
INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY 5, 159–169, 2002
c© 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

Embarking on Spoken-Language NL Interface Design

ANOOP K. SINHA, SCOTT R. KLEMMER AND JAMES A. LANDAY
Group for User Interface Research, CS Division, EECS Department, University of California at Berkeley,

Berkeley, CA 94720-1776, USA
aks@cs.berkeley.edu

http://guir.berkeley.edu

Abstract. Natural language (NL) user interfaces are growing in popularity. Unfortunately, the complexity of NL
interaction makes these interfaces difficult to design. For NL interfaces to become successful, universal tools are
needed to help support the NL design process. What work practice should these tools explicitly support? Interviews
with NL designers and our own experiments have identified a specific work practice that designers should consider
as they begin to incorporate NL into user interface designs. The work practice study highlights the value of using
Wizard of Oz prototyping in NL design. We describe a tool that we have built, called SUEDE, to explicitly support
the first stage of NL design for spoken-language user interfaces. Our tools and tools like it will help make NL in
human-computer interaction (HCI) more commonplace.

Keywords: speech user interfaces, design tools, informal user interfaces

Introduction

Natural language (NL) techniques have much to con-
tribute HCI. The HCI community strives to continu-
ously find ways to make user interfaces more “natural,”
“invisible,” and “ubiquitous” (Weiser, 1993). The tool
used for human-human communication, natural lan-
guage, has all three characteristics and many more.

For NL interfaces to become successful, universal
tools are needed to help support the NL design process
(Sutton et al., 1998). At present, spoken-language NL
user interfaces are hard to design due to high costs in
terms of the time and technology expertise required to
build them. This makes iterative design difficult and
often results in poor spoken user interfaces that are far
from natural.

Interviews with NL designers and our own exper-
iments have identified a specific work practice that
designers should consider as they begin to incorpo-
rate NL into user interface designs. The work practice
study highlights the already identified value of using
Wizard of Oz prototyping in NL design (Dahlbäck
et al., 1993).

We have created a Wizard-of-Oz prototyping tool,
called SUEDE, to explicitly support this NL design
work practice (Klemmer et al., 2000). SUEDE and tools
like it will help make NL in HCI more commonplace.

Why NL User Interfaces?

Today’s graphical user interfaces (GUIs) do not let
users communicate in ways that they naturally do with
other human beings (Sidner, 1997). Furthermore, stan-
dard GUIs do not work well for users with poor vision
or limited use of their hands (5% of those over age 15
(National Research Council, 1997)). When users are
moving around, using their hands or eyes for some-
thing else, or interacting with another person, they
need better interface paradigms. Spoken-language NL
user interfaces are one paradigm that can successfully
address many of the aforementioned problems.

Supporting NL Designers

A key, limiting factor in spoken-language NL design is
the lack of basic knowledge about user “performance



160 Sinha, Klemmer and Landay

during computer-based spoken interaction” (Cohen
and Oviatt, 1995). To remedy this problem, an NL de-
signer needs to be able to do quick experiments with
design tools that support prototyping spoken interfaces.
NL designers also need guidelines to understand how
users want to interact with the computer, because that
has been determined to be different than how they in-
teract with other humans (Dahlbäck et al., 1993).

Many interaction designers who could contribute
to NL design are excluded by the complexities of
the core technologies and the formal representations
used for specifying these technologies. The complex
recognizer, synthesizer, and NL technologies inher-
ent in a spoken-language NL interface require a high
level of technical competency to understand. Specif-
ically, the grammar and state-machine representa-
tions used to design speech-based systems are formal
and abstract. This is in awkward contrast with in-
formal, concrete representations, such as scenarios
(Clarke, 1991; Carroll, 1995), sketches (Boyarski and
Buchanan, 1994; Landay and Myers, 1995), and story-
boards (Wagner, 1990; Landay and Myers, 1996; Lin
et al., 2000), which designers commonly employ to
explore design ideas through examples.

This basic mismatch in approach between user in-
terface design and NL implementation is an important
issue that must be resolved for NL in HCI to become
more successful. An informal interface approach, using
unrecognized, natural input (e.g., sketching or speech)
successfully supports designers in the early stages of
design (Landay and Myers, 2001). This approach en-
ables a designer to plan an NL interface before any
code has been written. Using informal tools, designers
can be encouraged to explore the design space leading
to better NL interface designs.

