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ABSTRACT

This article explores the representational
structures of numeration systems and the
cognitive factors of the representational ef-
fect in numerical tasks, focusing on external
representations and their interactions with
internal representations. Numeration sys-
tems are analyzed at four levels: dimension-
ally, dimensional representations, bases, and
symbol representations. The representa-
tional properties at these levels affect the
processes of numerical tasks in different
ways and are responsible for different as-
pects of the representational effect. This hi-
erarchical structure is also a cognitive tax-
onomy that can classify nearly all numera-
tion systems that have been invented across
the world. Multiplication is selected as an
example to demonstrate that complex nu-
merical tasks require the interwoven
processing of information distributed across
internal and external representations.
Finally, a model of distributed numerical
cognition is proposed and an answer to the
question of why Arabic numerals are so
special is provided.

We all know that Arabic! numerals are
more efficient than Roman and many
other types of numerals for calculation

(e.g., 73 x 27 is easier than LXXIII x
XXVII), even though they all represent
the same entities—numbers (see Figure

1 Although the Arabic numerals were originally
invented in India and are called Hindu-Arabic
numerals by some historians, we adopt the
conventional name for simplicity.
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1 for several examples of numeration
systems). This representational effect, that
different representations of a common
abstract structure can cause dramatically
different cognitive behaviors, has had
profound significance in the develop-
ment of arithmetic and algebra in par-
ticular and mathematics in general. The
Arabic numeration system, remarkable
as is its simplicity, has been regarded as
one of the greatest inventions of the
human mind.

The representational effect of
numeration systems is a cognitive phe-
nomenon. However, early studies of
numeration systems focused on their
historical, cultural, mathematical, and
philosophical aspects (e.g., Brooks, 1876;
Cajori, 1928; Dantzig, 1939; Flegg, 1983;
Ifrah, 1987; Menninger, 1969). Recently,
the representational efficiencies of dif-
ferent numeration systems have been
compared and analyzed in terms of their
cognitive properties (e.g., Nickerson,
1988; Norman, 1993), and the nature of
number representations has also been
examined from a semiotic perspective
(Becker & Varelas, 1993). In this paper,
we attempt a systematic analysis of the
representational structures of numera-
tion systems and the cognitive factors
responsible for the representational ef-
fect in numerical tasks.

Unlike the representational effect
of numeration systems, there have been
a large number of psychological studies
of numerical cognition over the last two
decades (for a recent collection of re-



Zhang & Norman

views, see Dehaene, 1993). However,
most of these studies have entirely fo-
cused on internal representations: how
people perform numerical tasks in their
heads, how numbers and arithmetic
facts are represented in memory, and
what mental processes and procedures
are involved in the comprehension, cal-
culation, and production of numbers. In
this present study, we focus on external
representations and their interactions
with internal representations: how
numbers are represented in the external
environment, what structures in exter-
nal representations are perceived and
processed, and how internal and exter-
nal representations are integrated in
numerical tasks. Although our focus is
on external representations, we are not
denying the important roles of internal
representations. What we attempt to
show is that external representations
have much more important roles than
previously acknowledged.

We start with a representational
analysis of the hierarchical structures of
numeration systems. From this analysis,
we develop a cognitive taxonomy of
numeration systems. This taxonomy
can not only classify most numeration
systems but also can serve as a theoreti-
cal framework for systematic studies of
the representations of numbers and the
processes in numerical tasks. In the sec-
ond part, we analyze how the dimen-
sional representations of numeration
systems are distributed across internal
and external representations. In the
third part, we use multiplication as an
example to examine the interwoven
processing of internal and external in-
formation in complex numerical tasks.
In the last part, we outline a model of
distributed numerical cognition and
provide an answer to the question of
why Arabic numerals are so special.

Number Representations

THE REPRESENTATIONAL
STRUCTURES OF NUMERATION
SYSTEMS

In this part, we first analyze the dimen-
sionality of numeration systems. Next,
we analyze the representational proper-
ties of numeration systems at four dif-
ferent levels in terms of a hierarchical
structure. Then, based on the hierarchi-
cal structure, we propose . a cognitive
taxonomy of numeration systems.

