percentage of your current workload is made up of web site design projects? 

O 0-25% 

O 26-50% 

O 51-75% 

O 76-100% 

13 What other types of design projects are part of your current workload? 

[ ] User interface design for non-web-based productivity software 

[ ] Game design  
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[ ] Other multimedia design  

[ ] Print design  

[ ] Industrial design 

[ ] Other type of design  

14 How long have you been involved in web site design? 

O Less than one year 

O 1-2 years 

O 2-3 years 

O 3-5 years 

O More than 5 years 

15 How long have you been involved in any kind of design (including user interface, print, 

multimedia, etc.)? 

O Less than one year 

O 1-2 years 

O 2-3 years 

O 3-5 years 

O 5-10 years 

O More than 10 years 

16 Other than web site design, which of the following best describes your background? 

O Graphic design 

O Industrial design 

O User interface design for non-web software 

O Other design 

O Programming/Computer Science 

O Other engineering 

O Business 
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O Other 

17 Including ongoing projects, how many web sites have you helped design? 

O 1-5 

O 6-10 

O 11-20 

O 20-50 

O More than 50 

18 What is the highest level of education that you have completed? 

O Some High School 

O High School Diploma 

O Some College 

O College Degree 

O Some Graduate School 

O Graduate or Professional Degree 

19 Which of the following degrees/higher education experiences do you have? 

[ ] A.A., field: 

[ ] Professional Certificate, field:  

[ ] B.A., field: 

[ ] B.F.A., field: 

[ ] B.S., field: 

[ ] Other bachelor’s or equivalent 

[ ] Some Graduate School, field: 

[ ] M.A., field: 

[ ] M.F.A. field: 

[ ] M.S., field: 

[ ] M.F.A., field: 
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[ ] Ph.D., field: 

[ ] Other graduate or professional degrees 
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3 Remote Collaboration 

This questionnaire was used in the study conducted in section 5.6 

Background Questionnaire 

1 Which of the following best describes your background? 

O Graphic design 

O Industrial design 

O User interface design for non-web software 

O Other design 

O Programming/Computer Science 

O Other engineering 

O Business 

O Other ____________________________________ 

2 Which of the following activities do you engage in as part of your current design 

responsibilities? 

[ ] Information architecture 

[ ] Navigation design 

[ ] User interface design 

[ ] Interaction design 

[ ] Graphic design 

[ ] Usability testing 

[ ] Usability evaluation (e.g. Heuristic Evaluation, Cognitive Walkthroughs) 

[ ] Project management 

[ ] Web site programming/development 

[ ] Development of interactive prototypes 
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[ ] Copywriting 

[ ] Other _____________________  

3 Approximately how often do you use: 

A. a computer ? Never Daily Weekly Monthly Yearly 

B. affinity diagramming or post-it information architecture 

Never Daily Weekly Monthly Yearly 

C. a computer diagramming language like MS Visio 

Never Daily Weekly Monthly Yearly 

4 Approximately how often do you: 

A. Collaborate with other people for the majority of a project 

Never Daily Weekly Monthly Yearly 

B. Collaborate with someone located in a different office 

Never Daily Weekly Monthly Yearly 

C. Travel to a design session Never Daily Weekly Monthly Yearly 
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Outpost Board Questionnaire 

1 Did you find the Outpost board more like a 

Whiteboard 
     

Computer

1 2 3 4 5 6 7 

 

2 The Outpost Board is: 

 
Strongly 

Disagree 

Disagree Neutral Agree Strongly 

Agree 

Useful 1 2 3 4 5 

Easy to Understand 1 2 3 4 5 

Easy to Learn 1 2 3 4 5 

Flexible 1 2 3 4 5 

Awkward 1 2 3 4 5 

Irrelevant 1 2 3 4 5 

Distracting 1 2 3 4 5 

  

3 What did you particularly like about the Outpost Board Interface? 

  

 

 

4 What did you particularly dislike about the Outpost Board Interface? What would you 

change? 
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Outpost Desk Questionnaire 

1 Did you find the Outpost desk more like a 

Whiteboard 
     

Computer

1 2 3 4 5 6 7 

 

2 The Outpost Desk is: 

 
Strongly 

Disagree 

Disagree Neutral Agree Strongly 

Agree 

Useful 1 2 3 4 5 

Easy to Understand 1 2 3 4 5 

Easy to Learn 1 2 3 4 5 

Flexible 1 2 3 4 5 

Awkward 1 2 3 4 5 

Irrelevant 1 2 3 4 5 

Distracting 1 2 3 4 5 

  

3 What did you particularly like about the Outpost Desk Interface? 

  

 

 

4 What did you particularly dislike about the Outpost Desk Interface? What would you 

change? 
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Post-Test Questionnaire 

1 How likely is it that you would integrate Outpost as a regular part of your work?  

 

 Very 

Unlikely  

Somewhat

Unlikely 

Neutral Likely Very 

Likely  

A. As is  
1  2  3  4  5  

B. As is with two desks  
1  2  3  4  5  

C. As is with two boards  
1  2  3  4  5  

D. Ideal Situation  

i.e., Bug Free and Adequate 

Performance, any desk/board 

configuration  

1  2  3  4  5  

 

2 I preferred the  

 

Outpost Board Configuration  Outpost Desk Configuration

1  2  3  4  5  6  7  

 

 

3 When working with a remote person, I found the following cues:  

 

  Very  

Distracting

Distracting Neutral Useful  Very 

Useful  

1. Voice/audio  
1  2  3  4  5  

2. Blob representing other’s 
1  2  3  4  5  
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location  

3. Transient ink  
1  2  3  4  5  

 

4 Please rate these tools in order of importance to you in using this system:  

(1=most important, 3 = least important)  

1. Voice/audio  

2. Blob representing other’s location 

3. Transient ink  

 

5 Please rate these systems for remote collaboration:  

 (1 = best, 5 = worst)  

A. Outpost Board _____  

B. Outpost Desk _____  

C. Visio _____  

D. Whiteboard _____  

E. Email _____  

 

6 What aspects of Outpost do you particularly like or find the most useful?  

 

 

7 What aspects of Outpost in general do you particularly dislike or want changed?  
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8 What additional features would you like to see in Outpost? What would it take for 

Outpost to be truly useful to you?  

