
SUEDE: A Wizard of Oz Prototyping Tool
for Speech User Interfaces

Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A. Landay, Nadeem Aboobaker, Annie Wang
Group for User Interface Research

CS Division, EECS Department
University of California at Berkeley

Berkeley, CA 94720-1776 USA
+1 510 643 3043

landay@cs.berkeley.edu • http://guir.berkeley.edu

ABSTRACT
Speech-based user interfaces are growing in popularity.
Unfortunately, the technology expertise required to build
speech UIs precludes many individuals from participating
in the speech interface design process. Furthermore, the
time and knowledge costs of building even simple speech
systems make it difficult for designers to iteratively design
speech UIs. SUEDE, the speech interface prototyping tool
we describe in this paper, allows designers to rapidly create
prompt/response speech interfaces. It offers an
electronically supported Wizard of Oz (WOz) technique
that captures test data, allowing designers to analyze the
interface after testing. This informal tool enables speech
user interface designers, even non-experts, to quickly
create, test, and analyze speech user interface prototypes.

Keywords
Wizard of Oz, speech user interfaces, prototyping, design,
low-fidelity, informal user interfaces, design tools

INTRODUCTION
Speech-based user interfaces are more appropriate than
graphical user interfaces in many settings and thus will
likely become a more common user interface paradigm in
the near future [10]. However, speech-based user interfaces
are difficult to design well. Speech UIs are hard to
prototype due to high costs in terms of the time and
technology expertise required to build them. This makes
iterative design difficult and often results in poor user
interfaces. We have developed an interactive prototyping
tool called SUEDE to address this problem. SUEDE is a
lightweight, easy-to-use design tool based on the concepts
of example-based test scripts, prompt/response state
transitions, Wizard of Oz studies, and analysis of user study
data.

Why Speech-based UIs
Today’s graphical user interfaces (GUIs) do not let users

communicate in ways that they naturally do with other
human beings [35]. Additionally, a non-trivial percentage
of the U.S. population is blind or has trouble seeing words
in ordinary newsprint (5% of those over age 15 [29]). Many
others have limited literacy skills (21% of those over age
16 [40]), typing skills, or use of their hands. The standard
GUI does not work well for these users or for others in
many situations: when users are moving around, using their
hands or eyes for something else, or interacting with
another person. To enjoy the benefits of ubiquitous
computing [46], we need newer, better interface paradigms.
Speech-based user interfaces are one paradigm that can
successfully address many of the aforementioned problems.

Supporting Speech Interface Designers
Although many researchers and industry analysts believe
that speech user interfaces will become commonplace,
there are a number of factors that hinder their incorporation
into everyday use.

A key limiting factor in speech interface design is the lack
of basic knowledge about user “performance during
computer-based spoken interaction” [10]. Many interaction
designers who could contribute to this body of knowledge
are excluded from speech design by the complexities of the
core technologies, the formal representations used for
specify ing these technologies, and the lack of appropriate
design tools to support iterative design.

The complex recognizer and synthesizer technologies
inherent in a speech UI require a high level of technical
competency to understand. These systems generally have a
large number of “knobs” and parameters that must be
meticulously adjusted in order to get optimum
performance. Previous research studying the use of visual
design tools showed that when given these knobs, designers
spend many hours manipulating the parameters rather than
exploring the design space [4, 15].

The most effective method for constructing high quality
user interfaces is an iterative approach [16]. This requires a
fast, repeated cycle of design, prototyping, and evaluation.
Therefore, to be successful, a speech interface design tool
must be easy to learn, require little programming expertise
to use, and support the rapid creation, testing, and
modification of interface designs. These requirements form

the basis of any user interface prototyping tool targeted
towards interface designers [45].

The grammar and state machine representations used to
design speech-based systems are formal and abstract. This
is in awkward contrast with the informal, concrete
representations, such as scenarios [6, 8], sketches [5, 22],
and storyboards [23, 24, 45], that designers commonly
employ to explore design ideas through examples.
Designers typically start with usage scenarios and move
towards abstractions over time.

This basic mismatch in approach is an important issue that
must be resolved for any tool to be successful. We have
previously argued that an “informal interface” approach,
using unrecognized, natural input (e.g., sketching or
speech) successfully supports designers in the early stages
of design [18, 24]. Using these tools, designers are
encouraged to explore the design space rather than detail
one design idea too far. SUEDE embodies this approach.

The rest of this paper is organized as follows. We first give
an overview of the Design / Test / Analysis methodology
used by practicing speech UI designers and supported in
SUEDE. After that section, we describe in detail how
SUEDE supports the early stages of the speech user

interface design process. Next, we give an overview of the
system implementation. We then review the related work in
prototyping methodologies and tools for speech user
interface design. We finish with future plans and
conclusions.

DESIGN / TEST / ANALYSIS METHODOLOGY
SUEDE’s design was based on interviews with six speech
UI designers from both industrial research (SRI and Sun
Microsystems Laboratories) and development organizations
(Nuance Communications and Sun Microsystems).