What do Users Want to Say?

For a given application, “What do users want to say?”
is the first question that a spoken-language NL designer
needs to ask. To gain insight into this question, we ex-
plored the nature of the dialog between a human and
a computer in a simulated, voice-controlled e-mail ap-
plication. In our experiment, we placed eight partici-
pants, one at a time, in front of a computer screen with
a graphical e-mail application. We asked each partici-
pant to perform various tasks in the application using
voice, and we remotely controlled the application using
remote control software. We explicitly let the partici-
pants know that the recognition was being performed

by a remotely located human, and told them they could
say whatever was most natural for them, assuming full
language recognition.

All eight participants in our tests spoke commands in
what we could call “computer-speak,” a simple step-by-
step description, born out of the mental model of how
they perform the task traditionally on the computer with
keyboard and mouse. For sending an e-mail message,
these were a typical participant’s spoken steps:

1. “Create new message”
2. “Address it to John”
3. “Make subject hello”
4. “Make message how are you doing”

This step-by-step interaction was in spite of the fact that
the human backend would have parsed and understood
the more natural phrase, “send a message to john saying
hello, how are you doing?”

From our follow-up interviews with the participants
afterwards, we learned that the participants viewed the
computer as passive in the dialog, without inference
ability. The users figured out that the way to make the
computer accomplish the tasks is to instruct directly it,
step-by-step.

From that experiment, we formalized a set of recom-
mendations for picking speech commands, as follows:

1. Use descriptions of direct manipulation tasks as the
guide for the commands

2. Pick commands at the levels of actions
3. Perform iterative tests to further finalize the choices

of NL commands

This underlying philosophy has helped us design
speech commands for a wide variety of speech-activa-
ted applications. We also found this method of choosing
initial NL commands in our interviews with NL inter-
face designers.

NL Design Work Practice

To profile existing NL design work practice, we in-
terviewed six spoken-language NL designers from
both industrial research (SRI and Sun Microsystems
Laboratories) and development organizations (Nuance
Communications and Sun Microsystems). We asked
them details about their work practice, including what
specific artifacts and tools they use in their design pro-
cess. Typical applications on which they have worked
include stock lookup, airline flight information, and



Embarking on Spoken-Language NL Interface Design 161

Figure 1. Timeline for a spoken-language NL interface implementation.

universal e-mail. As a case example, we will briefly
outline the typical work process for one of the spoken-
language NL interface designers that we interviewed.

The NL designer’s main role is dialog specification:
What will the dialog look like in the final application?
He/She is in charge of all aspects of the dialog de-
sign, from brainstorming to pre-testing to iteration. Ul-
timately he/she creates a dialog design specification,
which is then translated into the NL input/output gram-
mar and used by the programmer in implementation
(Fig. 1).

Statement of Work

New projects begin with a statement of work, a list of
the requests by the client company. The statement of
work outlines the desired business requirements, the
amount of time it should take, and agreements on cost.
The statement of work is referred to throughout the
design process, but is quickly left as the attention shifts
towards dialog design.

Example Dialogs

With the statement of work delivered, the designer be-
gins to create example dialogs at the outset of the dialog
design process. Example dialogs are linear sequences
that represent the interaction of a typical user in the
final application. As might be expected, these dialog
examples include only partial functionality of the final
system. Nevertheless, the examples give structure for
various types of tasks. For instance, the name of the
company in a stock look-up application is a parameter
in the final application.

Dialog States Flowchart

These dialog examples are soon structured into dialog
states flowcharts, outlines of the application functional-
ity and the flow among different prompts and responses
(Fig. 2). The dialog states flowcharts are created either
using paper 3×5 cards or, more often, in a flowcharting
program such as Microsoft Visio. The flowcharts are

Figure 2. A dialog states diagram outlines the interface function-
ality.

hierarchical, with common functionality separated into
subcomponents, sometimes from existing libraries, on
different pages. A single page typically has 10 to 12
states on it. A typical application is outlined in about
100 states or 10 pages.