 

9 How would you compare working with Outpost for a remote design task vs. a 

diagramming system like Microsoft Visio?  

 

10 How would you compare working with Outpost for a remote design task vs. a 

whiteboard?  
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B Books with Voices Evaluation 
Questionnaire 

This questionnaire was used in the study conducted in section 6.6 

Background 

1 What is your occupation and what discipline are you in? (e.g., history, art, film, 

transcriber.) What institution is your occupation associated with? (e.g., university, 

television studio, museum) 

 

 

2 How many oral histories have you used in your research before? 

O None 

O 1-5 

O 5-10 

O over 10 

 

3 How many oral histories have you conducted before? 

O None 

O 1-5 

O 5-10 

O over 10 
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4 Where do you read and access oral histories? 

O In front of your computer at your desk 

O In a quiet room in the library 

O In a noisy room (e.g., a café) 

O While you are traveling (e.g., train, plane)  

O Other, please specify __________________ 

 

5 How long have you been making or using oral histories? 

O Less than one year 

O 1-2 years 

O 2-3 years 

O 3-5 years 

O More than 5 years 

 

6 What is the highest level of education that you have completed? 

O Some High School 

O High School Diploma 

O Some College 

O College Degree 

O Some Graduate School 

O Graduate or Professional Degree 
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Working with Oral Histories 

7 What is the average length of the oral histories that you create and/or use in your 

research?  

O 1-25 pages  

O 25-50 pages 

O 50-100 pages  

O 100-200 pages 

O More than 200 pages 

 

8 How often have you looked at the original audio/video recording?   

O None 

O 1-5 

O 5-10 

O over 10 

 

9 For what purpose do you look at the original media? 

O To clear up something you don’t understand in the transcript 

O To see the emotional state of the interviewee during a certain passage 

O To understand the context of the passage 

O Out of curiosity, to see and hear the interviewee 

O To better understand or clarify the topic of discussion 

O To verify the accuracy of the transcript 

O To compare the final transcript with the original interview 

O Other, please specify ________________________ 

 

10 What role do oral histories play in your end product? (Choose all that apply) 
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O Data for analysis 

O Direct quotes 

O Background information 

O Specific historical information 

O Mood setting  

O Other, please specify _________________________ 

 

 

11 What part of the interview do you find most useful? 

O Full interview transcript 

O Full video 

O Summary of transcript (if available) 

O Certain passages 

O Certain video clips 

O Other, please specify ____________ 

 

12 What information do you look for in an interview? (Choose all that apply) 

O Specific dates as given by the interviewee 

O Emotional state of the interviewee 

O Abstract themes within the interview 

O Concrete ideas dealt with in the interview  

 

13 Currently, how do you read oral histories? 

O From start to finish slowly 

O Skim briefly from start to finish  

O Only read certain sections carefully 
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O Read/skim over more than once 

Do you ever skip sections? If so, why? 

 

14 Why do you use oral histories?   

O For background information 

O Out of your own personal interest 

O To use as an example in a class 

O As a source for a research paper 

O To understand a specific historical event 

O To learn more about a specific person 

O Other, please specify _____________ 

 

15 Write a little bit about the kinds of information you gather from oral histories, e.g., 

dates, names, references to specific events, quotes, … 

 

16 In your research, do you ever share sections of oral histories with others? 

O No. 

O Very occasionally. 

O Somewhat regularly. 

O All the time. 

 

17 Please attach to this questionnaire a sample of how you’ve used an oral history in your 

research. (e.g., quotes)  How was oral history incorporated into this sample? 
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Books with Voices software 

18 Were the barcodes in convenient places for you while scanning the video? Was the 

spacing of the barcodes acceptable? If not, how often would you like to see a barcode? 

O I’d like barcodes a lot more often 

O I’d like barcodes a bit more often 

O The number of barcodes was about right 

O I’d like barcodes a bit less often 

O I’d like barcodes a lot less often 

 

19 Do you have any thoughts on the aesthetics or visual design of the paper transcripts? 

 

 

20 Was there a significant difference between how the video and the transcript helped you 

understand the context? Which did you use, the video or the transcript? 

O Only video 

O Only transcript  

O Used the video more than the transcript 

O Used the transcript more than the video 

O Used both equally to judge the content 

Did you find yourself confused by either one or the other? If so, which? 

 O Video O Transcript 

 

21 Would you want to have a summary of the interview (e.g., timeline, abstract) as well as 

the full transcript? Or would it make you less motivated to read through the full 

interview? 
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22 Do you feel that Books with Voices would change your usage practice? How? 

 

23 How likely is it that you would use Books with Voices while reading oral histories? 

O Very Likely 

O Somewhat Likely 

O Neither Likely nor Unlikely 

O Somewhat Unlikely 

O Very Unlikely 

 

24 What effect do you think incorporating this system into your process would have on 

each of the following factors? (Use a scale from 0 to 10 where 0 means “A very negative 

effect” and 10 means “A very positive effect.”) 

a.) Ability to understand the full context of the interview 

b.) Ability to find specific information 

c.) Ability to search through the interview 

d.) Overall efficiency 

 

25 What aspects of the system do you particularly like? 

 

 

26 What aspects of the system do you particularly dislike? 

 

 

27 How did it feel to use this device? Did you find the system easy to use? What aspects of 

the system were confusing? 
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28 Would you like headphones as an additional feature? Did you feel a need for volume 

control? 

 

 

29 What other functionality would you like the device to have? (Choose all that apply) 

O Take notes 

O Keep a record of clips that you scanned 

O Email you with information from the interview 

O Other, please specify _____________________ 

 

30 What additional features would you like to see in the system? What would it take for 

the system to be truly useful to you? 

 

31 What role, if any, do you think Books with Voices could play in editing transcripts? 

 

 

32 What role, if any, do you think Books with Voices could play in data/quote gathering 

for your research? 

 

 

33 What would be the largest barrier to your using the software? 

O Converting the video or audio interviews into digital format. 

O Creating time-stamped transcriptions. 

O Acquiring a pda with a barcode scanner. 

O Legal issues (e.g., clearance from the interviewee) 
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O Other ________________________ 

 

 

34 What are your thoughts on using Books with Voices to help you keep track of 

important parts of an oral history? (e.g., the software could keep a list of video sections 

that you’ve watched, or swiping a section with a barcode could add it to a list.) Would 

something like this be valuable? How might it work? 