The Dimensionality of Numeration
Systems

1D Systems

One of the simplest ways to rep-
resent numbers is to use stones: one
stone for one, two stones for two, and so
on. This Stone-Counting system only
has a single dimension: the quantity of
stones. The Body-Counting system
used by Torres Islanders is another one
dimensional system, in which the single
dimension is represented by the posi-
tions of different body parts (fingers,
wrist, elbow, shoulder, toes, ankles,
knees, and hips). The first numeration
systems invented in nearly all nations of
antiquity were one dimensional systems
represented by simple physical objects,
such as stones, pebbles, sticks, tallies,
etc. One dimensional systems are de-
noted as 1 D in this article.

Many 1 D systems are very effi-
cient for small numbers. Moreover, they
make a number of numerical compari-
son tasks simpler than with other sys-
tems (e.g., Arabic), because the size of
the representation of the number is pro-
portional to the numerical value. This
means that the system has analogical
properties that make comparisons sim-
ple. In addition, the operations of addi-
tion and subtraction are easy, requiring



Zhang & Norman

no knowledge of arithmetic properties
of tables, but rather, simply the addition

Number Representations

or removal of notational marks (see
Norman, 1993, chapter 3).

Arabic [Egyptian | Babylonian | Greek | Roman |Chinese| Aztec Cretan [Mayan
1 | Y o I — . ’ .
2 ” YV [3 II : oo o o0
3 ||| YVY ’Y III :_'.-_: oo et (XX}
4 [T YYVY d I g coee o ceee
5 [ VYVYV € Vv E_ XX 7Tt
6 [T VY%VV & VI j}!{ oot aortet —
7 [TITTT] VYYVVYV 2; VII ‘[j oo.o.oo 177 e
8 L] YYYYY [ n VI °eee’ arereeet =3

Y{Y A\
9 () YYYVY 0 VIIII jL eee’ creceeet ey
YYYY _
10 | n < L X || st o
20 NN << K XX | =4 ] o0 .
30 | nnn | T<T<T | A | XXX | =] sesse 000 |+—
40 | NnnNN <<£E< w | XXXX | g PP 000® | oo
50 |nnNNN <:EE:EE Y L F -} |seiPR| 00000 oo
60 rmr;m Y g LX ﬁ-- PEE 00%@0 cee
70 |nnnnn| V< LXX - et |900@@® | e
N ’ G| E P08t | =
80 mr;r;\r;m V<t<c x| LXXX j\-- PPEE 0%00%0 eece
90 [NnNNNN < ?  |LXXXX J-| 2323 (90O ®® | ccee
NNNN V< 7 PEPR | ®%°°
00| 9 | yZZ|p | C |—FI|PPERR] 7 [
200 | 99 <[ o | CC [—F[FPERE| 77 |—
i< H [opmrn

Figure 1. Examples of numeration systems. In the Roman system, the subtraction forms for four (IV, XL,
etc.) and nine (IX, XC, etc.) were later inventions. We only consider the original additive forms, that is,
III, VIII, XXXX, LXXXX, etc.
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1x1 D Systems

Although 1 D systems are effi-
cient for small numbers, they do not
work well for large numbers. For large
numbers, there must be more than one
dimension, for example, one base dimen-
sion and one power dimension. The
power dimension decomposes a number
into hierarchical groups on a base. The
base can be raised to various powers on
the power dimension. We denote two

dimensional systems as 1x1 D

(basexpower). A number in a 1x1 D sys-
tem is represented as a polynomial:

Zajxi. Figure 2 shows the representa-
tional structures of six 1x1 D systems.

The two dimensions of 1x1D sys-
tems can be represented by different
physical properties, which are usually
shape, quantity, and position. For ex-
ample, the Arabic system is a two di-
mensional system (Figure 2) with a base
dimension represented by the shapes of
the ten digits (0, 1, 2, ..., 9) and a power
dimension represented by positions of
the digits with a base ten. Thus, the
middle 4 in 447 has a value 4 on the base
dimension and a position 1 (counting
from the rightmost digit, starting from
zero) on the power dimension. The ac-
tual value it represents is forty (the
product of its values on the base and

power dimensions, i.e., 4x101). As an-
other example, the base dimension of
the Egyptian system (see Figure 2) is
represented by quantities (the quantities
of I's, N's, 9's, etc.), and the power di-
mension is represented by shapes
(1=100, N=101, 9=102, etc.). Thus,
92999NnNNNIINIl also represents four
hundred and forty-seven. The details of
the representations of the base and
power dimensions in several other 1x1D
systems are shown in Figure 2.