SUEDE’s interface is organized around three important
phases that these designers perform in the early stages of
design: Design, Test, and Analysis. In the Design phase,
they often begin by creating conversation examples (see
Figure 1, top). These examples evolve into, and provide the
foundation for, the actual interface design (shown in
progress in Figure 1, bottom). In the Test phase, they try
out the design with target users. During Analysis, designers
examine collected test data, deciding how it should
influence the next design iteration.

The problems with real world speech user interfaces arise
when users do not know what to say, speak outside the
system’s grammar, or say something that is misrecognized

 Figure 1. SUEDE’s Design mode allows the easy creation of example scripts (top) and speech UI designs (bottom).

by the system. The designers we spoke with wanted more
help analyzing their test data to deal with these types of
errors.

We developed the Design / Test / Analysis methodology as
an explicit model for interface design tools as a result of
remarks made by Edward Tufte at his Presenting Data and
Information seminar (December 8, 1999 in San Francisco).
Tufte argued that usability testing, as practiced today, does
not work since it entails repeated cycles of Design and
Test, resulting in a UI popularity contest. He argued instead
that good design was a process of repeated application of
Design and Analysis. We believe both approaches are
insufficient; the approach that most successful design and
usability specialists use is the repeated application of
Design, Test, and Analysis. SUEDE provides an interface
mode for each of these three tasks (see Figures 1, 2, and 3).

HOW SUEDE WORKS
We will explain the functionality of SUEDE using the
example of someone who is designing a telephone-based
speech interface for reading and sending email, as in the
MailCall system [26]. A typical session in this system starts
by prompting the user for their name and then asking them
what they want to do: read email, send email, get
summaries, or hang up.

Design Mode
Speech designers often begin the design process by writing
linear dialog examples in a word processor [33]. SUEDE
allows linear dialog examples to be created horizontally in
the top area, called the script area, of Design mode (see
Figure 1, top).

Prompts are recorded by the designer for the phrases that
the computer speaks. Responses are the phrases that
participants make in response to prompts. System prompts
alternate with user responses for accomplishing the
different tasks. The orange prompt cards in the script
represent the system’s speech prompts and the green
response cards represent example responses of the end-
user. The designer can record her own voice for the speech
on both types of cards, as well as type in a corresponding
label for each of the cards. By playing the recordings from
left to right, the designer can both see and hear the example
interaction.

We can see from the second script at the top of Figure 1
that the designer has recorded the following alternating
prompts and responses: “Hello, what is your name?”,
“Annie”, “What would you like to do”, “Read email”, “You
have two messages”, “Read them”, “First message from
Jack” and “Anything important?”.

After creating the examples, typically on index cards or
small pieces of paper, a designer creates a flowchart
representation of the dialog flow. In SUEDE, after
constructing several example scripts and working with
them to become familiar with the dialog flow, the designer
starts to construct a design graph, representing the actual
interface prototype (see Figure 1, bottom). The design

graph represents the dialog flow based on the user’s
responses to the system’s prompts. Designs are created by
dragging cards from the script onto the design area,
creating new cards on the design area, and linking them
into the dialog flow. The orange script cards become
orange prompt cards () in the design area. The
green script cards become green response links ()
in the design area. The important interaction techniques are
illustrated in the below diagrams:

Dragging an orange script prompt card to
the design area creates an orange prompt
card.

Dragging a green script response card to
the canvas area creates a green response
link in the design graph.

Dragging a script response card onto an
existing design graph prompt card creates
an outbound response link from that
prompt.

A left mouse drag gesture between two
cards creates a link. Dragging from the
background onto a prompt creates a
global.

Globals, Groups, and Voice Balloons
SUEDE also supports special types of prompt cards called
globals and groups, as well as a mechanism, called a voice
balloon, for parameterizing a later prompt with a test
participant’s actual speech response.

A global is a speech command that can be spoken at any
time during an end-user test session, such as “main menu”
or “help.” In Test mode, clicking on a global will transition
the participant to the connected prompt card.

A group is a set of prompt cards that are possible prompts
following a specific participant response. As an example:

Prompt: “Welcome to the weather system.”

Response: “What is the weather like in San Francisco?”

Prompt Group:

 “It is sunny”

 “It is raining”

 “It is foggy”

Another example is the “Message Options” group in Figure
1, containing the possible prompts resulting from the “read
email” command.

The wizard has the option of choosing among any of these
replies to the participant when testing. Each of these has the

same logical structure in the interface. Above, the designer
used the message options group to enable the wizard to test
different scenarios, yielding an interface with the
appearance of being database backed (as the fully
implemented system probably would be). Groups can also
be used for tapering, a speech technique in which different
prompts are given, based on the number of times the
prompt has been previously played. Groups can also be
used to give different error messages to different
participants.