 

35 Would the above mentioned functionality be useful for sharing? (e.g., emailing sections 

to someone when they’re swiped with a barcode.) How might it work? 
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C Papier-Mâché Fieldwork 
Questionnaire 

This questionnaire was used in the fieldwork conducted in chapter 7 

Background 

1 How did you get the idea for your system? 

 

2 Did you speak with any users before building your system? If so, who did you speak 

with, and what did you learn? 

 

3 Please summarize what interaction techniques your system offers. Include a reference to 

a paper/url describing your system if you like. 

 

4 What kinds of prototypes did you create? (i.e., Paper prototypes, rapid software 

prototypes, etc.). Briefly, what did you learn from each prototype? 

 

5 What were the main principles you kept in mind during the design and implementation 

phase? 

 

6 What was the application that you wanted to build, but couldn’t due to technology 

limitations? 



appendix C · Papier-Mâché Fieldwork Questionnaire 280 

 

 

7 What are your user conceptual models in your application? What are these models, and 

how did you come up with them? 

 

Planning and Organizational Structure: 

8 What was the time frame for your project? 

 

9 How many people worked on the project? What were their backgrounds, and what role 

did they play in the project?   

 

10 What types of problems did you run into during software integration? How often did 

your software team integrate code? 

 

Software Design 

11 What hardware did you use? Why did you choose this hardware? 

 

12 Please draw a diagram of how the software works. (Feel free to use another sheet of 

paper.) Are the different components self sufficient, or do they depend on one another? 

 

13 Why did you choose this software design? What were the downfalls of other choices? 

 

14 Over the course of the project, what parts of the system were refactored or redesigned? 

Why? 

 

15 What types of events are used in your implementation? 
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16 What software tools did you use, if any? 

 

17 What code did you reuse from prior projects or prototypes? Or did you find yourself 

rejecting code from prior prototypes? 

 

18 What programming language(s) did you use? Why? 

 

19 What other types of possible applications were already available for your use? 

  

User and System Evaluation:  

20 What types of system tests and performance tests did you run? What metrics were 

measured in these tests? What performance goals were difficult or important to achieve? 

 

21 What tests did you run with users? What did the users find that worked well? What 

problems did the users find?   

 

22 What would you have done differently in building your system? (i.e., user interactions 

or design) 

 

Difficulties 

23 What was most frustrating about the development process? And what was the must 

frustrating about the design process? 

 

24 What types of unexpected problems did you run into during implementation? 
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25 What problems were created due to the hardware you chose? 

 

26 What were the software/hardware performance requirements for your system? Was 

meeting these requirements a challenge? (e.g., sensor responsiveness or resolution.) 

How? 

 

27 What was the hardest part of design? Of implementation? Of testing? 

 

28 Do you have any specific requests or suggestions for functionality that a toolkit could 

provide? 

 

 



283 

A P P E N D I X  

D Sample Papier-Mâché 
Applications 

1 Marble Answering Machine 
import edu.berkeley.guir.papier_mache.*; 
import edu.berkeley.guir.papier_mache.assoc.*; 
import edu.berkeley.guir.papier_mache.assoc.classifier.*; 
import edu.berkeley.guir.papier_mache.assoc.factory.*; 
import edu.berkeley.guir.papier_mache.assoc.factory. 

mediaclip.AudioClip; 
import edu.berkeley.guir.papier_mache.rfid.RFIDManager; 

 
/** 
 * @author  Jack Li 
 * 
 */ 
public class MarbleAnswering extends 

DefaultAssociationFactory { 
 public static void main(String args[]) { 
  PapierMache.displayMonitoringWindow(); 
  final RFIDManager manager = RFIDManager.getManager(); 
  final BindingManager assocMap = new BindingManager(); 
   
  final ObjectClassifier classifier = new 

AcceptAllClassifier(); 
  final AssociationFactory factory = new StringFactory(); 
  assocMap.addClassifierFactoryPair(classifier, factory); 
  manager.addPhobListenerForAllProducers(assocMap); 
 } 
 
 public AssociationElt createAssociationEltForPhob(final Phob 

phob) { 
  return new AudioClip(); 
 } 
 
 public String toShortString() { 
  return "MediaFactory"; 
 } 
} 
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2 Books with Voices 

RFID Version 
import edu.berkeley.guir.papier_mache.*; 
import edu.berkeley.guir.papier_mache.assoc.*; 
import edu.berkeley.guir.papier_mache.assoc.classifier.*; 
import edu.berkeley.guir.papier_mache.assoc.factory. 

AssociationElt; 
import edu.berkeley.guir.papier_mache.assoc.factory. 

mediaclip.*; 
import edu.berkeley.guir.papier_mache.rfid.RFIDManager; 
 
/** 
 * @author  Jack Li 
 */ 
public class BooksWithVoices { 
 public BooksWithVoices() { 
  PapierMache.displayMonitoringWindow(); 
  final RFIDManager manager = RFIDManager.getManager(); 
  final BindingManager assocMap = new BindingManager(); 
 
  final MediaClip media = new VideoClip(); 
  final ObjectClassifier secondProducer = new 

AcceptAllClassifier(); 
  final AssociationFactory randomAccessTimepoints = new 

AssociationFactory() { 
 
   public AssociationElt createAssociationEltForPhob(Phob 

phob) { 
    return new RandomAccessPlayElt(media); 
   } 
 
   public String toShortString() { 
    return "Random Access Times"; 
   } 
  }; 
  assocMap.addClassifierFactoryPair(secondProducer, 
    randomAccessTimepoints); 
 
  manager.addPhobListenerForAllProducers(assocMap); 
 } 
 
 public static void main(String[] args) { 
  new BooksWithVoices(); 
 } 
} 

Barcode Version 
import edu.berkeley.guir.papier_mache.*; 
import edu.berkeley.guir.papier_mache.assoc.*; 
import edu.berkeley.guir.papier_mache.assoc.classifier.*; 
import edu.berkeley.guir.papier_mache.assoc.factory. 

AssociationElt; 
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import edu.berkeley.guir.papier_mache.assoc.factory. 
mediaclip.*; 

import edu.berkeley.guir.papier_mache.barcode. 
BarcodePhobProducer; 

import edu.berkeley.guir.papier_mache.input.*; 
import edu.berkeley.guir.papier_mache.input.CameraImageInput. 