Number Representations

The two dimensions of some 1¥1
D systems are externally separable,
whereas those of some others are only
internally separable. In Figure 2, the
base and power dimensions of all but
the Greek system are externally separa-
ble. For example, we can separate the
shape and position of each digit in an
Arabic numeral via perceptual inspec-
tion on the physical properties of the
written symbols. In this case, shape and
position are two separate physical di-
mensions. However, the two dimen-
sions of the Greek system (see Figure 2)
are not externally separable. Its base
and power dimensions are represented
by a single physical dimension—shape
(a one-to-two mapping): they can only
be separated as two dimensions in the
mind by retrieving relevant information
from memory. For example, the values
on the base and power dimensions of t
(300) are 3 and 102, which can not be
separated via perceptual inspection on
the physical property of the symbol "t."
The separation of the single physical
dimension (shape) into a base and a
power dimension in the mind is re-
quired by the Greek multiplication algo-
rithm, which needs to process the values
on the base and power dimensions sepa-
rately (see Flegg, 1983; Heath, 1921).

(I1x1)x1 D Systems

Some numeration systems have
three dimensions: one main power di-
mension, one sub-base dimension, and one
sub-power dimension. The sub-base and
sub-power dimensions together form
the main base dimension. We denote this
type of three dimensional systems as

(1x1)x1 D [(sub-basexsub-power)xmain-
power]. A numeral in a (1x1)x1D sys-
tem is expressed as XZ(bjjyi)xi in its ab-
stract form. The representational struc-
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Systems Example (447) Base Base Dimension Power Dimension
Abstract 3 apd X aj xi
Arabic 447 10 aj = shape xi = position
4x102+4x101+7x100 0,12..9 . 102 100 109
Egyptian | 9999nnnnmmm | 10 aj = quantity xi = shape
4x102+4x101+7x100 The numbers of I's,| | n 9
N's, 9's, etc. 100 101 102
Cretan WWO@@@sreeeee | 10 aj = quantity xi = shape
4x1024+4x101+7x100 The numbers of f's,| ¢ o /
@'s, /'s, etc. 100 101 102
Greek vug 10 aj = shape xi = shape
4x102+4x101+7x100 o B y..0 S " VR
1 2 3.9 1x101 2x101 3x10L..9x10!
p o T .h
1x102 2x102 3x102..9x102
Aztec ¥PPeocccece 20 aj = quantity xi = shape
1x202+2x201+7x200 The numbers of @'s,| o P ¥
P's, ¥'s, etc. 200 201 202
Chinese v E - 10 aj = shape xi = shape
4x102+4x101+7x100 - = N + # T
1 2 3 .9 [l 102 103
Figure 2. The representational structures of 1x1 D numeration systems.
Systems Example (447) |Main|Sub-| Sub-base Sub-power Main Power Dimension
Base | base [ Dimension Dimension

Abstract =3 (bjiyi)xi x | vy bji yJ xi

[Babylonian|s¥¥¥ <3t 60 | 10 |bjj = quantity yJ = shape xi = position
J(0x101+7x100)601 The numbers |Y =10V, <=10" . 60= 601 60V
+(2x101+7x100)600 of Y's and

<'s
Mayan o oo o0 20 | 5 |bjj=quantity yj = shape xi = position
J(0x51+1x50)202 The numbers (@ =50, _ =51 . 202 200 200
+(0x51+2x50)201 of @'s and
+(1x51+2x50)200 —'s.

Roman  JCCCCXXXXVII 10 [ 5 [bjj=quantity yj = shape xi = shape
(0x51+4x50)102 The numbers [[ =109x50 V =109x51|T=5x10 v = 5Ux10!
+(0x51+4x50)101 of I's, V's, X's, [X = 101x50 L = 101x51[X = 50x101 v =51x101
+(1x51+2x50)100 L's, etc.

Figure 3. The representational structures of (1x1)x1 D numeration systems. In the Mayan syste. m, the
second power of the main power dimension is not represented as 202, but as 20x18. This might be due to
some astronomical reasons, because 20¥18 = 360, which is close to the number of days in a year.
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tures of three (Ix1)x1 D systems are
shown in Figure 3. To illustrate this
system, consider a Babylonian numeral
(see Figure 3 for details):

"
= (0x101+7x100)x601+(2x101+7x100)x600

=7x601+27x600 = 420 + 27 = 447

The main power dimension of the
Babylonian system is represented by po-
sitions with a base 60. In this example,
MW (the right component) is on position
0 (600), and "m (the left component) is on

position 1 (601). The value of T (the left
component) on the main base dimension
is 7 (= 0x101+7x100). The actual value it
represents is the product of its values on
the main base and main power dimen-
sions: (0x101+7x100)x60! = 420. The
main base dimension is composed of a
sub-base dimension represented by
quantity (the quantities of ¥’s and <'s)
and a sub-power dimension represented
by shape (Y = 100 and < = 101) with a
base 10. For example, I can be decom-
posed as 2x101+7x100.

