Improving the Accuracy of Gaze Input

Manu Kumar, Jeff Klingner, Rohan Puranik, Terry Winograd, Andreas Paepcke
Stanford University, HCI Group
Gates Building, Room 382
353 Serra Mall
Stanford, CA 94305, USA
{sneaker, klingner, rpuranik, winograd, paepcke} @stanford.edu

ABSTRACT

Using gaze information as a form of input poses challenges
based on the nature of eye movements and how we humans
use our eyes in conjunction with other motor actions. In
this paper, we present three techniques for improving the
feasibility of using gaze as a form of input. We first present
a saccade detection and smoothing algorithm that works on
real-time streaming gaze information. We then present a
study which explores some of the timing issues of using
gaze in conjunction with a trigger (key press or other motor
action) and propose a solution for resolving these issues.
Finally, we present the concept of Focus Points, which
makes it easier for users to focus their gaze when using
gaze-based interaction techniques. Though these techniques
were developed for improving the performance of gaze-
based pointing, their use is applicable in general to using
gaze as a practical form of input.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. — Input devices and strate-
gies.

General terms: Human Factors, Algorithms, Performance,
Design

Keywords: Eye Tracking, Gaze Input, Gaze-enhanced User
Interface Design, GUIDe, Fixation Smoothing, Eye-hand
coordination, Focus Points.

INTRODUCTION

The eyes are a rich source of information for gathering con-
text in our everyday lives. A user’s gaze is postulated to be
the best proxy for attention or intention [14]. Using eye-
gaze information as a form of input can enable a computer
system to gain more contextual information about the us-
er’s task, which in turn can be leveraged to design interfac-
es which are more intuitive and intelligent. Our research
explores the use of gaze information as a practical form of
input by augmenting rather than replacing existing interac-
tion techniques. We have developed gaze-enhanced interac-
tion techniques for pointing and selection [5], scrolling [6],
password entry [4] and other everyday computing tasks.

Keep this space free for the ACM copyright notice.

In implementing EyePoint [5], we found that while the
speed of a the gaze-based pointing technique was compara-
ble to the mouse, the error rates were significantly higher.
To address this problem we conducted a series of studies to
better understand the source of these errors and identify
ways to improve the accuracy of gaze-based pointing.

In this paper we present the three most important methods
for improving the accuracy and user experience of gaze-
based pointing: an algorithm for real-time saccade detec-
tion and fixation smoothing, an algorithm for improving
eye-hand coordination and the use of focus points. These
methods boost the basic performance for using gaze infor-
mation in interactive applications and in our application
made the difference between prohibitively high error rates
and practical usefulness of gaze-based interaction.

SACCADE DETECTION AND FIXATION SMOOTHING
The challenge: Gaze data is noisy
Basic eye movements can be broken down into two types:

fixations and saccades. A fixation occurs when the gaze

rests steadily on a single point. A saccade is a fast move-
ment of the eye between two fixations. However, even fixa-
tions are not stable and the eye jitters during fixations due
to drift, tremor and involuntary micro-saccades [13]. This
gaze jitter, together with the limited accuracy of eye track-
ers, results in a noisy gaze signal.

The prior work on algorithms for identifying fixations and
saccades [9-11, 13] has dealt mainly with post-processing
previously captured gaze information. For using gaze in-
formation as a form of input, it is necessary to analyze eye-
movement data in real-time.

Saccade Detection and Fixation Smoothing

To smooth the data from the eye tracker in real-time, it is
necessary to determine whether the most recent data point
is the beginning of a saccade, a continuation of the current
fixation or an outlier relative to the current fixation. We use
a gaze movement threshold, in which two gaze points sepa-
rated by a Euclidean distance of more than a given saccade
threshold are labeled as a saccade. This is similar to the
velocity threshold technique described in [11], with two
modifications to make it more robust to noise. First, we
measure the displacement of each eye movement relative to
the current estimate of the fixation location rather than to
the previous measurement. Second, we look ahead one
measurement and reject movements over the saccade thre-
shold, which immediately return to the current fixation.
This prevents single outliers of the current fixation from



being mislabeled as saccades. It should be noted that this
look-ahead introduces a one-measurement latency (20ms
for the Tobii 1750 eye tracker [12]) at saccade thresholds
into the gaze data provided to the application.

The algorithm maintains two sets of points: the current fix-
ation window and a potential fixation window. If a point is
close to (within a saccade threshold) the current fixation,
then it is added to the current fixation window. The new
current fixation is calculated by a weighted mean which
favors more recent points (described below). If the point
differs from the current fixation by more than a saccade
threshold, then it is added to the potential fixation window
and the current fixation is returned. When the next data
point is available, if it was closer to the current fixation,
then we add it to the current fixation and throw away the
potential fixation as an outlier. If the data point is closer to
the potential fixation, then we add the point to the potential
fixation window and make this the new current fixation.