NoCameraFoundException; 
import edu.berkeley.guir.papier_mache.vision. 

VisionPhobProducer; 
 
/** 
 * @author  Jack Li 
 */ 
public class BooksWithVoicesBarcode { 
 public BooksWithVoicesBarcode() { 
  PapierMache.displayMonitoringWindow(); 
  ImageInputDevice imageInput; 
  try { 
   imageInput = new CameraImageInput(); 
  } catch (NoCameraFoundException e) { 
   System.out.println("Error: no camera found"); 
   return; 
  } 
  final VisionPhobProducer visionGen = new 

VisionPhobProducer(imageInput); 
  final PhobProducer producer = new 

BarcodePhobProducer(visionGen); 
  final BindingManager assocMap = new BindingManager(); 
 
  final MediaClip media = new VideoClip(); 
  final ObjectClassifier secondProducer = new 

AcceptAllClassifier(); 
  final AssociationFactory randomAccessTimepoints = new 

AssociationFactory() { 
 
   public AssociationElt createAssociationEltForPhob(Phob 

phob) { 
    return new RandomAccessPlayElt(media); 
   } 
 
   public String toShortString() { 
    return "Random Access Times"; 
   } 
  }; 
  assocMap.addClassifierFactoryPair(secondProducer, 
    randomAccessTimepoints); 
 
  producer.addPhobListener(assocMap); 
 } 
 
 public static void main(String[] args) { 
  new BooksWithVoicesBarcode(); 
 } 
} 
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3 Collaborage 

Run.java 
package edu.berkeley.guir.examples.collaborage; 
import edu.berkeley.guir.papier_mache.Phob; 
import edu.berkeley.guir.papier_mache.barcode.*; 
import edu.berkeley.guir.papier_mache.event.*; 
import edu.berkeley.guir.papier_mache.input.*; 
import edu.berkeley.guir.papier_mache.vision.*; 
 
/** 
 * @author  Andy Kung 
 */ 
public class Run implements PhobListener { 
 private static final int SLEEP_MILLISECS = 15; 
 private static final int MIN_OBJECT_SIZE = 200; 
  
 //TABLE DATA: Assume these data are constant and given. 
 private static final int TABLE_X = 0; 
 private static final int TABLE_Y = 0; 
 private static final int TABLE_WIDTH = 344; 
 private static final int TABLE_HEIGHT = 504; 
 private static final int IN_COL_WIDTH = TABLE_WIDTH / 3; 
 private static final int OUT_COL_WIDTH = TABLE_WIDTH / 3; 
 private static final int COMMENT_WIDTH = TABLE_WIDTH / 3; 
 private static final int OFFSET = 20; 
  
 //Camera or image files 
 private static VisionPhobProducer visionGen; 
  
 //COMPONENTS 
 private static Log log; 
 private static Network network; 
 private static CommentImage commentImage; 
 
 public static void main(String[] arg) { 
 
  //Used with image files 
   
  visionGen = new VisionPhobProducer(new 

FilesImageInput("C:\\dev\\production\\Collages\\test\\te
st")); 

   
  //Used with a camera 
  /* 
  final VisionPhobProducer visionGen = new 

VisionPhobProducer( 
   new CameraImageInput(SLEEP_MILLISECS), MIN_OBJECT_SIZE); 
  */ 
  final BarcodePhobProducer barcodeGen = 
   new BarcodePhobProducer(visionGen, BarcodePhob.CYBERCODE); 
   
  barcodeGen.addPhobListener(new Run()); 
  visionGen.addPhobListener(new Run()); 
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  //Network Database 
  //network = new Network();   
   
  //Comment Image 
  commentImage = new CommentImage(); 
   
  //Log 
  log = new Log(); 
   
 } 
 
 public void phobAdded(PhobEvent event) { 
  Phob phob = event.getPhob(); 
 
  if (phob instanceof BarcodePhob) { 
   String id = ((BarcodePhob) phob).getTagID(); 
   VisionPhobCollection barcodeVision = 
    ((BarcodePhob) phob).getVisionPhobCollection(); 
   if (isInInColumn((VisionPhob) barcodeVision)) { 
    System.out.println("Type " 
      + Integer.toString(((BarcodePhob) phob).getType()) 
      + " Barcode " 
      + id 
      + " Added in IN Column."); 
    //Log Action 
    Person p = network.getUser(id); 
    log.writeLog("[id: " + id + "] " + p.name_first + " " + 

p.name_last + " is IN."); 
    network.insertToBoard(id, p.name_first+" "+p.name_last, 

true, "hello world"); 
    //commentImage.writeJPG("hi", visionGen.getImage()); 
   } else if ( 
    isInOutColumn((VisionPhob) barcodeVision)) { 
    System.out.println( 
     "Type " 
      + Integer.toString(((BarcodePhob) phob).getType()) 
      + " Barcode " 
      + id 
      + " Added in OUT Column."); 
    //Log Action 
    Person p = network.getUser(id); 
    log.writeLog("[id: " + id + "] " + p.name_first + " " + 

p.name_last + " is OUT."); 
    network.insertToBoard(id, p.name_first+" "+p.name_last, 

false, "hello world"); 
 
   }     
 
  } else if (phob instanceof VisionPhob) { 
   if (isInInColumn((VisionPhob) phob)) { 
    //System.out.println("Non-Barcode Phob Added in IN 

Column."); 
   } else if ( 
    isInOutColumn((VisionPhob) phob)) { 
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    //System.out.println("Non-Barcode Phob Added in OUT 
Column."); 

   } 
   if (isInCommentColumn((VisionPhob) phob)) { 
    //System.out.println("Comment Phob Added."); 
   } 
 
  } 
 } 
 
 public void phobUpdated(PhobEvent event) {} 
 
 public void phobRemoved(PhobEvent event) { 
  Phob phob = event.getPhob(); 
  if (phob instanceof BarcodePhob) { 
   //Use this block when testing with a camera!  
   String id = ((BarcodePhob) phob).getTagID(); 
   VisionPhobCollection barcodeVision = 
    ((BarcodePhob) phob).getVisionPhobCollection(); 
   if (isInInColumn((VisionPhob) barcodeVision)) { 
    System.out.println( 
     "Type " 
      + Integer.toString(((BarcodePhob) phob).getType()) 
      + " Barcode " 
      + id 
      + " Removed in IN Column."); 
   } else if ( 
    isInOutColumn((VisionPhob) barcodeVision)) { 
    System.out.println( 
     "Type " 
      + Integer.toString(((BarcodePhob) phob).getType()) 
      + " Barcode " 
      + id 
      + " Removed in OUT Column."); 
   } 
   //Log Action 
    