A voice balloon corresponds to “filling in the blanks” in a
directed dialog system, where the user’s responses are used
in the subsequent prompts. The participant’s unmodified
recorded audio is automatically spliced into a later prompt.
An example of this would be:

Prompt A: “What flight would you like?”

Response: “AIR2000”

Prompt B: “What day would you like to take the flight?”

Response: “Tuesday”

Prompt C: “The schedule for <AIR2000> on <Tuesday>
is…”

Voice balloons are added to a prompt as follows:

A voice balloon is added to a card by
dragging from a response link onto a
prompt card.

A voice balloon represents the run-time response of a test
participant. It can be used in a prompt at design time as a
placeholder for a participant’s utterance. In the flight
scheduling example above, the designer created a voice
balloon corresponding to a user’s response to the prompt
“What flight would you like?” This voice balloon was then
dragged onto the later prompt “The schedule for,” resulting
in “The schedule for <A>”. At run time, <A> would be
filled in with the user’s own response to the first prompt.

A Scalable Design Visualization
The designers that we spoke with were building prompt
and response interfaces of about 200 nodes. One designer
currently using Visio for early stage design felt frustrated
that her designs were spread across a dozen pieces of paper
(her Visio designs had about fifteen nodes per page). She
was interested in having the entire design fit on one
display.

SUEDE supports scaling in two ways. First, scrollbars
allow designers to pan around interfaces that are larger than
one screen. More importantly, prompts and groups can be
shown at three different scales. At their largest, prompts
display their full text and all the prompt audio controls
(prompt M in Figure 1). By default, prompts display one
line of text and all the audio controls (prompt A in Figure
1). At their smallest, prompts display one line of text, and

only the record and play controls (the prompts inside
“Message Options” in Figure 1).

Groups have three similar scales. Their large scale displays
all their prompts at their full size. By default, groups
display all prompts at their compact size (“Message
Options” in Figure 1). When compacted, groups display
only their title. Designers can switch between these
representations by gesture. A left mouse gesture upward
expands a prompt or group, and a left mouse gesture
downward contracts a prompt or group.

Test Mode

SUEDE designs can be immediately executed by clicking
on the Test button. The designer can try out her design
ideas as soon as she has created them without the need for a
speech back-end. That is, no speech recognition or speech
synthesis is necessary to create prototypes in SUEDE.

Wizard of Oz methodologies have a long tradition in the
design of speech systems [16]. In conventional WOz
studies, designers test scenarios manually by walking
through the different steps in a dialog flow. The wizard
simulates dialog transitions as a computer would, reading
the system prompts to the participants and “processing”
their responses.

In SUEDE, the designer switches to Test mode by clicking
on the Test button in the upper right corner of the main

Figure 2. Test mode is presented in a web browser and
allows the wizard to focus on the current state of the UI
(top) and the available responses for that state (bottom).

screen (see Figure 1). When the designer switches to Test
mode, SUEDE generates an appropriate HTML file for
every prompt card in the design graph. The hyperlinks on
each page represent the corresponding response links
possible from that card. Clicking on a link moves from card
to card.

The testing window is a browser-based interface (see
Figure 2). The screen is broken up into four distinct
sections (from top to bottom): session menu, a transcript of
the current session, barge-in and timeout controls, and an
HTML page of the valid user responses to the current
prompt card. Global responses are available on all pages.

In Test mode, a wizard works in front of a computer screen.
The participant performs the test away from the wizard, in
a space with speakers to hear the system prompts and a
microphone hooked up to the computer to record his
responses. When the wizard starts a test session, SUEDE
automatically plays the pre-recorded audio from the current
prompt card. The wizard waits for the test participant to
respond, and then clicks on the appropriate hyperlink based
on the response. During the course of the test session, a
transcript sequence is generated containing the original
system audio output and a recording of the participant’s
spoken audio input.

The wizard’s only job is to click on the appropriate controls
and links in the test interface HTML area (see Figure 2,
bottom). SUEDE incorporates functionality to
automatically insert simulated speech recognition errors,
which is further described in the “Error Modeling” section
below. The wizard can monitor the progress of the session
in the Transcript area at the top of the test interface, which
shows the prompts that have been played so far, along with
the matched responses.

Continuing our MailCall example, we see in Figure 2 that
the test session has just played the “What would you like to
do?” A participant might respond, “I’d like to write an
email please.” The wizard would interpret the user’s
response and click on the “Send email” link. Also note in
Figure 2 the three distinct choices under “Read email,”
illustrating the test view of SUEDE’s group structure. At
test time, the wizard can choose any one of the grouped
prompts to transition to next.

Since there is no speech recognition system underlying this
Wizard of Oz test, in the early stages of design the wizard
will use this opportunity to accept several alternative
inputs. In our example, the wizard might accept “Send,” “I
want to send,” and “Write email” as valid utterances for the
“Send email” response link. These actual audio responses
will be recorded and associated with the response link and
can be later reviewed in Analysis mode to help determine
the input grammar for the final design.