The fixation point is calculated as a weighted mean (a one-
sided triangular filter) of the set of points in the fixation
window. The weight assigned to each point is based on its
position in the window. For a window with n points (P,
Py... P,;) the mean fixation would be calculated by the
formula:

1Py +2P +...+nP,_4
(1+2+...+n)

Rﬁxation -

The size of the fixation window () is capped to include
only data points that occurred within a dwell duration [7, 8]
of 400-500ms (20 data points for our eye tracker). We do
this to allow the fixation point to adjust more rapidly to
slight drift in the gaze data.

Figure 1 shows the output from the smoothing algorithm
for the x-coordinate of the eye-tracking data. We also show
a Kalman filter applied to the entire raw gaze data and a
Kalman filter applied in parts to the fixations only. A Kal-
man Filter applied over the entirety of the raw gaze data
smoothes over saccade intervals. The nature of eye move-
ments, in particular the existence of saccades, necessitates
that the smoothing function only be applied to fixations, i.e.
within saccade boundaries. Applying the Kalman filter in
parts to the fixations only does yield comparable results to
our one-sided triangular filter discussed above. It is possi-
ble that applying a non-linear variant of the Kalman filter
[1], or a better process model of eye movements for the
Kalman filter may yield better smoothing results. The ad-
vantage of our approach is that the algorithm is very simple
and most of all it is tailored to account for the different
forms of eye movements and also tolerate the noise in eye
tracking data.

While there is still room for improvement in the algorithm
above by taking into account the directionality of the in-
coming data points, we found that our saccade detection
and smoothing algorithm significantly improved the relia-
bility of the results for applications which rely on the real-
time use of eye-tracking data. A more detailed description
of our algorithm including pseudocode is available in [3].

Saccade Detection and Fixation Smoothing

740 - ——Raw ‘ AR Q
-~ LA -
Ve
720 1 —Kalman AN
/ .
f

{
700 4 Smonthed i Kalman filter without
!
!
'

saccade detection ~.__
680 - -

640 FA&A‘AMVDJ

620

X-coordinate of gaze location [pixels)

a 180 380 240 720 s00 1080 1260 1440

Time (msec)

Figure 1. Results of our real-time saccade detection
and smoothing algorithm. Note that the one mea-
surement look-ahead prevents outliers in the raw
gaze data from being mistaken for saccades, but in-
troduces a 20ms latency on saccade thresholds.

EYE-HAND COORDINATION

Our research on using a combination of gaze and keyboard
for performing a pointing task [5] showed that error rates
were very high. Additional work on using gaze-based
password entry [4] showed that the high error rates existed
only when the subjects used a combination of gaze plus a
keyboard trigger. Using a dwell-based trigger exhibited
minimal errors. These observations led us to hypothesize
that the errors may be caused by a failure of synchroniza-
tion between gaze and triggers.

To determine the cause and the number of errors we con-
ducted two user studies with 15 subjects (11 male, 4 fe-
male, average age 26 years). In the first study, subjects
were presented with a red balloon. Each time they looked at
the balloon and pressed the trigger key, the red balloon
popped and moved to a new location (Moving Target
Study). In the second study, subjects were presented with
20 numbered balloons on the screen and asked to look at
each balloon in order and press the trigger key (Stationary
Targets Study). Subjects repeated each study twice, once
optimizing for speed and trying to perform the task as
quickly as possible and the second time optimizing for ac-
curacy and trying to perform the study as accurately as
possible. The order of the studies was varied for counter-
balancing and trials were repeated in case of an error.

An in-depth analysis of the data and classification of the
errors from the two studies revealed multiple sources of
error:

Tracking errors: caused due to the eye tracker accuracy.
These include cases in which the gaze data from the eye
tracker is biased or when the location of the target closer to
the periphery of the screen results in lower accuracy from
the eye tracker [2].

Early-Trigger errors: caused because the trigger happened
before the user’s gaze was in the target area. Early triggers
can happen because a) the eye tracker introduces a sensor
lag of about 33ms in processing the user’s eye gaze, b) the
smoothing algorithr introduces an additional latency of



Sources of Error in Gaze Input

740 \-"\

—Raw -I

——Smoothed

3:0)

660

!L&
640 3 b c

620

X-coordinate of gaze location [pixels]

T T T T T T T T
0 180 360 540 720 200 1080 1260 1440

Time (msec)

Figure 2. Sources of error in gaze input. Shaded
areas show the target region. Example triggers are
indicated by red arrows. The triggers shown are all
different attempts to click on the upper target region.
The trigger points correspond to: a) early trigger error,
b) raw hit and smooth hit, ¢) raw miss and smooth hit,
and d) late trigger error.