   Person p = network.getUser(id); 
   log.writeLog("[id: " + id + "] " + p.name_first + " " + 

p.name_last + " is REMOVED."); 
   network.deleteFromBoard(id); 
 
  } else if (phob instanceof VisionPhob) { 
   if (isInInColumn((VisionPhob) phob)) { 
    //System.out.println("Non-Barcode Phob Removed in IN 

Column."); 
   } else if ( 
    isInOutColumn((VisionPhob) phob)) { 
    //System.out.println("Non-Barcode Phob Removed in OUT 

Column."); 
   } else if (isInCommentColumn((VisionPhob) phob)) { 
    //System.out.println("Comment Phob Removed.");  
   } 
  } 
 } 
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 public boolean isInTable(VisionPhob phob) { 
  int x = phob.getBounds().x; 
  int y = phob.getBounds().y; 
  int width = phob.getBounds().width; 
  int height = phob.getBounds().height; 
  if (!((x > TABLE_X) && (x + width < TABLE_X + 

TABLE_WIDTH))) { 
   return false; 
  } 
  if (!((y > TABLE_Y) && (y + height < TABLE_Y + 

TABLE_HEIGHT))) { 
   return false; 
  } 
  return true; 
 } 
 
 public boolean isInInColumn(VisionPhob phob) { 
  int x = phob.getBounds().x; 
  int width = phob.getBounds().width; 
  if (!((x > TABLE_X - OFFSET) && (x + width < TABLE_X + 

IN_COL_WIDTH + OFFSET))) { 
   return false; 
  } 
  return true; 
 } 
 
 public boolean isInOutColumn(VisionPhob phob) { 
  int x = phob.getBounds().x; 
  int width = phob.getBounds().width; 
  if (!((x > TABLE_X + IN_COL_WIDTH - OFFSET) 
   && (x + width < TABLE_X + IN_COL_WIDTH + OUT_COL_WIDTH + 

OFFSET))) { 
   return false; 
  } 
  return true; 
 } 
 
 public boolean isInCommentColumn(VisionPhob phob) { 
  int x = phob.getBounds().x; 
  int width = phob.getBounds().width; 
  if (!((x > TABLE_X + IN_COL_WIDTH + OUT_COL_WIDTH) 
   && (x + width < TABLE_X + IN_COL_WIDTH + OUT_COL_WIDTH + 

COMMENT_WIDTH))) { 
   return false; 
  } 
  return true; 
 } 
} 

Network.java 
package edu.berkeley.guir.examples.collaborage; 
 
import java.sql.*; 
 
/** 
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 * @author  Andy Kung 
 */ 
 
//Network class requires org.gjt.mm.mysql.Driver. 
//The database include 2 tables, collaborage and 
//collaborage_users.  
//Database currently running on www.andykung.net 
public class Network { 
 Connection con; 
 String DATABASE, LOGIN, PASSWORD; 
 
 //Establish connection information 
 public Network() { 
  DATABASE = "jdbc:mysql://mysql.andykung.net/net_andykung"; 
  LOGIN = "andykung_net"; 
  PASSWORD = " "; 
 } 
 
 //Query user database and find out user names. 
 public Person getUser(String id_tag) { 
  Person p = new Person("00000", "Unknown", "Tag"); 
  try { 
   new org.gjt.mm.mysql.Driver(); 
   Connection test = DriverManager.getConnection(DATABASE, 

LOGIN, 
     PASSWORD); 
   PreparedStatement stm; 
   stm = test 
     .prepareStatement("select * from collaborage_users where 

TAG=?;"); 
   stm.setString(1, id_tag); 
   ResultSet rs = stm.executeQuery(); 
   con = DriverManager.getConnection(DATABASE, LOGIN, 

PASSWORD); 
 
   if (rs.next()) { 
    p = new Person(id_tag, rs.getString("FIRST_NAME"), rs 
      .getString("LAST_NAME")); 
   } else { 
    System.out.println("Error: Tag ID Not Found in 

Database."); 
   } 
   con.close(); 
  } catch (SQLException sqlException) { 
   System.out.println("SQL Exception"); 
  } 
  return p; 
 } 
 
 //delete all entries in the collaborage table. 
 public void clearBoard() { 
  try { 
   new org.gjt.mm.mysql.Driver(); 
   con = DriverManager.getConnection(DATABASE, LOGIN, 

PASSWORD); 
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   Statement updateHost = con.createStatement(); 
   updateHost.executeUpdate("delete from collaborage"); 
 
   con.close(); 
  } catch (SQLException sqlException) { 
   System.out.println("SQL Exception"); 
  } 
 } 
 
 //insert new entries in the collaborage table 
 public void insertToBoard(String tag, String name, boolean 

in, 
   String comments) { 
  String in_name = " "; 
  String out_name = " "; 
  if (in) { 
   in_name = name; 
   out_name = "-"; 
  } else { 
   in_name = "-"; 
   out_name = name; 
  } 
  try { 
   new org.gjt.mm.mysql.Driver(); 
   Connection test = DriverManager.getConnection(DATABASE, 

LOGIN, 
     PASSWORD); 
   PreparedStatement stm; 
   stm = test 
     .prepareStatement("select * from collaborage where 

TAG=?;"); 
   stm.setString(1, tag); 
   ResultSet rs = stm.executeQuery(); 
 
   PreparedStatement updateHost; 
   con = DriverManager.getConnection(DATABASE, LOGIN, 

PASSWORD); 
   if (rs.next()) { 
    updateHost = con 
      .prepareStatement("update collaborage set IN_NAME 

= ?, OUT_NAME = ?, COMMENTS = ? where TAG = ?;"); 
    updateHost.setString(1, in_name); 
    updateHost.setString(2, out_name); 
    updateHost.setString(3, comments); 
    updateHost.setString(4, tag); 
    updateHost.executeUpdate(); 
   } else { 
    updateHost = con 
      .prepareStatement("insert into collaborage(TAG, 