Error Modeling

In the session menu area, there is a parameter marked “%
Errors”. This value sets the simulated speech recognition
error. As the wizard is running the system, SUEDE can

insert random misrecognition errors as a real speech
recognizer might do, as described in [31]. If a random error
happens, SUEDE overrides the wizard’s choice, informs
him of this fact, and randomly chooses one of the other
possible links on that page. The wizard is not tasked with
mimicking an error rate. A representative example of a
random error follows:

Prompt: “On what day would you like to fly?”

Response: “Thursday”

Prompt: “The flights on Tuesday are …”

A typical participant response in this scenario would be:

Response: “No I meant Thursday”

Handling this situation should be part of a robust speech
interface design. Recording what participants say in
response to errors helps the designer analyze and handle
these errors in future design iterations. We plan to extend
SUEDE to allow automatic backup to a previous prompt to
assist in handling these types of errors.

Timeouts
Many speech interfaces treat the lack of response after a
certain time window as a timeout error. A common strategy
for a timeout in many interfaces is to repeat the last played
prompt, in hope that the participant will be able to respond,
in case they did not hear the prompt the first time. Clicking
the Timeout button in Test mode executes this behavior.

A more sophisticated timeout handling response is to give
cooperative incremental feedback to the participant. In
SUEDE, incremental feedback can be modeled with prompt
groups and response links.

Barge-In
Barge-in is a fairly sophisticated speech interface technique
in which a participant responds to a prompt while the
prompt is being played. It is especially important in
conversational interfaces where prompts might be long and
repetitive. SUEDE allows the wizard to simulate barge-in
by stopping the current prompt and switching to recording
audio when the Barge-in button is pressed. Because of its
manual nature, this button-pressing process might not
capture all of the response audio. Many real speech systems
automatically recognize barge-in; in the future, we will
incorporate this feature to ease the burden on the wizard
and more completely capture the participant’s response.

Transcript
The entire participant session is recorded in the set of
prompt cards and response links in the transcript area of the
test interface (see Figure 2, top). This transcript also
appears together with those of other test participants in the
script area of Analysis mode (see Figure 3, top).

Analysis Mode

Many designers take notes during test sessions. Often they
must enlist the help of others to help keep track of statistics
during their tests. SUEDE eases the burden of statistics
collection by automatically recording audio, automatically

creating transcripts of events, and providing several means
of accessing this data.

Data collected in Test mode is displayed in Analysis mode
(see Figure 3). The Analysis interface is similar to the
Design interface, except the top of the screen contains user
transcripts from the test sessions rather than just designer-
made examples, and an annotated version of the design
graph is displayed in the design area. The annotated design
includes information on the number of participants who
took a particular path, the actual responses they made, and
how long they took to respond to each prompt. There is a
pleasing duality between the designer examples and the
actual session transcripts.

During testing, statistics are collected about the number of
participants who traverse a given path in the design.
Switching to Analysis mode displays that statistical
information. Response links are scaled in width to show the
number of times that link was traversed in the user
sessions. Counters are also displayed on each response link
to show the number of times that link was traversed. These
two visualizations give the designer a feel for what parts of

the design were most used and thus need optimization, and
what parts were not used and thus may need more work.
Only by collecting and examining data from real users can
a designer understand the good and bad features of a design
and iteratively improve it.

Continuing our example, we see that three test participants
followed the “Read email” link and that one participant
followed the “Send email” link (see Figure 3, bottom).

The audio of each user session is also available in the script
area so that the designer can review specific responses to a
prompt. The Analysis mode also allows the designer to
review all of the responses across participants for a specific
prompt directly from the design graph node by clicking on
the link counter (as illustrated with the “Read email” node
in Figure 3). Examining the test transcripts and reviewing
individual responses aids in the transition to a formal input
grammar for the final interface design.

The Analysis visualization also shows the average time it
took participants to respond to each prompt. This is
represented by the length of the time bar in the lower right
of the response link. For coarse feedback at a glance,

Figure 3. Analysis mode displays transcripts from user test sessions (top) as well as an annotated version of the design that
summarizes the aggregate test results (bottom). The annotated version also provides the ability to hear the set of responses
for a particular link.

SUEDE presents the time bar in green if the average
response time was short, yellow for a medium response
time, and red for a long response time.

As mentioned previously, problems with speech interfaces
arise when users do not know what to say, when they say
invalid words, or when the system makes recognition
errors. SUEDE addresses these issues through support in
the tool itself. The displayed timing data lets the designer
see where participants paused in a test dialog, possibly
indicating that the participant did not know what to say.
Playback of the transcript allows the designer to hear what
participants thought they could say at any point. The
designer can manually make text transcriptions of this data
by editing the card labels in the transcript area and later use
these textual transcriptions to help generate an input
grammar. Finally, error simulation allows a designer to see
how participants would cope with recognition errors in
interface designs. Using this resulting test data, a designer
can make appropriate design decisions about the flow of
the interface and also the proper input grammar for her
design.