Similar to 1x1 D systems, the
three dimensions in a (1x1)x1 D system
can be externally separable or only in-
ternally separable. For example, the
sub-base, sub-power, and the main
power dimensions in the Babylonian
and the Mayan systems are externally
separable with each other. In the
Roman system, although the sub-base
dimension is externally separable from
the sub-power and the main power di-
mensions, the sub-power and the main
power dimensions, which are repre-
sented by a single physical dimension
(shape), are only internally separable.
For example, L (50) has a value 51 on the
sub-power dimension and a value 101
on the main power dimension, which
can only be separated in the mind.

Number Representations

Hierarchical Structure and Cognitive
Taxonomy

Based on the analysis of the dimension-
ality of numeration systems, we can
analyze number representations at four
levels: dimensionality, dimensional
representation, bases, and symbol
representation.

Each level has an abstract structure
that can be implemented in different
ways. The different representations at
each level are isomorphic to each other
in the sense that they all have the same
abstract structure at that particular level
(Figure 4).

At the level of dimensionality, dif-
ferent numeration systems can have dif-

ferent dimensionalities: 1D, 1x1D,

(1x1)x1D, and others. However, they
are all isomorphic to each other at this
level in the sense that they all represent
the same entities—numbers. This level
mainly affects the efficiency of informa-
tion encoding. 1 D systems are linear,

while 1x1 D and (1x1)x1 D systems are
polynomial. Polynomial systems en-
code information more efficiently than
linear systems: the number of symbols
needed to encode a number in a poly-
nomial system is proportional to the
logarithm of the number of symbols
needed to encode the same number in a
linear system.

At the level of dimensional represen-
tations, isomorphic numeration systems
have the same dimensionality but dif-
ferent dimensional representations. The
physical properties used to represent the
dimensions of numeration systems are
usually quantity (Q), position (P), and
shape (S). For example, the base and

power dimensions of 1x1D systems can
be represented by shape and position

(SxP, Arabic system), shape and shape
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(SxS, Chinese system), quantity and

shape (QxS, Egyptian system), etc. This
level is crucial for the representational
effect of numeration systems. The sec-
ond part of this paper is devoted for the
analysis of the representational proper-
ties at this level.

At the level of bases, isomorphic
numeration systems have the same di-
mensionality, same dimensional repre-
sentations, but different bases. For ex-
ample, both the Egyptian and the Aztec

Number Representations

systems are 1x1D systems, and the base
and power dimensions of both systems
are represented by quantity and shape.
However, the base of the Egyptian sys-
tem is ten while that of the Aztec system
is twenty (see Figure 2). This level is
important for tasks involving addition
and manipulation tables: the larger a
base is, the larger the addition and mul-
tiplication tables are and the harder they
can be memorized and retrieved.

ABSTRACT
NUMBERS
Dimensionality 1D 1x1D (I1x1)x1D
Dimensional
Representation P Q /;XP /[;XS] 75 Q/XS\ (Q/XS\)X\P (QXJS)XS
Base Base 10| |Base 10| | Base 10 Base 10| |Base 20 Base 20||Base 60| |Base 10
sympot 1] J ’ ‘ //\\\\ JJ J
Representation Body Stone Arabic Greek Chinese Egyptian Cretan Aztec ~MayanBabylonian Roman

Figure 4. The hierarchical structure of number representations. This is a also a cognitive taxonomy of
numeration systems. At the level of dimensionality, different systems have different dimensionalities. At
the level of dimensional representations, the dimensions of different systems are represented by different
physical properties. P = Position, Q = Quantity, S = Shape. The two dimensions of the Greek system
([S¥S]) are represented in the mind and only separable in the mind. At the level of bases, different
systems may have different bases. At the level of symbol representations, different systems use different

symbols.
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At the level of symbol representa-
tions, isomorphic numeration systems
have the same abstract structures at the
previous three levels. However, differ-
ent symbols are used. For example,
both the Egyptian and the Cretan sys-
tems are 1x1D systems, the two dimen-
sions of both systems are represented by
quantity and shape, and both systems
have the base ten. However, in the
Egyptian system, the symbols for 10°,

10!, and 10 are I, N, and 9, whereas in
the Cretan system, the corresponding
symbols are ¢, ®, and /. This level
mainly affects the reading and writing
of individual symbols.