The interaction specified by the flowcharts is difficult
to comprehend fully without testing. Testing typically
involves laborious programming to run through sample
scenarios. Even at this early stage, the dialog designer
needs to involve the help of a programmer to implement
the test, unless he/she has sufficient programming abil-
ity with the target speech recognizers.

One designer we interviewed likes to use Wizard-of-
Oz testing instead. The Wizard-of-Oz process involves
simulating computer interaction by speaking prompts
aloud. User sessions sometimes are over the telephone,
which is a typical NL interface interaction mode for
her designs, and are captured on analog tape recorders.
Changing the design by reordering the 3×5 cards
is straightforward. However, reviewing the analog
tapes for critical incidents is very time intensive. An-
other challenge in Wizard-of-Oz testing is simulating
errors and error handling. Methods for simulating er-
rors are ad hoc.

Due to the manual labor involved, Wizard-of-Oz
testing is neither popular nor easy. There is no spe-
cific computer tool support available for Wizard-of-Oz
tests. All our interviewees agreed that an easy-to-use
Wizard-of-Oz tool is something that they want to have.



162 Sinha, Klemmer and Landay

Figure 3. A dialog design document for a spoken-language NL interface specifies all details of the interface, including the dialog states, error
handling, and globals. It is provided from the NL designer to the programmer performing the implementation once a design has been finalized.

Dialog Design Document

Testing and analysis typically lead to refinements in
the design and expansion of the input and output gram-
mars. Ultimately these are detailed in the dialog de-
sign document (Fig. 3). The dialog design document
is the text specification, written from an initial outline,
which will be provided to the programmers for imple-
menting the final design. It includes detailed descrip-
tions of all of the states in the dialog states flowchart.
It also includes specifications about universals or glob-
als, such as “help” and “main menu.” These globals are
commands that can be spoken at any time by the user.
Specific details about transitions from state to state, in-
cluding details of all of the error handling cases, points
where the users might be in a confused state due to a
recognition error, are included in the document.

This document serves as the hand-off document from
the dialog designers to the programmers of the final
system. The programmers begin work on the final ap-
plication once this document is created. Changes to
the design are difficult and expensive to make once the

dialog design document is produced and implementa-
tion begins.

Implementation

Changes to the input and output grammars are some-
times necessary as further data are collected from tests
of the final application. These changes are much less
painful if the overall dialog states structure remains the
same. The designers that we interviewed emphasized
the importance of creating a good design before the
programmer begins implementation.

An Informal Prototyping Tool
for Spoken-Language NL User Interfaces

Based on our insights about the nature of spoken-
language NL dialog and our study of NL designer
work practice, we designed and built a tool, called
SUEDE, to support the NL interface design process
(Klemmer et al., 2000). SUEDE is designed as an in-
formal prototyping tool, one that is used to map out



Embarking on Spoken-Language NL Interface Design 163

spoken-language NL interaction quickly and test that
interaction.

SUEDE uses a Wizard-of-Oz approach for test-
ing designs, which has a long tradition in the design
of spoken-language NL systems (Gould and Lewis,
1983). Problems with NL interaction arise when users
do not know what to say, when they say invalid
words, or when the system makes recognition errors.
SUEDE addresses testing these issues through com-
puter support.

Supported Speech Interface Styles

SUEDE supports simple prompt and response inter-
faces and conversational interfaces as speech interface
styles. These are the style of interface that is most
common in telephone interfaces for call centers, airline
look-up applications, and speech-enabled e-mail sys-
tems, which are common application styles according
to the designers that we interviewed. SUEDE does not
have any explicitly designed support for mixed-
initiative style NL applications, though the designer’s
designation of global speech commands, described
later in this section, does provide a way for a user to
jump to a different part of the dialog flow or for the
Wizard to move that user to a different part of the flow.

Based on the visual layout, SUEDE supports an ap-
plication of about 100 prompts at a time, which is the
size of a typical prototype among the designers with
whom we talked. For a larger, more sophisticated appli-
cation, SUEDE could be used to design one part at a
time, but multiple different parts are not automatically
linked. SUEDE is not geared towards dictation-ori-
ented interfaces or speech manipulation applications.