20ms at saccade thresholds ¢) in some cases (as in the
Moving Target study) the users may have only looked at
the target in their peripheral vision and pressed the trigger
before they actually focused on the target.

Late-Trigger errors: caused because the user had already
moved their gaze on to the next target before they pressed
the trigger. Late triggers can happen only in cases when
multiple targets are visible on the screen, as in the Statio-
nary Targets study or in gaze-based typing.

Other errors: these include a) smoothing errors caused
when the smoothed data happened to be outside the target
boundary, but the raw data point would have, by chance,
resulted in a hit, b) human errors where the subject just was
not looking at the right thing or the subject looked down at
the keyboard before pressing the trigger.

Figure 2 illustrates the different error types. Figure 3 shows
how often each type of error occurred in the two studies.

Moving Target Study Stationary Targets Study

18.0% 18.0%
O Early Trigger

O Late Trigger

16.0% 16.0%

@ Tracking O Early Trigger

14.0%

14.0%

B Other @ Tracking

12.0%

12.0%
B Other

10.0% 100% [—

Speed Task  Accuracy Task Speed Task  Accuracy Task

Figure 3. Analysis of errors in the two studies show
that a large number of errors in the Speed Task hap-
pen due to early triggers and late triggers — errors in
synchronization between the gaze and trigger events.

Simulation of Smoothing and Early Trigger Correction
20%
18% |—qgge Lot 164%
= 16%
o
= o14% —
|11}
o 12% | E—
]
E 10% +— — B2 e XT3
S B% | S
s N [— -
5 6%
o g9 | -
2% | E— —
0% T T T T T 1
Raw Smoothed ETC Smoothed Smoothed
N BETC 4
Y Y
speed task accuracy task

Figure 4. Simulation of smoothing and early trigger
correction (ETC) on the speed task for the Moving
Target Study shows that the percentage error of the
speed task decreases significantly and is comparable
to the error rate of the accuracy task.

To improve the accuracy of gaze-based pointing in the case
of the speed task, we implemented an Early Trigger correc-
tion (ETC) algorithm which delays trigger points by 80ms
to account for the sensor lag, smoothing latency and peri-
pheral vision effects. We simulated this algorithm over the
data from the Moving Target study. Figure 4 shows the
outcome from the simulated results. It should be noted that
both smoothing and early-trigger correction by themselves
actually increased the error rate, because smoothing intro-
duces a latency that the early trigger would be correcting.
The error rate in the speed task when using a combination
of smoothing and early trigger correction approaches the
error rate of the accuracy task — without compromising the
speed of the task.

While we were able to identify late-trigger errors in the
analysis of the data, it is difficult to distinguish a late trig-
ger from an early trigger or even an on-time trigger without
using semantic information about the location of the tar-
gets. Since our approach has focused on providing a gener-
ally applicable techniques for gaze-input which do not rely
on application or operating system specific information we
did not attempt to correct for late triggers. We note that the
use of semantic information about target locations has the
potential to significantly improve the accuracy of gaze-
based input by allowing the current fixation to be applied to
the closest target.

FOCUS POINTS

In our paper on gaze-based pointing [5], we introduced the
use of Focus Points—a grid pattern of dots overlaid on the
magnified view that contained the targets (see Figure 5).
We hypothesized that focus points assist the user in making
a more fine-grained selection by focusing the user’s gaze,
thereby improving the accuracy of the eye tracking. How-
ever, the studies in the EyePoint paper showed no conclu-
sive effect of an improvement in tracking accuracy when
using focus points.

To test this hypothesis further, we conducted a user study
with 17 subjects (11 male, 6 female, average age 22. In the
first part of the study subjects were shown a red balloon



Figure 5. Magnified view for gaze-based pointing tech-
nique with and without focus points. Using focus points
provides a visual anchor for subjects to focus their gaze on
making it easier for them to click in the text box.

and asked to look at the center of the balloon. Once they
had looked at the balloon for a dwell duration (450ms) the
balloon automatically moved to a new location. In the
second part, subjects repeated the study, but with the center
point of the balloon clearly marked with a focus point. The
order was varied and each subject was shown 40 balloons.
The user’s raw and smoothed gaze positions were logged
for each balloon. At the end of the study users were pre-
sented with a 7-point Likert scale questionnaire which
asked them which condition was easier and whether they
found the focus point at the center of the balloon useful.