The hierarchical structure of
number representations in Figure 4 is in
fact a cognitive taxonomy of numeration
systems. For example, the Egyptian and
Cretan systems are in the same group at
the level of symbol representations; the
Mayan and Babylonian systems are in
the same group at the level of bases; the
Arabic, Greek, Chinese, Egyptian,
Cretan, and Aztec systems are in the
same group at the level of dimensional
representations; and all the systems in
Figure 4 are in the same group at the
level of dimensionality. Under this tax-
onomy, the lower the level at which two
systems are in the same group, the more
similar they are. For example, the
Egyptian and the Cretan systems are
more similar to each other than the
Arabic and the Babylonian systems, be-
cause the former two are in the same
group at the level of symbol representa-
tions whereas the latter two at the level
of dimensionality.

Although this cognitive taxon-
omy was derived from the eleven sys-
tems in Figures 2 and 3, it can classify
nearly all numeration systems that have
been invented across the world. Let us

Number Representations

consider a few more systems (see Ifrah,
1987, for detailed descriptions of these
systems). At the level of symbol repre-
sentations, the Hebrew alphabetic sys-
tem is in the same group as the Greek
system, and the Greek acrophonic,
Dalmatian, and Etruscan systems are in
the same group as the Roman system.
At the level of bases, the Chinese scien-
tific system is in the same group as the
Mayan system.

In addition to numeration sys-
tems of written numerals, this taxonomy
can also classify numeration systems of
object numerals. The following are a
few examples (see Ifrah, 1987), in which
P = Position, Q = Quantity, and S =
Shape. The Peruvian knotted string sys-
tem is a PxQ (base 10) system; the
Chimpu (knotted strings used by the
Indians of Peru and Bolivia) is a QxQ
(base 10) system; the knotted string sys-
tem used by the German millers is a SxS
(base 10) system; the Roman counting
board, the Chinese abacus, and the
Japanese Soroban are (QxP)xP (main
base 10 and sub-base 5) systems, and the
Russian abacus is a QxP (base 10) sys-
tem.

The hierarchical structures of the
numeration systems discussed above are
based on the representations of small
numbers (usually less than 1000). For
large numbers, the representational
structures of some systems may have
different forms. The change is mainly
due to the representations of power di-
mensions. The representational struc-
tures of numeration systems with power
dimensions represented by positions
usually do not change, because positions
can be extended indefinitely. However,
for those systems with power dimen-
sions represented by shapes, their repre-
sentational structures sometimes have to
be changed to represent large numbers,
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because practically, shapes can not be
extended indefinitely. For example, the
Roman system is a (QxS)xS system for
numbers up to one thousand. For num-
bers above one thousand, one version of
the Roman system becomes a
((QxS)xS)xS system. A new power di-
mension represented by shape is added:
a horizontal bar e is used to represent
103, and an open frame I 1for 105. For

example, CCXXXVIlirepresents 238, 000,
and dccexxvl represents 82, 700, 000.

THE DISTRIBUTED
REPRESENTATION OF NUMBERS

The Theory of Distributed
Representations

In complex numerical tasks, as well as in
many other cognitive tasks, people need
to process the information perceived
from external representations and the
information retrieved from internal rep-
resentations in an interwoven, integra-
tive, and dynamic manner. External
representations are the representations
in the environment, as physical symbols
or objects (e.g., written symbols, beads
of abacuses, etc.) and external rules,
constraints, or relations embedded in
physical configurations (e.g., spatial re-
lations of written digits, visual and spa-
tial layouts of diagrams, physical con-
straints in abacuses, etc.). The informa-
tion in external representations can be
picked up by perceptual processes. In
contrast, internal representations are the
representations in the mind, as proposi-
tions, productions, schemas, mental im-
ages, neural networks, or other forms.
The information in internal representa-
tions has to be retrieved from memory
by cognitive processes. For example, in
the task of 735 x 278 with paper and
pencil, the internal representations are

Number Representations

the values of individual symbols (e.g.,
the value of the arbitrary symbol "7" is
seven), the addition and multiplication
tables, arithmetic procedures, etc.,
which have to be retrieved from mem-
ory; and the external representations are
the shapes and positions of the symbols,
the spatial relations of partial products,
etc., which can be perceptually in-
spected from the environment.