IN_NAME, OUT_NAME, COMMENTS) values(?,?,?,?);"); 
    updateHost.setString(1, tag); 
    updateHost.setString(2, in_name); 
    updateHost.setString(3, out_name); 
    updateHost.setString(4, comments); 
    updateHost.executeUpdate(); 
   } 
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   con.close(); 
   test.close(); 
  } catch (SQLException sqlException) { 
   System.out.println("SQL Exception"); 
  } 
 } 
 
 //update collaborage table 
 public void updateBoard(String tag, String name, boolean in, 

String comments) { 
  String in_name = " "; 
  String out_name = " "; 
  if (in) { 
   in_name = name; 
   out_name = "-"; 
  } else { 
   in_name = "-"; 
   out_name = name; 
  } 
  try { 
   new org.gjt.mm.mysql.Driver(); 
   con = DriverManager.getConnection(DATABASE, LOGIN, 

PASSWORD); 
 
   PreparedStatement updateHost; 
   updateHost = con 
     .prepareStatement("update collaborage set IN_NAME = ?, 

OUT_NAME = ?, COMMENTS = ? where TAG = ?;"); 
   updateHost.setString(1, in_name); 
   updateHost.setString(2, out_name); 
   updateHost.setString(3, comments); 
   updateHost.setString(4, tag); 
   updateHost.executeUpdate(); 
 
   con.close(); 
  } catch (SQLException sqlException) { 
   System.out.println("SQL Exception"); 
  } 
 } 
 
 //delete entries from collaborage table. 
 public void deleteFromBoard(String tag) { 
  try { 
   new org.gjt.mm.mysql.Driver(); 
   con = DriverManager.getConnection(DATABASE, LOGIN, 

PASSWORD); 
 
   PreparedStatement updateHost; 
   updateHost = con 
     .prepareStatement("delete from collaborage where TAG = 

?"); 
   updateHost.setString(1, tag); 
   updateHost.executeUpdate(); 
 
   con.close(); 
  } catch (SQLException sqlException) { 
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   System.out.println("SQL Exception"); 
  } 
 } 
 
} 

Log.java 
package edu.berkeley.guir.examples.collaborage; 
 
import java.io.*; 
import java.util.Date; 
 
/** 
 * @author  Andy Kung 
 */ 
 
//The Log class creates a txt file every day and keeps track 

of every session. 
public class Log { 
 File logFile; 
 
 RandomAccessFile fd; 
 
 int ptr; 
 
 String lineSeparator; 
 
 public Log() { 
  lineSeparator = (String) java.security.AccessController 
    .doPrivileged(new sun.security.action.GetPropertyAction( 
      "line.separator")); 
  try { 
   logFile = new File("log/" + getDate() + "_away_log.txt"); 
   fd = new RandomAccessFile("log/" + getDate() + 

"_away_log.txt", 
     "rw"); 
   fd.seek(fd.length()); 
   writeLog("[ Log session starts ]", 1, 1); 
  } catch (IOException e) { 
 
  } 
 } 
 
 // Write a string to log file 
 public void writeLog(String s) { 
  try { 
   fd.writeBytes(getTime() + " ---> " + s); 
   fd.writeBytes(lineSeparator); 
  } catch (IOException e) { 
 
  } 
 } 
 
 // Write a string to log file with s blank lines before 
 // and j blank lines after the string. 
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 public void writeLog(String s, int i, int j) { 
  try { 
   while (i >= 0) { 
    fd.writeBytes(lineSeparator); 
    i--; 
   } 
   fd.writeBytes(getTime() + " ---> " + s); 
   while (j >= 0) { 
    fd.writeBytes(lineSeparator); 
    j--; 
   } 
  } catch (IOException e) { 
 
  } 
 } 
 
 // close log file. 
 public void closeLog() { 
  try { 
   fd.close(); 
  } catch (IOException e) { 
 
  } 
 } 
 
 // get a date string. 
 public String getDate() { 
  Date dateObj = new Date(); 
  String month = Integer.toString(dateObj.getMonth() + 1); 
  if (month.length() == 1) { 
   month = "0" + month; 
  } 
  String date = Integer.toString(dateObj.getDate()); 
  if (date.length() == 1) { 
   date = "0" + date; 
  } 
  String year = Integer.toString(dateObj.getYear() + 1900); 
  return month + "-" + date + "-" + year; 
 } 
 
 // get a time string 
 public String getTime() { 
  Date dateObj = new Date(); 
  String hour; 
  String am_pm; 
  String minute = Integer.toString(dateObj.getMinutes()); 
  if (dateObj.getHours() > 12) { 
   hour = Integer.toString(dateObj.getHours() - 12); 
   am_pm = "pm"; 
  } else { 
   hour = Integer.toString(dateObj.getHours()); 
   am_pm = "am"; 
  } 
  if (minute.length() == 1) { 
   minute = "0" + minute; 
  } 
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  if (hour.length() == 1) { 
   hour = "0" + hour; 
  } 
  return hour + ":" + minute + " " + am_pm; 
 } 
 
} 
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A P P E N D I X  

E Papier-Mâché User Manual 

This is the user manual presented to participants in the study described in section 9.4. 

As some aspects of the api were changed based on the results of this study, some of the 

code examples are out of date with respect to the current api. 

  

Introduction 

Papier-Mâché is a toolkit for building applications with tangible interfaces. 

First Application: Hello World! 

For RFID technology, here's a simple application that prints "Hello World!" when a tag 
gets added and "Goodbye World!" when a tag gets removed: 

import edu.berkeley.guir.papier_mache.event.*; 
import edu.berkeley.guir.papier_mache.rfid.RFIDManager; 
      
public class HelloWorld { 
   public static void main(String[] args) { 
      final RFIDManager manager = new RFIDManager(); 
      final PhobListener tagListener = new PhobListener() { 
         public void phobAdded(final PhobEvent event) { 
            System.out.println("Hello World!"); 
         } 
    
         public void phobUpdated(PhobEvent phobEvent) {} 
    
         public void phobRemoved(final PhobEvent event) { 
            System.out.println("Goodbye World!"); 
         } 
      }; 
    
      manager.addPhobListenerForAllReaders(tagListener); 
   } 
} 
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Let's dive into the first section for a quick explanation of this application. 