Speech Interface Styles
Linguists have shown that human-computer conversation is
quite different from human-human conversation [12]. Here,
we offer a characterization of current speech interface
application styles, based largely on a survey of existing
speech systems:

1. Simple prompt and response interfaces: Automated
call routing interfaces, such as the one used by
United Airlines [42], and larger vocabulary
command interfaces like M.I.T.’s VoiceNotes, a
portable, voice-controlled system for storing,
navigating, and retrieving recorded to-do lists [36],
GPSS’s interactive, speech-based, car guidance
system [25], and Hyperspeech, a system for
browsing a collection of hyperlinked audio
segments [1].

2. Full sentence conversational interfaces: Speech Acts
Calendar [49] and Office Monitor [50] developed at
Sun, and Wildfire Personal Assistant, a voice-
controlled system that manages contact lists,
answers and places calls, and manages voice-mail
messages [44].

3. Dictation-orientated applications: Dragon Systems’
Dragon Dictate [14] and IBM ViaVoice [19].

4. Speech manipulating interfaces: Speech Skimmer, a
system for scanning a collection of speech segments
[2], and Storywriter, a speech-based document
editing system [13].

5. Multimodal applications: Multimodal maps that use
both pen and speech input [9, 28].

We have designed SUEDE to support the first two of these
speech interface styles. In its current form, SUEDE is not
suited for prototyping applications that have alternative
modes of feedback (such as the text in a dictation or the

graphics in a multimodal application) or involve
manipulating or editing audio.

IMPLEMENTATION
SUEDE is implemented in Sun’s Java JDK1.3, using the
JavaSound package for audio, and the Java AWT, Java
Swing, and Java2D packages for graphics. We have built a
custom set of vector graphics widgets to create the visual
representations.

The SUEDE software architecture employs the Model-
View-Controller paradigm [39]. SuedeModel manages the
scripts, prompts (cards), and responses (links) that are
displayed on the screen. Each of those individual items has
a corresponding visual view and also a corresponding,
reusable audio data structure that supports multiple audio
streams.

SUEDE uses XML as its file format, and file I/O is
implemented on top of the Java XML Parser (JAXP 1.0.1).

RELATED WORK
SUEDE is inspired by previous work in low-fidelity
prototyping and Wizard of Oz studies, as well as by
existing systems for prototyping and testing speech and
multimodal user interfaces.

Low-fidelity Prototyping
Low-fidelity paper prototyping [34] is a popular design and
evaluation technique, used to prototype systems quickly
and easily. SUEDE aims to provide the same benefits to
speech-based interfaces: rapid prototyping and testing with
little expert knowledge necessary.

Ordinary low-fidelity prototyping is fallible because of the
task complexity for the wizard, the “human computer,” that
simulates the prototype. Because SUEDE employs a
computational element to perform some operations in
concert with the wizard, user test stimuli and interface logic
are more likely to be presented correctly between
participants. One of the primary goals of our research was
to make Test mode as simple as possible so that the wizard
can react quickly and accurately to the test participant’s
responses.

SUEDE also offers a much more manageable visualization
of an interface design than that offered by paper or domain
independent flowchart tools such as Visio. In addition,
SUEDE’s designs are stored in a form that, in the future,
may allow them to be semi-automatically converted to fully
working systems, as was done for sketched GUIs in SILK
[22].

Wizard of Oz Studies, Tools, and Toolkits
The Wizard of Oz technique has been used for years to
simulate speech recognition systems when performing both
low-fidelity tests of proposed design ideas and user studies
on “finished” interface designs [12]. In a standard Wizard
of Oz study [16, 20], a human simulates the speech system.
Participants hear prompts read by the wizard face-to-face or
remotely via a computer, intercom, or phone. To decide
what prompt to read, the wizard follows a script or

flowchart based on the participants’ responses. SUEDE’s
electronic support for WOz testing improves on traditional
WOz by making it easy to carry out repeatable tests as well
as keep track of what happens during the test sessions. A
designer can easily capture and review evaluation statistics
on specific parts of an interface.

Yankelovich made frequent use of “pre-design studies” in
her work on Speech Acts [47, 48, 50]. These studies
involve observing natural dialogues between people in the
target setting, as well as performing WOz-like simulations
of the speech system, as in the design of the Office Monitor
[50]. These pre-design studies are an important component
of speech interface design, and one of our goals was to
make it easier for designers to carry them out. SUEDE’s
session recording and analysis features make the data
generated from these studies easily accessible and even
more valuable.

The NEIMO system [3, 11] is a platform for the study of
multimodal systems, and SRI’s Open Agent Architecture
[7] is a toolkit for implementing multimodal applications.
Both attempt to improve the difficult task of designing
multimodal user interfaces by using WOz techniques.
These systems require functioning software to be written
before testing can begin. In contrast, SUEDE is oriented at
early stage speech UI design and thus has no such software
requirement. The freedom from requiring completed
software makes creating interfaces in SUEDE more
accessible to designers, who are typically non-
programmers.