Design/Test/Analysis Methodology

Tufte (1999) argued that usability testing, as practiced
today, does not work because it entails repeated cycles
of Design and Test, resulting in a user-interface popu-
larity contest. He argued instead that good design was
a process of repeated application of Design and Analy-
sis. In our work practice study, we found all three steps
in use, Design, Test, and Analysis. Therefore, we used
the Design/Test/Analysis methodology as an explicit
model for SUEDE.

In the SUEDE Design phase, we allow NL inter-
face designers to create linear conversation example
scripts (see Fig. 4, top). These examples provide the
foundation for the dialog flow specification (shown in

progress in Fig. 4, bottom). In the Test phase, the de-
signer can perform Wizard-of-Oz testing with partici-
pants (see Fig. 5). During Analysis, designers examine
collected test data, deciding on the speech input and
output grammar (see Fig. 6).

Design Mode

At the start of the design process, SUEDE allows linear
dialog examples to be created horizontally in the top
area, called the script area, of Design mode (see Fig. 4,
top). Orange prompt cards in the script represent the
system’s speech prompts, and the green response cards
represent example responses of the end-user. The de-
signer records speech on both types of cards in her own
voice, and can type a label on each card. By playing
the recordings from left to right, the designer can both
hear and see the example interaction.

We can see from the second script at the top of Fig. 4
that the designer has recorded the following alternating
prompts and responses: “Hello, what is your name?”
“Annie,” “What would you like to do?” “Read email,”
“You have two messages,” “Read them,” “First message
from Scott,” and “Anything important?”.

After constructing several example scripts and work-
ing with them to become familiar with the dialog flow,
the designer starts to construct a design graph, repre-
senting the actual interface prototype (see Fig. 4, bot-
tom). This is analogous to the dialog-states flowcharts
in our study. Designs are created either by dragging
cards from the script onto the design area or creating
new cards on the design area. Cards in the design are
linked together into the dialog flow.

Globals, Groups, and Voice Balloons. SUEDE also
supports commonly used spoken-language NL in-
terface design elements: globals, groups, and voice
balloons.

A global is a speech command that can be spoken at
any time, such as “main menu” or “help.” This is repre-
sented by a response link starting off of the background
and linked to the global prompt.

A group is a set of prompts that are possible follow-
ing a specific participant response. As an example:

Prompt: “What would you like to do?”
Response: “Read messages”
Prompt Group:

“You have one message”
“You have two messages”
“You have three messages”



164 Sinha, Klemmer and Landay

Figure 4. SUEDE’s Design mode enables the easy creation of example scripts (top) and speech UI designs (bottom).

When testing, the wizard has the option of choosing
among any of these replies to the participant. Groups
can also be used for tapering (Yankelovich et al., 1995)
or directive prompts (Kamm, 1995), in which different
prompts are used based on the number of times the
prompt has been played previously. Groups can also
be used to give different error messages in different
scenarios.

A voice balloon corresponds to “filling in the blanks”
in a directed dialog system, where the user’s re-
sponses are used in the subsequent prompts. The partic-
ipant’s unmodified recorded audio is spliced automat-
ically into a later prompt. An example of this would
be:

Prompt: “What is your name?”
Response: “John Doe”
Prompt: “What would you like to do <John Doe>?”

These special features of design mode support the basic
details of what designers do during early stage design,
up to creating the dialog states diagram.

Test Mode

Informal, unrecognized SUEDE NL interface designs
can be executed immediately by clicking on the “Test”
button. No speech recognition or speech synthesis is
used to test prototypes in SUEDE.

The testing window is a browser-based interface for
the wizard performing the testing (see Fig. 5). The
screen is divided into four distinct sections (from top
to bottom): the session menu, a transcript of the current
session, barge-in and time-out controls, and an HTML
page of the valid user responses to the current prompt
card. Global responses are available on all pages.



Embarking on Spoken-Language NL Interface Design 165

Figure 5. Test mode is presented in a browser and allows the Wizard
to focus on the current state of the UI (top) and the available responses
for that state (bottom).

In Test mode, a wizard works in front of a computer
screen. The participant performs the test in a space
where there are speakers to hear the system prompts
and a microphone hooked up to the computer to record
his/her responses.

