

Last Time:
 Visualization (Re-)Design

Assignment 2: Exploratory Data Analysis

Use visualization software (Tableau) to form \& answer questions
First steps:
Step 1: Pick a domain
Step 2: Pose questions
Step 3: Find Data
Iterate
Create visualizations
Interact with data
Refine your questions
Make wiki notebook
Keep record of your analysis
Prepare a final graphic and caption
Due by
Monday, January 26

Tableau / Polaris

Polaris

Research at Stanford by Stolte, Tang, and Hanrahan.

Tableau

Polaris/Tableau Approach

Insight: can simultaneously specify both database queries and visualization

Choose data, then visualization, not vice versa
Use smart defaults for visual encodings
More recently: automate visualization design

Specifying Table Configurations

Operands are the database fields

- Each operand interpreted as a set $\{. .$.
- Quantitative and Ordinal fields treated differently

Three operators:
concatenation (+)

- cross product (x)
nest (/)

Concatenation (*) Operator

Ordered union of set interpretations
Quarter + Product Type
$=\{($ Qtr1), (Qtr2), (Qtr3), (Qtr4) $\}+\{($ Coffee), (Espresso) $\}$
$=\{(Q t r 1),(Q t r 2),(Q t r 3),(Q t r 4),($ Coffee),(Espresso) $\}$

Qtr1	Qur2	Qer3	Qur4	Coffee	Ispresso
48	59	57	53	151	21

Profit + Sales $=\{($ Profit[-310,620]),(Sales[0,1000] $)\}$

Cross (x) Operator

Cross-product of set interpretations
Quarter x Product Type
$=\{(Q t r 1, C o f f e e),($ Qtrı, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea)\}

Product Type \times Profit $=$

Nest (/) Operator

Cross-product filtered by existing records
Quarter x Month
creates twelve entries for each quarter. i.e., (Qtrı, December)

Quarter / Month
creates three entries per quarter based on tuples in database (not semantics)

Quantitative - Quantitative

Ordinal - Ordinal

§sate	Product Type			
	Coffee	Espresso	Herbal Tea	Tea
Colorado	\bullet	-	-	\bullet
Connecticut	-	-	\bullet	-
Florida	\bullet	\bullet	\bullet	-
Illinois	\bullet	-	-	-
Iowa	-	-	-	\bullet
Louisiana	-	\bullet	-	
Massachusets	\bullet	\bullet	-	-
Missouri	\bullet	-	-	-
Nevada	-	-	-	\bullet
New Hampshire	-	-	-	-
New Mexico	\bullet	-	-	
NewYork	\bullet	\bullet	\bullet	\bullet
Ohio	-	\bullet	-	\bullet
OKlahoma	-	\bullet	\bullet	
Oregon	-	\bullet	-	\bullet
Texas	\bullet	\bullet	-	
Utah	\bullet	-	-	-
Washington	-	\bullet	\bullet	\bullet
Wisconsin	\bullet	-	-	-

Ordinal - Quantitative

Querying the Database

Tableau Demo
The dataset:
Federal Elections Commission Receipts
Every Congressional Candidate from 1996 to 2002
4 Election Cycles
9216 Candidacies

Data Set Schema

Year (Qi)

Candidate Code (N)
Candidate Name (N)
Incumbent / Challenger / Open-Seat (N)
Party Code (N) [1=Dem,2=Rep,3=Other]
Party Name (N)
Total Receipts (Qr)
State (N)
District (N)

Hypotheses?

What might we learn from this data?

- ??

Hypotheses?

What might we learn from this data?
Correlation between receipts and winners?

Spotfire

Do receipts increase over time?
Which states spend the most?
Which party spends the most?
Margin of victory vs. amount spent?
Amount spent between competitors?

Spotfire

Research at UMD, College Park: "Starfield Displays" and
"Dynamic Queries" by Ahlberg and Shneiderman

Spotfire

Parallel Coordinates

Parallel Coordinates [Inselberg]

The Multidimensional Detective

The Dataset:
Production data for 473 batches of a VLSI chip
16 process parameters:
X_{1} : The yield: \% of produced chips that are useful
X_{2} : The quality of the produced chips (speed)
X3 ... X12: 10 types of defects (zero defects shown at top)
X_{13}... X_{16} : 4 physical parameters

The Objective:
Raise the yield $\left(\mathrm{X}_{1}\right)$ and maintain high quality $\left(\mathrm{X}_{2}\right)$

Parallel Coordinates

Inselberg's Principles

1. Do not let the picture scare you
2. Understand your objectives

- Use them to obtain visual cues

3. Carefully scrutinize the picture
4. Test your assumptions, especially the "I am really sure of's"
5. You can't be unlucky all the time!

Each line represents a tuple (e.g., VLSI batch)
Filtered below for high values of X_{1} and X_{2}

Figure 2: The batches high in Yield, $X 1$, and Quality, $X 2$.

Look for batches with nearly zero defects (9/10) Most of these have low yields \rightarrow defects OK.

Notice that X 6 behaves differently.
Allow 2 defects, including X6 \rightarrow best batches

Parallel Coordinates

Free implementation: Parvis by Ledermen
http://home.subnet.at/flo/mv/parvis/