The SUEDE WOz methodology of performing no
automated speech recognition offers the advantage that
designers do not have to worry at this early stage about
whether the participants have different accents [30] or
genders [43]; it does not matter what language they are
speaking at all. This makes the WOz process especially
appealing for non-English UIs, where current recognizers
generally perform worse than for English [32].

Speech-based UI Construction Tools
There are two existing speech UI construction tools which
are similar to SUEDE in several respects: the CSLU Rapid
Application Developer (RAD) [37, 38] and Unisys’ Natural
Language Speech Assistant (NLSA) [41].

Both CSLU RAD and NSLA combine speech recognition,
speech synthesis, and the Wizard of Oz technique into an
integrated tool for building speech applications. Like
SUEDE, these tools use a visual, state machine
representation of the speech UI [27]. CSLU RAD and
NSLA are oriented towards specifying, testing, and
implementing a more finished application interface. One
could imagine a designer first prototyping and testing in
SUEDE and then transferring a concrete design idea to
CSLU or NSLA where she would add the details to create
and test the final implementation.

Although NLSA and possibly CSLU, given some code
additions, could be used in similar ways, SUEDE’s

informal user interface makes it more appropriate for early
phase design. Our earlier work on GUI design tools showed
that letting designers ignore details, such as fonts, colors,
and alignment, enabled them to focus on the interaction
design [22]. With speech-based user interfaces, the need to
adjust recognition parameters is even more tempting.

Although NLSA, like SUEDE, has a WOz mode that does
not use recognition, this part of the tool offers no support
for creating synthetic errors during WOz studies as in
SUEDE and the work of Oviatt, et. al. [31]. In addition,
neither NSLA nor CSLU RAD offers tools for analyzing
the test data. For instance, SUEDE will record that the
undefined “yeah” utterance was associated with the “yes”
transition. This lets designers know what things users
actually say.

A common limiting factor of all three tools is that because
of the state-based metaphor, they are most appropriate for
prompt/response interfaces.

FUTURE WORK
We have released SUEDE to the speech design community
to further evaluate the scenarios most appropriate for its
use. (See http://guir.berkeley.edu/suede/)

We have discussed SUEDE with several professional
speech UI designers. One common interest has been a way
to migrate SUEDE interfaces to the development
environments of various speech recognition systems. We
plan to extend SUEDE’s Analysis tools to support grammar
creation for a standard speech recognition system. Also,
because SUEDE is open source, interested parties can add
additional modeling in Test mode that might reflect the
characteristics of their own systems.

SUEDE’s supports the early stage of speech interface
design. As an informal tool, SUEDE offers significant
flexibility for designers. We will be adding more
sophisticated support for speech design features such as
tapering, error handling, and cooperative prompts, though it
is possible to model these right now. Another logical
extension is to allow SUEDE designs to function as
reusable components, to be used in higher-level designs.
We will further extend Test mode to collect additional user
session data and wizard annotations. And Analysis mode
will use this information to help the designer evolve his or
her dialog design.

SUEDE’s ability to save designs to disk in an XML format
provides a primitive method of design versioning. In the
future, we will develop a more sophisticated versioning
strategy through which a designer can compare past designs
with current designs.

CONCLUSIONS
The speech interface design problem is complicated; one
cannot know in advance what users will say to a speech
system. A high quality speech user interface can only be
developed through iterative design and evaluation. SUEDE
makes significant progress on support for the early stages
of this process. Based on our interviews, SUEDE’s Design,

Test, and Analysis paradigm maps quite well onto the
speech designer’s mental process.

Many designers use scripts as their initial concrete
examples. SUEDE supports this work process. The script
facilitates designer reflection about what it is they are
building, and the dualism between script and transcript
helps close the iterative design loop.

The high level of frustration associated with speech
interfaces in their current incarnation may prevent them
from ever becoming preferred by customers [17]. The
problem here, we believe, is not one of medium, but one of
design—design the speech interface well, and users will
come to value the system.

ACKNOWLEDGEMENTS
We would like to thank Cindy Chen for her help with
developing the software, and David Breslauer for testing
SUEDE and creating a software download with an online
manual. We greatly appreciate Jason Hong and James Lin’s
sage Java advice and comments on drafts of this paper. We
also thank the designers we spoke with at Nuance, SRI, and
Sun for the insight they offered into the speech design
process. Finally, we thank the reviewers of this paper for
their valuable feedback and insight.

REFERENCES
1. Arons, B., Hyperspeech: Navigating in Speech-only

Hypermedia, in Proceedings of ACM Hypertext ’91. p.
133-146, 1991.

2. Arons, B., SpeechSkimmer: A System for Interactively
Skimming Recorded Speech. ACM Transactions on
Computer-Human Interaction, 1997. 4(1): p. 3-38.