SUEDE plays automatically the pre-recorded audio
from the current prompt card and records audio from
the responses. The wizard waits for the test partici-
pant to respond, and then clicks on the appropriate hy-
perlink based on the response. During the course of
the test session, a transcript sequence is generated au-
tomatically containing the original system audio out-
put and a recording of the participant’s spoken audio
input.

Continuing our example, we see in Fig. 5 that the
test session has just played “What would you like to
do?” A participant might respond, “I’d like to write an
email please.” The wizard would interpret the user’s
response and click on the “Send email” link. Since
there is no speech recognition system underlying this
Wizard-of-Oz test, the wizard will use this opportu-
nity to accept several alternative inputs. These ac-
tual audio responses can later be reviewed in Analysis
mode to help determine the input grammar for the final
design.

Error Modeling. In the session menu area, there is a
parameter marked “% Errors.” This value sets the sim-
ulated speech recognition error rate. As the wizard is
running the system, SUEDE can insert random mis-
recognition errors as a real speech recognizer might
do, as described in Oviatt et al. (1992). If a random
error happens, SUEDE overrides the wizard’s choice,
informs him of this fact, and randomly chooses one of
the other possible links on that page. The wizard is not
tasked with mimicking an error rate. Handling errors
should be part of any robust NL interface design.

Time-Outs. A common strategy for a lack of response
after a certain time window, a time-out, is to repeat
the last played prompt in case the participant did not
hear the prompt the first time. Clicking the “Time-out”
button in Test mode executes this behavior.

Barge-In. Barge-in, in which a participant responds
to a prompt while the prompt is being played, is espe-
cially important in conversational NL interfaces where
prompts might be long and repetitive. SUEDE allows
the wizard to simulate barge-in by stopping the cur-
rent prompt and switching to recording audio when the
“Barge-in” button is pressed.

Transcript. The entire participant session is recorded
in the set of prompt cards and response links in the
transcript area of the test interface (see Fig. 5, top). This
transcript also appears together with those of other test
participants in the script area of Analysis mode (see
Fig. 6, top). There is a pleasing duality between the
designer examples and the actual session transcripts.

Analysis Mode

SUEDE eases the burden of statistics collection by
recording audio automatically, creating transcripts of
events automatically, and providing several means of
accessing this data. Data collected in Test mode is dis-
played in Analysis mode (see Fig. 6). The Analysis
interface is similar to the Design interface, except the
top of the screen contains user transcripts from the test
sessions, rather than just designer-made examples, and
an annotated version of the design graph is displayed
in the design area.

In Analysis mode, response links are scaled in width
to show the number of times that link was traversed in
the user sessions. Counters are also displayed on each
response link to show the number of times that link was
traversed. These two visualizations give the designer a



166 Sinha, Klemmer and Landay

Figure 6. Analysis mode displays transcripts from user test sessions (top) as well as an annotated version of the design that summarizes the
aggregate test results (bottom). The annotated version also provides the ability to hear the set of responses for a particular link.

feel for what parts of the design were most used and thus
need optimization, and what parts were not used and
thus may need more work. Only by collecting and ex-
amining data from real users can a designer understand
the good and bad features of a design and iteratively
improve it.

Continuing our example, we see that three test partic-
ipants followed the “Read email” link, one participant
followed the “Send email” link, and two followed the
“Summaries” link (see Fig. 6, bottom).

The Analysis mode also allows the designer to re-
view all of the responses across participants for a spe-
cific prompt directly from the design graph node by
clicking on the link counter (as illustrated with the
“Read email” node in Fig. 6). Examining the test tran-
scripts and reviewing individual responses facilitates
creating a formal input grammar for the final interface
design.

User Testing

Though we have not run any formal usability tests, we
have provided SUEDE to the NL design community
on the public Web since mid-2000 and have had over
500 downloads (See http://guir.berkeley.edu/suede/).
We have seen some use from major mobile telcommu-
nications organizations, such as Nokia, Ericsson, and
Qualcomm, and speech interface organizations such as
Nuance and TellMe. Each of these organizations com-
mented to us that they have realized the importance
of reaching a good design before any programming
and that SUEDE’s focus on building and testing an NL
interface quickly helps them achieve this goal. In their
early stage testing, experienced designers from Nuance
and TellMe have explicitly wanted to use Wizard-of-
Oz testing, rather than real speech recognition. They
believe that the Wizard-of-Oz testing helps them focus



Embarking on Spoken-Language NL Interface Design 167

on the NL design issues, rather than the recognition
technology issues, and helps them reach a good design
before worrying about the limitations of the speech
recognizer.