Managers, Generators and Listeners: The essentials 

The general structure of a Papier-Mache application usually involves creating a 
DeviceManager or PhobGenerator, creating a listener, and then adding the listener to 
that manager or generator. For HelloWorld.java, first create a new RFIDManager. Next, 
create a PhobListener that prints "Hello World!" and "Goodbye World!" when the 
appropriate phob events get generated; a phob (physical object) for RFID technology 
represents a tag. As such, phobAdded events occur whenever a tag gets placed on the 
reader, and phobRemoved events occur whenever a tag is taken off the reader. Lastly, 
add this PhobListener to all readers so that these events may be generated. 

Vision technology works similarly:  

import edu.berkeley.guir.papier_mache.event.*; 
import edu.berkeley.guir.papier_mache.input.CameraImageSource; 
import edu.berkeley.guir.papier_mache.vision.VisionPhobGenerator; 
public class HelloWorld { 
   private static final int MIN_OBJECT_SIZE = 200; 
   private static final int SLEEP_MILLISECS = 800; 
      
   public static void main(String[] args) { 
      final VisionPhobGenerator generator = new 
VisionPhobGenerator( 
         new CameraImageSource(SLEEP_MILLISECS), MIN_OBJECT_SIZE); 
      final PhobListener phobListener = new PhobListener() { 
         public void phobAdded(final PhobEvent event) { 
           System.out.println("Hello World!"); 
         } 
 
         public void phobUpdated(PhobEvent phobEvent) { 
         } 
        
         public void phobRemoved(final PhobEvent event) { 
           System.out.println("Goodbye World!"); 
         } 
      }; 
 
      generator.addPhobListener(phobListener); 
   } 
} 

The VisionPhobGenerator, instantiated with an ImageSource and an optional minimum 
object size, now replaces the RFIDManager. In addition, the VisionPhobGenerator 
adds the listener directly with addPhobListener. HelloWorld.java now prints "Hello 
World!" anytime a sizeable object gets registered in the vision system and "Goodbye 
World!" anytime an added object gets removed.  

Associations: Mapping tags to meaningful objects and operations  

http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/input/DeviceManager.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/PhobGenerator.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/rfid/RFIDManager.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/event/PhobListener.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/event/PhobListener.html#phobAdded(edu.berkeley.guir.papier_mache.event.PhobEvent)
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/event/PhobListener.html#phobRemoved(edu.berkeley.guir.papier_mache.event.PhobEvent)
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/event/PhobListener.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/vision/VisionPhobGenerator.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/input/ImageSource.html
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Association Elements: Meaningful objects (nouns) and operations (actions) 

AssociationNouns are objects that can have focus; AssociationActions operate on the 
AssociationNoun that has the application focus. For example, an AudioClip is an 
AssociationNoun whose phobAdded action is to start playing and its phobRemoved 
action is to stop playing. FastForwardElt is an AssociationAction that fast forwards the 
current focused clip. 

Maps and Factories  

The AssociationMap, a PhobListener, assigns associations to new tags and executes 
the associations to tags that have already been assigned; effectively, the map serves 
as a database for associations. The AssociationMap chooses how it assigns the 
association based upon an AssociationFactory that gets passed into its constructor. 
The factory may do something as simple as creating an instance of AssociationElt type 
A the first time, creating an instance of AssociationElt type B the second time, and so 
on. 

The Marble Answering Machine assigns (and makes) recordings to new objects and 
executes (plays back) the recordings of objects that have already been assigned. This 
description falls in line with an AssociationMap model as a PhobListener.  

import edu.berkeley.guir.papier_mache.Phob; 
import edu.berkeley.guir.papier_mache.assoc.*; 
import edu.berkeley.guir.papier_mache.event.PhobListener; 
import edu.berkeley.guir.papier_mache.rfid.RFIDManager; 
public class MarbleAnswering extends DefaultAssociationFactory { 
   public static void main(String args[]) { 
      final RFIDManager manager = new RFIDManager(); 
      final PhobListener assocMap = new AssociationMap(new 
MarbleAnswering()); 
      manager.addPhobListenerForAllReaders(assocMap); 
   } 
   public AssociationElt createAssociationEltForPhob(final Phob 
phob) { 
      return new AudioClip(); 
   } 
} 

First, creating the manager has no difference. Using the given AssociationMap as the 
PhobListener requires passing in an AssociationFactory. Here the desired behavior of 
the factory is to return a new AudioClip upon each new phob, hence the reason for the 
single 'return new AudioClip()' line. Lastly, adding the phob listener has no difference.  

Classifiers: A way to group tags 

ObjectClassifiers implement the isMemberOfClass method, returning whether the 
particular Phob passed in is a member of this classification. For example, a 
TypeClassifier checks that the given phob is an instance of a particular class type. 

http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/AssociationNoun.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/AssociationAction.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/AudioClip.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/FastForwardElt.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/AssociationMap.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/AssociationFactory.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/AssociationElt.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/ObjectClassifier.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/ObjectClassifier.html#isMemberOfClass(edu.berkeley.guir.papier_mache.Phob)
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/Phob.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/TypeClassifier.html
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VisionPhobs may get filtered out by calling the isMemberOfClass method of a 
TypeClassifier initialized with VisionPhob.class. 

ClassifierFactoryMap 

The ClassifierFactoryMap is an AssociationFactory that keeps track of all added 
ObjectClassifiers and their counterpart AssociationFactories. Add different 
ObjectClassifier-AssociationFactory pairs by calling the addClassification method. The 
ClassifierFactoryMap's own createAssociationEltForPhob creation method iterates 
through all registered ObjectClassifiers until one gets accepted; the creation method of 
the accepted classifier's associated factory gets called on the same phob and returned. 