3. Balbo, S., J. Coutaz, and D. Salber, Towards
Automatic Evaluation of Multimodal User Interfaces,
in Proceedings of the International Workshop on
Intelligent User Interfaces. p. 201-208, 1993.

4. Black, A., Visible Planning on Paper and on Screen:
The Impact of Working Medium on Decision-making
by Novice Graphic Designers. Behaviour &
Information Technology, 1990. 9(4): p. 283-296.

5. Boyarski, D. and R. Buchanan, Computers and
Communication Design: Exploring the Rhetoric of
HCI. Interactions, 1994. 1(2): p. 24-35.

6. Carroll, J.M., Scenario-Based Design: Envisioning
Work and Technology in System Development: John
Wiley & Sons. 408, 1995.

7. Cheyer, A., L. Julia, and J.C. Martin, A Unified
Framework for Constructing Multimodal Experiments
and Applications, in Proceedings of CMC ’98: Tilburg,
The Netherlands. p. 63-69, 1998.

8. Clarke, L. The Use of Scenarios by User Interface
Designers. In Proceedings of The HCI’91 Conference
on People and Computers VI. pp. 103-115, 1991.

9. Cohen, P.R., M. Johnston, D. McGee, S.L. Oviatt, J.
Clow, and I. Smith. The efficiency of multimodal

interaction: a case study. In Proceedings of The
International Conference on Spoken Language, 1998.

10. Cohen, P.R. and S.L. Oviatt, The role of voice input
for human-machine communication. Proceedings of
the National Academy of Sciences, 1995. 92(22): p.
9921-9927.

11. Coutaz, J., D. Salber, E. Carraux, and N. Portolan,
NEIMO, a Multiworkstation Usability Lab for
Observing and Analyzing Multimodal Interaction, in
Proceedings of ACM CHI 96 Conference on Human
Factors in Computing Systems. p. 402-403, 1996.

12. Dahlbäck, N., A. Jönsson, and L. Ahrenberg. Wizard
of Oz Studies - Why and How. In Proceedings of
Intelligent User Interfaces ’93. pp. 193-200 1993.

13. Danis, C., L. Comerford, E. Janke, K. Davies, J.
DeVries, and A. Bertrand, Storywriter: A Speech
Oriented Editor, in Proceedings of ACM CHI’94
Conference on Human Factors in Computing Systems.
p. 277-278, 1994.

14. Dragon, Dragon Dictate, 2000. Dragon Systems.
http://www.dragonsys.com/

15. Goel, V., Sketches of Thought. Cambridge, MA: The
MIT Press. 279, 1995.

16. Gould, J.D. and C. Lewis, Designing for Usability --
Key Principles and What Designers Think, in
Proceedings of ACM CHI’83 Conference on Human
Factors in Computing Systems. p. 50-53, 1983.

17. Gwyther, M., Voicemail Hell, Management Today pp.
76-77, 1999.

18. Hearst, M.A., M.D. Gross, J.A. Landay, and T.E.
Stahovich, Sketching Intelligent Systems. IEEE
Intelligent Systems, 1998. 13(3): p. 10-19.

19. IBM, ViaVoice, 2000. IBM.
http://www.ibm.com/software/speech/

20. Kelley, J.F., An Iterative Design Methodology for
User-Friendly Natural Language Office Information
Applications. ACM Transactions on Office Information
Systems, 1984. 2(1): p. 26-41.

21. Landay, J.A., Interactive Sketching for the Early
Stages of User Interface Design, Unpublished Ph.D.,
Carnegie Mellon University, Pittsburgh, PA, 1996.
http://www.cs.berkeley.edu/~landay/research/publicati
ons/Thesis.pdf

22. Landay, J.A. and B.A. Myers. Interactive Sketching for
the Early Stages of User Interface Design. In
Proceedings of Human Factors in Computing Systems:
CHI ’95. Denver, CO. pp. 43-50, May 7–11 1995.

23. Landay, J.A. and B.A. Myers. Sketching Storyboards
to Illustrate Interface Behavior. In Proceedings of
Human Factors in Computing Systems: CHI ’96
Conference Companion. Vancouver, Canada. pp. 193-
194, April 13–18 1996.

24. Lin, J., M.W. Newman, J.I. Hong, and J.A. Landay,
DENIM: Finding a tighter fit between tools and
practice for web site design. CHI Letters: Human
Factors in Computing Systems, CHI ’2000, 2000. 2(1):
p. 510-517.

25. Lovelock, R., GPSS’s speech interface, 1999.
Sunninghill Systems. http://www.gpss.co.uk

26. Marx, M. and C. Schmandt. MailCall: Message
Presentation and Navigation in a Nonvisual
Environment. In Proceedings of ACM CHI 96
Conference on Human Factors in Computing Systems.
pp. 165-172, 1996.