Bridging to Final Implementation

For the project phase when a design is almost com-
plete, many SUEDE users have asked for bridges to
final tools, such as specific speech recognizers or de-
velopment environments. We wrote a utility that can
take a SUEDE interface and generate a speech user in-
terface grammar, but given our focus on the early stage
of design, we have not implemented other bridges.

VoiceXML 1.0 (W3C 2000) was introduced a few
months after SUEDE was released. One small company
that uses SUEDE, Mobido, modified SUEDE to gen-
erate a VoiceXML program as output. They are using
their modified SUEDE for early testing with Wizard-
of-Oz and then are using the VoiceXML generation
when they are ready to move their application to their
speech recognition production environment.

SUEDE fits best as the first tool in the overall
NL interface design process for these users. It works
well when used for early experimentation and iterative
design.

Related Work

SUEDE is inspired by previous work in low-fidelity
prototyping and Wizard-of-Oz studies, as well as by
existing systems for prototyping and testing speech and
multimodal user interfaces.

Low-Fidelity Prototyping

Low-fidelity paper prototyping (Rettig, 1994) is a pop-
ular design and evaluation technique used to proto-
type systems quickly and easily. SUEDE aims to pro-
vide the same benefits to speech-based interfaces: rapid
prototyping and testing with little expert knowledge
necessary.

Wizard-of-Oz Studies, Tools, and Toolkits

The Wizard-of-Oz technique has been used for years
to simulate speech recognition systems when perform-
ing both low-fidelity tests of proposed design ideas and
user studies on “finished” interface designs (Dahlbäck

et al., 1993). In a standard Wizard-of-Oz study (Gould
and Lewis, 1983; Kelley, 1984), a human simulates
the speech system. SUEDE’s electronic support for
Wizard-of-Oz testing improves on traditional Wizard-
of-Oz by making it easy to carry out repeatable tests
as well as keep track of what happens during the test
sessions.

Yankelovich made frequent use of “pre-design stud-
ies” in her work on SpeechActs (Yankelovich et al.,
1995). One of our goals was to make pre-design stud-
ies easier for designers to carry out. SUEDE’s session
recording and analysis features make the data gener-
ated from these studies easily accessible and even more
valuable.

The NEIMO system (Balbo et al., 1993; Coutaz
et al., 1996) is a platform for the study of multimodal
systems, and SRI’s Open Agent Architecture (Cheyer
et al., 1998) is a toolkit for implementing multimodal
applications. Both allow use of Wizard-of-Oz tech-
niques. However, these systems require functioning
software to be written before testing can begin. In con-
trast, SUEDE is oriented to early stage speech UI de-
sign and thus has no such software requirement.

The SUEDE Wizard-of-Oz methodology of per-
forming no automated speech recognition offers the
advantage that designers do not have to worry at this
early stage about whether the participants have differ-
ent accents (Oviatt, 1999) or genders (Vergin et al.,
1996); in fact, it does not matter what language they
are speaking at all.

Speech-Based UI Construction Tools

There are two existing speech UI construction tools
to which SUEDE is similar in several respects: the
CSLU Rapid Application Developer (RAD) (Sutton
et al., 1998) and the Unisys’ Natural Language Speech
Assistant (NLSA) (Unisys, 1999).

Both CSLU RAD and NSLA combine speech recog-
nition, speech synthesis, and an available Wizard-of-Oz
technique into an integrated tool for building speech ap-
plications. It would be possible to use these other tools
for the same processes as SUEDE supports, but it would
not be as inviting or efficient for a non-programmer de-
signer. Specifically, the Design-Test-Analysis method-
ology is explicit in SUEDE. Like SUEDE, these tools
use a visual, state machine representation of the speech
UI (McTear, 1998). Arguably, SUEDE’s visual, state
machine representation is simpler than CSLU RAD and
NSLA, and most closely resembles the NL designers’



168 Sinha, Klemmer and Landay

dialog states representation. This simplicity in visual
form and explicit work practice is implemented in
SUEDE, because it is meant to be the first tool that
the NL designer sits down to use.