Zhang & Norman (1994a; Zhang,
1992, 1995) developed a theory of dis-
tributed representations to account for
the behavior in distributed cognitive
tasks—tasks that involve both internal
and external representations. In this
view, the representation of a distributed
cognitive task is neither solely internal
nor solely external, but distributed as a
system of distributed representations
with internal and external representa-
tions as two indispensable parts. Thus,
external representations are intrinsic
components and essential ingredients of
distributed cognitive tasks. They need
not be re-represented as internal repre-
sentations in order to be involved in dis-
tributed cognitive tasks: they can di-
rectly activate perceptual processes and
directly provide perceptual information
that, in conjunction with internal repre-
sentations, determine people's behavior.
External representations have rich struc-
tures. Without a means of accommodat-
ing external representations in its own
right, we sometimes have to postulate
complex internal representations to ac-
count for the structure of behavior,
much of which, however, is merely a re-
flection of the structure of external rep-
resentations.

In next section we apply the prin-
ciples of distributed representations to
analyze the representation of informa-
tion in the basic structure of numeration
systems—dimensions. In the later part
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for multiplication, we will further ana-
lyze how the information needed to
carry out multiplication is distributed
across internal and external representa-
tions.

The Distributed Representation of
Dimensions

Dimensions are the basic structures of
numeration systems. Thus, it is impor-
tant to understand how dimensions are
represented in numeration systems.

Psychological Scales

Every dimension is on a certain
type of scale, which is the abstract mea-
surement property of the dimension.
Stevens (1946) identified four major
types of psychological scales: ratio, in-
terval, ordinal, and nominal. Each type
has one or more of the following formal
properties: category, magnitude, equal
interval, and absolute zero. Category
refers to the property that the instances
on a scale can be distinguished from
each another. Magnitude refers to the
property that one instance on a scale can
be judged greater than, less than, or
equal to another instance on the same
scale. Equal interval refers to the prop-
erty that the magnitude of an instance
represented by a unit on the scale is the
same regardless of where on the scale
the unit falls. An absolute zero is a value
which indicates that nothing at all of the
property being represented exists.

Nominal scales only have one
formal property: category. Names of
people are an example of nominal
scales: they only discriminate different
entities but have no information about
magnitudes, intervals, and ratios.
Ordinal scales have two formal proper-
ties: category and magnitude. The rank-
ing of movie quality is an example of

10
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ordinal scales: a movie ranked “1” is
better than a movie ranked “2”
(magnitude) and the quality of a movie
ranked “5” is different from that of a
movie ranked “7” (category). However,
the rankings themselves tell us nothing
about the differences and ratios between
the rankings. Interval scales have three
formal properties: category, magnitude,
and equal interval. Time is an example
of interval scales: 02:00 is different from
22:00 (category), 14:00 is later than 09:00
(magnitude), and the difference between
15:00 and 14:00 is the same as between
09:00 and 08:00 (equal interval).
However, time does not have an abso-
lute zero (in a realistic sense). Thus, we
cannot say that 10:00 is twice as late as
05:00. Ratio scales have all of the four
formal properties: category, magnitude,
equal interval, and absolute zero.
Length is an example of ratio scales: 1
inch is different from 3 inches
(category), 10 inches are longer than 5
inches (magnitude), the difference be-
tween 10 and 11 inches is the same as
the difference between 100 and 101
inches (equal interval), and 0 inch means
the nonexistence of length (absolute
zero). For length, we can say that 10
inches are twice as long as 5 inches.

Distributed Representation of Scale
Information

The base and power dimensions
of all numeration systems are abstract
dimensions with ratio scales. In differ-
ent numeration systems, these abstract
ratio dimensions are implemented by
different physical dimensions with their
own scale types, which are usually
quantity (ratio), shape (nominal), and
position (ratio). Figure 5 shows the rep-
resentation of base dimension in the
Arabic and Egyptian systems. In Figure
5, the abstract information space for
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base dimension contains the four formal
properties of ratio scales, since base di-
mension is on a ratio scale. In the
Arabic system, the base dimension is
represented by shape—an external
physical dimension with a nominal
scale. Because a nominal dimension
only has category information, shape
can only represent the category infor-
mation of the ratio base dimension in
external representations: the other three
types of information have to be repre-
sented in internal representations, that
is, memorized in the mind (Figure 5A).
Thus, the representation of base dimen-
sion in the Arabic system is a distributed

4 3 2
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representation with category informa-
tion represented externally by shape
and other three types of information
represented internally in memory. In
the Egyptian system, the base dimension
is represented by quantity—an external
physical dimension with a ratio scale.
Thus, in this case, all four types of in-
formation of the ratio base dimension
are represented externally (Figure 5B).
Similar to quantity, position is also a ra-
tio dimension. Therefore, if the base or
power dimension of a numeration sys-
tem is represented by position, its scale
information is all represented externally.