27. McTear, M.F. Modelling Spoken Dialogues with State
Transition Diagrams: Experiences with the CSLU
Toolkit. In Proceedings of 5th International
Conference on Spoken Language Processing (ICSLP
’98). Sydney, Australia, Dec 1998.

28. Moran, L.B., A.J. Cheyer, L.E. Julia, D.L. Martin, and
S. Park, Multimodal user interfaces in the open agent
architecture. Knowledge-Based Systems, 1998. 10(5):
p. 295-304.

29. National Research Council, More than screen deep:
toward every-citizen interfaces to the nation’s
information infrastructure. Washington, D.C.:
National Academy Press. 433, 1997.

30. Oviatt, S. Mutual Disambiguation of Recognition
Errors in a Multimodal Architecture. In Proceedings of
ACM CHI 99 Conference on Human Factors in
Computing Systems. pp. 576-583, 1999.

31. Oviatt, S., P. Cohen, M. Fong, and M. Frank. A rapid
semi-automatic simulation technique for investigating
interactive speech and handwriting. In Proceedings of
The International Conference on Spoken Language
Processing. Banff, Canada, October 1992.

32. Pallett, D.S., J.G. Fiscus, J.S. Garofolo, A. Martin, and
M. Przybocki. 1998 Broadcast News Benchmark Test
Results: English and Non-English Word Error Rate
Performance Measures. In Proceedings of 1999
DARPA Broadcast News Workshop, 1998.

33. Pearl, C., Personal Communication, 2000.

34. Rettig, M., Prototyping for Tiny Fingers.
Communications of the ACM, 1994. 37(4): p. 21-27.

35. Sidner, C., Creating Interfaces Founded on Principles
of Discourse Communication and Collaboration, in
More than screen deep: toward every-citizen interfaces
to the nation’s information infrastructure, National
Research. Council, Editor. National Academy Press:
Washington, D.C. p. 315-321, 1997.

36. Stifelman, L.J., B. Arons, C. Schmandt, and E.A.
Hulteen, VoiceNotes: A Speech Interface for a Hand-
Held Voice Notetaker, in Proceedings of ACM
INTERCHI’93 Conference on Human Factors in
Computing Systems. p. 179-186, 1993.

37. Sutton, S. and R. Cole, The CSLU Toolkit: rapid
prototyping of spoken language systems, in
Proceedings of UIST ’97: the ACM Symposium on
User Interface Software and Technology. p. 85-6,
1997.

38. Sutton, S., D.G. Novick, et al., Building 10,000 spoken
dialogue systems, in Proceedings ICSLP 96:
International Conference on Spoken Language
Processing, H.T. Bunnell and W. Idsardi, Editors. p.
709-12 vol.2, 1996.

39. Tesler, L., The Smalltalk Environment, Byte Magazine,
vol. 6(8): pp. 90-147, 1981.

40. U.S. Department of Education, 1992 National Adult
Literacy Survey. Washington, DC: U.S. Government
Printing Office, 1992.

41. Unisys, Natural Language Speech Assistant, 1999.
Unisys Corp. http://www.unisys.com/marketplace/nlu/
nlaproductinfo.html

42. United, United Airlines Customer Service, 1999.
United Airlines: 1-800-241-6522.

43. Vergin, R., A. Farhat, and D. O’Shaughnessy, Robust
gender-dependent acoustic-phonetic modelling in
continuous speech recognition based on a new
automatic male/female classification, in Proceedings
ICSLP 96. Fourth International Conference on Spoken
Language Processing, H.T. Bunnell and W. Idsardi,
Editors: Philadelphia, PA, USA. p. 1081-4, 1996.

44. Virtuosity, Wildfire Personal Assistant, 1999.
Virtuosity. http://www.wildfire.com/

45. Wagner, A., Prototyping: A Day in the Life of an
Interface Designer, in The Art of Human-Computer
Interface Design, B. Laurel, Editor. Addison-Wesley:
Reading, MA. p. 79-84, 1990.

46. Weiser, M., Some Computer Science Issues in
Ubiquitous Computing. Communications of the ACM,
1993. 36(7): p. 74-84.

47. Yankelovich, N., Talking vs Taking: Speech Access to
Remote Computers, in Proceedings of ACM CHI’94
Conference on Human Factors in Computing Systems.
p. 275-276, 1994.

48. Yankelovich, N. and J. Lai, Designing Speech User
Interfaces, in Proceedings of ACM CHI 98 Conference
on Human Factors in Computing Systems (Summary).
p. 131-132, 1998.

49. Yankelovich, N., G.-A. Levow, and M. Marx,
Designing SpeechActs: Issues in Speech User
Interfaces, in Proceedings of ACM CHI’95 Conference
on Human Factors in Computing Systems. p. 369-376,
1995.

50. Yankelovich, N. and C.D. McLain, Office Monitor, in
Proceedings of ACM CHI 96 Conference on Human
Factors in Computing Systems. p. 173-174, 1996.