Unlike SUEDE, these tools additionally support us-
ing a speech recognizer behind the dialog flow. Both
CSLU RAD and NLSA provide access to underly-
ing speech recognition grammars and parameters for
recognition. CSLU RAD, in particular, has been ex-
tremely popular for this capability to build a work-
ing speech recognition application in a graphical envi-
ronment. CSLU RAD and NSLA are oriented towards
specifying, testing, and implementing a more finished
application interface—what we would call rapid pro-
totyping. SUEDE is targeting specifically a different
niche, informal prototyping—quick and easy testing
of potential designs. One could imagine a designer first
informally prototyping and testing in SUEDE and then
transferring a concrete design idea to CSLU or NSLA,
where he/she would add the details to test with a recog-
nition system. Rather than building a working applica-
tion, SUEDE’s only focus is on enabling the designer
to create a great design.

SUEDE Future Work

As an informal tool, SUEDE offers significant flexibil-
ity for designers. Though it is possible to model com-
monly used NL design features right now, we will be
adding more automatic support for speech design fea-
tures such as tapering, error handling, and cooperative
prompts. Another logical extension is to allow SUEDE
designs to function as reusable components, to be used
in higher-level designs.

SUEDE could be extended for speech-centric appli-
cations that have alternative modes of feedback (such
as graphics feedback in a multimodal application).
Our group is taking ideas from SUEDE, including the
Design, Test, and Analysis methodology, and incor-
porating them in a multimodal prototyping tool (see
http://guir.berkeley.edu/crossweaver/).

Conclusions

The spoken-language NL interface design problem is
complicated. Explicit tool support, such as in SUEDE,
is valuable for improving the spoken language NL
design process.

Based on our interviews with NL designers,
SUEDE’s Design, Test, and Analysis paradigm maps

quite well onto the designers’ mental process. SUEDE
makes significant progress in supporting the early
stages of this process. Specifically, designers use scripts
as their initial concrete examples, they create dialog
flowcharts, and they test their designs with Wizard-of-
Oz techniques. SUEDE supports this work process and
helps spoken-language NL designers analyze collected
test data more efficiently than does reviewing analog
tapes.

The high level of frustration associated with spoken-
language NL interfaces is not one of medium, but one
of design. Design the spoken-language NL interface
well, and NL in HCI will proliferate.

References

Balbo, S., Coutaz, J. et al. (1993). Towards automatic evaluation
of multimodal user interfaces. Proceedings of the International
Workshop on Intelligent User Interfaces, pp. 201–208.

Boyarski, D. and Buchanan, R. (1994). Computers and communica-
tion design: Exploring the rhetoric of HCI. Interactions, 1:24–35.

Carroll, J.M. (1995). Scenario-Based Design: Envisioning Work and
Technology in System Development. New York: John Wiley &
Sons.

Cheyer, A., Julia, L. et al. (1998). A unified framework for con-
structing multimodal experiments and applications. Proceedings
of CMC ’98. Tilburg, The Netherlands, pp. 63–69.

Clarke, L. (1991). The use of scenarios by user interface designers.
Proceedings of the HCI ’91 Conference on People and Computers,
pp. 103–115.

Cohen, P.R. and Oviatt, S.L. (1995). The role of voice input for
human-machine communication. Proceedings of the National
Academy of Sciences, 92(22):9921–9927.

Coutaz, J., Salber, D. et al. (1996). NEIMO, a multiworkstation us-
ability lab for observing and analyzing multimodal interaction.
Proceedings of ACM CHI ’96 Conference on Human Factors in
Computing Systems, pp. 402–403.

Dahlbäck, N., Jönsson, A. et al. (1993). Wizard-of-Oz studies—Why
and how. Proceedings of the International Workshop on Intelligent
User Interfaces, pp. 193–200.

Gould, J.D. and Lewis, C. (1983). Designing for usability—Key prin-
ciples and what designers think. Proceedings of ACM CHI’83
Conference on Human Factors in Computing Systems, pp. 50–53.