We computed the standard deviation of the Euclidean dis-
tance of each gaze point from the center point of the target.
The results from the study show that within the bounds of
the measurable accuracy of the eye tracker' , the use of
focus points did not have a significant impact in concentrat-
ing the user’s gaze on the center of the target. The ques-
tionnaire results however, indicate that subjects found the
condition with the focus point easier and found the focus
point to be useful when trying to look at the center of the
target. These results are consistent with our findings in the
original EyePoint paper [5].

We conclude that while the use of focus points may not
measurably improve the accuracy of the raw gaze data from
the eye tracker, they do indeed make pointing easier and
provide a better user experience. This is illustrated by Fig-
ure 5, which shows two views of the magnified view from
EyePoint. If the subject intends on clicking in the text area
in the bottom right of the magnified view, the task is easier
for the subject in the condition with focus points, since the
focus points provide a visual anchor for the subject to focus
upon.

CONCLUSION

The techniques presented above improve the use of gaze
for input by addressing changes in how we interpret the
gaze data from eye trackers (saccade detection and smooth-
ing), how to match gaze input with an external trigger (eye
hand coordination) and by introducing features which make
it easier for the user to look at the desired target (focus

' The accuracy of the eye tracker is approximately 1° of visual
angle which provides a spread of 33 pixels in any direction (di-
ameter of spread ~66 pixels)

points). The above techniques describe software changes
that can be made at an application layer to improve the use
or gaze as a form of input and are orthogonal to any im-
provement in the underlying tracking technology that pro-
vides for more accuracy and head movement from the eye
tracker.

REFERENCES

1. Arulampalam, M. S., S. Maskell, N. Gordon, and T.
Clapp. A Tutorial on Particle Filters for Online Nonli-
near/Non-Gaussian Bayesian Tracking. /EEE Transac-
tions on Signal Processing 50(2). pp. 174, 2002.

2. Beinhauer, W. A Widget Library for Gaze-based Inte-
raction Elements. In Proceedings of ETRA: Eye Track-
ing Research and Applications Symposium. San Diego,
California, USA: ACM Press. pp. 53-53, 2006.

3. Kumar, M., GUIDe Saccade Detection and Smoothing
Algorithm. Technical Report CSTR 2007-03, Stanford
University, Stanford 2007.
http://hci.stanford.edu/cstr/reports/2007-03.pdf

4. Kumar, M., T. Garfinkel, D. Boneh, and T. Winograd,
Reducing Shoulder-surfing by Using Gaze-based Pass-
word Entry. Technical Report CSTR 2007-05, Stanford
University, Stanford 2007.
http://hci.stanford.edu/cstr/reports/2007-05.pdf

5. Kumar, M., A. Paepcke, and T. Winograd. EyePoint:
Practical Pointing and Selection Using Gaze and Key-
board. In Proceedings of CHI. San Jose, California,
USA: ACM Press, 2007.

6. Kumar, M., T. Winograd, and A. Paepcke. Gaze-
enhanced Scrolling Techniques. In Proceedings of CHI.
San Jose, California, USA: ACM Press, 2007.

7. Majaranta, P., A. Aula, and K.-J. Rdiha. Effects of
Feedback on Eye Typing with a Short Dwell Time. In
Proceedings of ETRA: Eye Tracking Research & Appli-
cations Symposium. San Antonio, Texas, USA: ACM
Press. pp. 139-46, 2004.

8. Majaranta, P., I. S. MacKenzie, A. Aula, and K.-J.
Réihd. Auditory and Visual Feedback During Eye Typ-
ing. In Proceedings of CHI. Ft. Lauderdale, Florida,
USA: ACM Press. pp. 766-67, 2003.

9. Monty, R. A.,J. W. Senders, and D. F. Fisher, Eye
Movements and the Higher Psychological Functions.
Hillsdale, New Jersey, USA: Erlbaumpp. 1978.

10.Salvucci, D. D. Inferring Intent in Eye-Based Interfaces:
Tracing Eye Movements with Process Models. In Pro-
ceedings of CHI. Pittsburgh, Pennsylvania, USA: ACM
Press. pp. 254-61, 1999.

11.Salvucci, D. D. and J. H. Goldberg. Identifying Fixa-
tions and Saccades in Eye-Tracking Protocols. In Pro-
ceedings of ETRA: Eye Tracking Research & Applica-
tions Symposium. Palm Beach Gardens, Florida, USA:
ACM Press. pp. 71-78, 2000.

12.Tobii Technology, AB, Tobii 1750 Eye Tracker, 2006.
Sweden. http://www.tobii.com

13.Yarbus, A. L., Eye Movements and Vision. New York:
Plenum Presspp. 1967.

14.Zhai, S. What's in the Eyes for Attentive Input, Com-
munications of the ACM, vol. 46(3): pp. 34-39, March,
2003.