Internal
Representation

External
Representation

External Internal
Representation Representation
category
magnitude

equal interval

absolute zero

category

magnitude
equal interval

absolute zero

Abstract
Information Space

(A) Arabic

category

magnitude
equal interval

absolute zero

category

magnitude
equal interval

absolute zero

Abstract
Information Space

(B) Egyptian

Figure 5. The distributed representation of dimensions. The scale information of a dimension is in the
abstract information space, which is distributed across an internal and an external representation. (A)
The representation of base dimension in the Arabic system. The category information of ratio base
dimension is represented externally by shape (a nominal dimension) but the other three types of
information are represented internally in memory. (B) The representation of base dimension in the
Egyptian system. All four types of information of ratio base dimension are represented externally by

quantity (also a ratio dimension).



Zhang & Norman

The information in external rep-
resentations can be picked up by percep-
tual processes, whereas the information
in internal representations has to be re-
trieved from memory. For example, in
Figure 5A for the Arabic system, the
three symbols "4", "3", and "2" can be
perceptually identified as three different
entities (category information).
However, the information about
whether "4" is smaller or larger than "3"
(magnitude), whether the difference be-
tween "4" and "3" is the same as or dif-
ferent from that between "3" and "2"
(equal interval), and whether "4" is twice
as large as "2" (absolute zero) has to be
retrieved from memory. In contrast, in
Figure 5B for the Egyptian system, all
four types of information can be picked

up by perceptual processes: ||||, |||, and ||
are different entities (category), |||| is
larger than ||| (magnitude), the difference
between ||| and ||| is the same as the dif-
ference between ||| and || (equal interval),

and |||| is twice as large as || (absolute
Zero).

The scale information of a dimen-
sion, however, is only relational infor-
mation: it does not specify the absolute
values on the dimension. Thus, the rep-
resentation of the absolute values on a
dimension needs to be considered sepa-
rately. The absolute values on base and
power dimensions (base values and
power values) are represented internally
by shapes but externally by positions
and quantities. For example, even if "4",
"3", and "2" can be perceptually identi-
fied as three different entities, the abso-
lute values these symbols represent
have to be retrieved from memory. In
contrast, the absolute values represented

by n| |H, " |n, al’ld ll||H are external and can
be picked up by perceptual processes.
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Magnitude Comparison

Let us use magnitude comparison
as an example to illustrate how the
above analysis of dimensional represen-
tations can be applied to simple numeri-
cal tasks. Comparing the relative mag-
nitudes of numbers only requires the
magnitude information of the numbers.
For a 1 D system, if the dimension is
represented by an ordinal or a higher
dimension, the magnitude information
needed for comparison is external. For
example, the quantity dimension in the
Stone-Counting system is an external
representation of magnitude informa-

tion. For a 1x1 D system, if both the
base and power dimensions are on ordi-
nal or higher scales (e.g., Russian aba-
cus), the magnitude information needed
for comparison is external, and if both
dimensions are on nominal scales (e.g.,
Greek system), the information is inter-
nal. Otherwise, it depends on the repre-
sentation of each dimension. For ex-
ample, for the Arabic system (a

PositionxShape system, ratio power di-
mension and nominal base dimension),
the relative magnitude information of
two numbers is external if the two num-
bers have different highest power values
(e.g., 75 vs. 436) and internal if they have
the same highest power values (e.g., 75
vs. 43).

The Interaction between Dimensions

Because most numeration sys-
tems have more than one dimension, it
is also important to understand how the
dimensions interact with each other.
The dimensions of a multi-dimensional
stimulus can be either separable or inte-
gral. Separable dimensions are those
whose component dimensions can be
directly and automatically separated
and perceived. Integral dimensions can
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only be perceived in a holistic fashion:
they can not be separated without a sec-
ondary process that is not automatically
executed (Garner, 1974).