Kamm, C. (1995). User interfaces for voice applications. In D. Roe
and J. Wilpon (Eds.), Voice Communication between Humans and
Machines. National Academy Press, pp. 422–442.

Kelley, J.F. (1984). An iterative design methodology for user-friendly
natural language office information applications. ACM Transac-
tions on Office Information Systems, 2(1):26–41.

Klemmer, S.R., Sinha, A.K. et al. (2000). SUEDE: A Wizard of
Oz prototyping tool for speech user interfaces. CHI Letters, The
13th Annual ACM Symposium on User Interfaces Software and
Technology: UIST 2000. San Diego, CA, 2(2):1–10.

Landay, J.A. and Myers, B.A. (1995). Interactive sketching for the
early stages of user interface design. Proceedings of the ACM CHI
’95 Conference Human Factors in Computing Systems: CHI’95.
Denver, CO, pp. 43–50.



Embarking on Spoken-Language NL Interface Design 169

Landay, J.A. and Myers, B.A. (1996). Sketching storyboards to il-
lustrate interface behavior. Conference Companion of the ACM
CHI ’96 Conference on Human Factors in Computing Systems.
Vancouver, Canada, pp. 193–194.

Landay, J.A. and Myers, B.A. (2001). Sketching interfaces: Toward
more human interface design. IEEE Computer, 34(3):56–64.

Lin, J., Newman, M.W. et al. (2000). DENIM: Finding a tighter
fit between tools and practice for web site design. CHI Letters:
Human Factors in Computing Systems, CHI ’2000, 2(1):510–517.

McTear, M.F. (1998). Modeling spoken dialogues with state transi-
tion diagrams: Experiences with the CSLU toolkit. Proceedings
of the Fifth International Conference on Spoken Language Pro-
cessing ICSLP ’98. Sydney, Australia.

National Research Council (1997). More than Screen Deep: Toward
Every-Citizen Interfaces to the Nation’s Information Infrastruc-
ture. Washington, D.C.: National Academy Press.

Oviatt, S. (1999). Mutual disambiguation of recognition errors in a
multimodal architecture. Proceedings of the ACM CHI ’99 Con-
ference on Human Factors in Computing Systems, 1:576–583.

Oviatt, S., Cohen, P. et al. (1992). A rapid semi-automatic simulation
technique for investigating interactive speech and handwriting.
Proceedings of the International Conference on Spoken Language
Processing ICSLP ’92. Banff, Canada, 2:1351–1354.

Rettig, M. (1994). Prototyping for tiny fingers. Communications of
the ACM, 37(4):21–27.

Sidner, C. (1997). Creating interfaces founded on principles of dis-
course communication and collaboration. In More than Screen
Deep: Toward Every-Citizen Interfaces to the Nation’s Informa-
tion Infrastructure. Washington, D.C.: National Academy Press,
pp. 315–321.

Sutton, S., Cole, R. et al. (1998). Universal speech tools: The CSLU
Toolkit. Proceedings of International Conference on Spoken Lan-
guage Processing ICSLP ’98, 7:3221–3224.

Tufte, E. (1999). Presenting data and information seminar. San
Francisco, CA.

Unisys (1999). Natural Language Speech Assistant, Unisys Corp.
Vergin, R., Farhat, A. et al. (1996). Robust gender-dependent

acoustic-phonetic modelling in continuous speech recognition
based on a new automatic male/female classification. Proceedings
of the International Conference on Spoken Language Processing
ICSLP ’96. Philadelphia, PA, 2:1081–1084.

W3C (2000). Voice eXtensible Markup Language VoiceXML 1.0.
Wagner, A. (1990). Prototyping: A day in the life of an interface

designer. In B. Laurel (Ed.) The Art of Human-Computer Interface
Design. Reading, MA: Addison-Wesley, pp. 79–84.

Weiser, M. (1993). Some computer science issues in ubiquitous com-
puting. Communications of the ACM, 36(7):74–84.

Yankelovich, N., Levow, G.-A. et al. (1995). Designing speechActs:
Issues in speech user interfaces. Proceedings of ACM CHI ’95
Conference on Human Factors in Computing Systems, 1:369–376.