Here's the Marble Answering Machine that allows the user to choose what type of 
media element they wish to associate.  

import edu.berkeley.guir.papier_mache.Phob; 
import edu.berkeley.guir.papier_mache.assoc.*; 
import 
edu.berkeley.guir.papier_mache.assoc.ObjectClassifier.AcceptAllClas
sifier; 
import edu.berkeley.guir.papier_mache.event.PhobListener; 
import edu.berkeley.guir.papier_mache.rfid.RFIDManager; 
public class MarbleAnswering extends DefaultAssociationFactory { 
private static boolean firstTag = true; 
public static void main(String args[]) { 
 
  AssociationMap.registerMediaElement(AudioClip.class); 
  AssociationMap.registerMediaElement(VideoClip.class); 
  AssociationMap.registerMediaElement(WebPage.class); 
 
 
   final RFIDManager manager = new RFIDManager(); 
    
   final ClassifierFactoryMap classMap = new 
ClassifierFactoryMap(); 
   classMap.addClassification(new AcceptAllClassifier(), new 
UserAssociationFactory(classMap)); 
   final PhobListener assocMap = new AssociationMap(classMap); 
    
   manager.addPhobListenerForAllReaders(assocMap); 
} 
public AssociationElt createAssociationEltForPhob(final Phob phob) 
{ 
   if (firstTag) { 
      firstTag = false; 
      return new PauseElt(); 
   } 
      return new AudioClip(); 
   } 
} 
   

http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/vision/VisionPhob.html
http://hci.stanford.edu/projects/papier-mache/javadoc/edu/berkeley/guir/papier_mache/assoc/ClassifierFactoryMap.html
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Events and Phobs 

A Phob is the virtual representation of the physical object. One key difference between 
a phob and the actual physical object is that the phob knows the source that generated 
it. Phobs events know both the source that generated the phob and the phob itself. See 
the Class Reference for more details on specific phobs and phob generators.  

Class Reference: 

A. Classifiers (abstract class) 

Given constants : 
double TRUE, FALSE - used to compare  

Methods to implement: 
double isMemberOfClass(Phob phob) - returns TRUE (double constant) if phob is a 
member of this ObjectClassifer, else returns FALSE 
String toShortString() - returns a short String description of an instance of this 
ObjectClassifier that can be displayed easily displayed in a table 

Instantiable subclasses: 
AcceptAllClassifier - accepts all Phobs (isMemberOfClass always returns TRUE)  
IdentityClassifier - accepts only the Phob it was initialized with  
MeanColorClassifier - accepts all VisionPhobs that have around the same color  
ROIClassifier - accepts all VisionPhobs that have the same region of image  
SameSourceClassifier - accepts only Phobs that were created from the same phob 
generator  
SizeClassifier - accepts all VisionPhobs that have the same size  
TypeClassifier - accepts only Phobs of the same class type it was initialized with 

B. Factories (interface)  

Methods to implement: 
AssociationElt createAssociationEltForPhob(Phob phob) - returns a new instance of 
some AssociationElt 

Instantiable subclasses: 
ClassInstanceFactory - creates new instances of only the passed in class type 
ClassifierFactoryMap - creates AssociationElts with the first registered accepted 
classifier's factory 
VisualAnalogueFactory - creates AssociationWrappers used to build a visual 
representation of the phobs registered by the vision system  
UserAssociationFactory - uses a ClassifierFactoryMap (passed in the constructor) to 
keep track of classifier-factory associations created through the GUI  

C. Association Elements (abstract class)  

C.i. Nouns (abstract class) 
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Methods to implement: 
void phobAdded() - action that occurs when this AssociationNoun's phob gets added  
void phobUpdated() - action that occurs when this AssociationNoun's phob gets 
updated  
void phobRemoved() - action that occurs when this AssociationNoun's phob gets 
removed  

Instantiable subclasses: 
WebPage - on creation, a dialog prompts for a URL and a window pops up with that 
page; on phobAdded a window pops up with that page  
(MediaClip) AudioClip - two constructors allow creation either by getting a file from the 
file system or starting a recording; on phobAdded, the clip gets played and on 
phobRemoved, the clip gets stopped  
(MediaClip) VideoClip - on creation a file dialog prompts for a video file; on phobAdded, 
the clip gets played and on phobRemoved, the clip gets stopped  

C.ii. Actions (abstract class) 

Methods to implement: 
void phobAdded(AssociationNoun focus) - action that occurs when this 
AssociationAction's phob gets added with the given focus  
void phobRemoved() - action that occurs when this AssociationAction's phob gets 
removed  

Instantiable subclasses: 
FastForwardElt - on phobAdded, the focus's fastforward method gets called; on 
phobRemoved, the focus's resume method gets called  
PauseElt - on phobAdded, the focus's pause method gets called; on phobRemoved, 
the focus's resume method gets called  
ResetElt - on phobAdded, the focus's resetToBeginning method gets called 
RewindElt - on phobAdded, the focus's rewind method gets called; on phobRemoved, 
the focus's resume method gets called  

D. Phob Events 

Given Methods: 
Object getSource() - returns the PhobGenerator that generated the phob (note, the 
Phob also knows its source)  
Phob getPhob() - returns the Phob associated with this event  

Instantiable subclasses:  
VisionPhob and TagPhob (for RFID and barcodes) 

E. Phobs (abstract class)  

Given Methods: 
PhobGenerator getSource() - all Phobs know about the source from which they were 
generated  
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Instantiable subclasses:  
VisionPhob and TagPhob (for RFID and barcodes) 

E.i. VisionPhob 

Ascertainable fields: 
getBounds() returns the bounds (Rectangle) 
getCenter() returns the center (Point2D) 
getMajorAxisLength() returns major axis length (double) 
getMajorAxisLength() returns minor axis length (double) 
getMeanColorRGB() returns mean color (Point2D) 
getTheta() returns theta (double) 

E.ii. TagPhob 

Given Methods: 
getTagID() returns tag ID (String) 

F. Phob Generators (abstract class)  

Given Methods: 
void addPhobListener(PhobListener listener) - adds the given listener to this generator  
void removePhobListener(PhobListener listener) - removes the given listener to this 
generator 

Instantiable subclasses:  
VisionPhobGenerator, BarcodePhobGenerator and RFIDReader  

F.i. VisionPhobGenerator 

Constructor takes in an ImageSource and an optional minimum object size 

F.ii. BarcodePhobGenerator 

Constructor takes in a VisionPhobGenerator  

F.iii. RFIDReader 

Constructor takes in a unique reader ID (int)  

Given Methods: 
getReaderID() returns int 

G. Device Managers (abstract class)  

Given Methods: 
void addDeviceListener(DeviceListener deviceListener) - adds the given device listener 
to this generator  
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void removeDeviceListener(DeviceListener deviceListener) - removes the given device 
listener to this generator 

G.i. RFIDManager 

Given Methods: 
void addPhobListenerToAllReaders(PhobListener phobListener) - adds the given phob 
listener to all readers 
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