Although the concept of separa-
bility usually refers to external physical
dimensions, we use it to refer to internal
cognitive dimensions as well. If the in-
formation needed to separate two di-
mensions can be picked up by percep-
tual processes from external representa-
tions, we say that these two dimensions
are externally separable. For example,
the shape (base dimension) and position
(power dimension) of the Arabic system
are two physical dimensions that are ex-
ternally separable via perceptual pro-
cesses. If the information needed to
separate two dimensions is not available
in external representations and can only
be retrieved from internal representa-
tions, we say that these two dimensions
are externally inseparable and only in-
ternally separable. In the Greek system,
for example, the base and power di-
mensions are represented by a single
physical dimension (shape). They can
only be separated internally.

Since many numerical tasks (e.g.,
multiplication and addition under poly-
nomial representations) need to process
the base and power dimensions sepa-
rately, whether the dimensions of a nu-
meration system are externally separa-
ble or not can dramatically affect task
difficulties. We will see this effect in
next section.

A NUMERICAL TASK:
MULTIPLICATION

In this section, we apply the principles
of distributed representations to analyze
how representational formats affect
complex numerical tasks. To make our
demonstration simple and clear, we
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choose multiplication on the task side

and 1x1 D numeration systems on the
representation side. Since numeration
systems are represented at four levels,
the representational properties at differ-
ent levels can affect numerical tasks in
different ways. Here we only focus on
the representational properties at the
level of dimensional representations,
since whether the dimensions of numer-
ation systems are represented externally
and whether they are externally separa-
ble can dramatically affect the difficulty
of a numerical task.

The Hierarchical Structure of
Multiplication

Multiplication can be analyzed at three
levels (Figure 6): algebraic structures,
algorithms, and number representa-
tions. At the level of algebraic struc-
tures, different multiplication methods
have different algebraic structures. The
algebraic structures of three typical
methods, simple addition, binary, and
polynomial methods, are as follows:

Simple Addition:
N1%XNs = N1+N1+Nj+...+N1
(add N, times)
Binary:
N1xNj, = N1><2a121 = ENlaiZI
Polynomial:
N1xN; = Yaix'xFax = Y Yax'a¥
= EEaianH]

The simple addition method is
simply adding the multiplicand the
number of times indicated by the multi-
plier. For the doubling method, multi-
plication is performed by (a) decompos-
ing the multiplier into its binary repre-
sentation, (b) multiplying the multipli-
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cand with each term of the binary repre-
sentation of the multiplier, and (c)
adding the partial products. Because
the terms of the binary representation

are either in the form of 1x2" or 0x2",
the multiplication of the multiplicand
with each term of the binary representa-
tion of the multiplier can be performed
by successively doubling the multipli-
cand. For the polynomial method, mul-
tiplication is performed by multiplying
every term of the multiplicand with ev-
ery term of the multiplier and then
adding the partial products together

At the level of algorithms, differ-
ent algorithms can be applied to the
same algebraic structure. For example,
the binary method can be realized by the
Egyptian algorithm and the Russian al-
gorithm (for details of these two algo-
rithms, see Zhang, 1992), and the poly-
nomial method can be realized by the
Standard algorithm and the Greek algo-
rithm, which are described in a later sec-
tion. At the level of number representa-
tions, multiplication can be performed
under different numeration systems.

Here we only analyze the poly-

Algebraic
Structures

Simple Addition

Algorithms

Number Representations

nomial method, the one that includes
the Standard algorithm we are using to-
day. The simple addition and the binary
methods, which can be reduced to addi-
tion, were analyzed in Zhang (1992).

The Polynomial Method of
Multiplication

A numeral in a 1x1 D system is
represented as a polynomial: Ya;xi.
Multiplication by the polynomial
method is performed by multiplying ev-
ery term of the multiplicand with every
term of the multiplier and then adding
the partial products together, regardless
of which particular algorithm (e.g., the
standard or the Greek algorithm, see
next section) is used. Thus, the two ba-
sic components of polynomial multipli-
cation are the multiplication of individ-
ual terms and the addition of partial
products. Here we only show how rep-
resentational formats affect the pro-
cesses of term multiplication. (A de-
tailed analysis involving both term
multiplication and partial product addi-
tion can be found in Zhang, 1992.)

AxB=C |

Egyptian | Russian

Polynomial |

Binary

Standard | Greek

'

v

Number
Representations

Number Represenations

Figure 6. The hierarchical structure of multiplication.
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For all 1x1 D systems, term mul-
tiplication (ajxixbjy}) has the same set of
six basic steps (see Figure 7): one step
(Step 1) to separate the power and base
dimensions, two steps (Steps 2a and 2b)
to multiply the base values, two steps
(Steps 3a and 3b) to add the power val-
ues, and one step (Step 4) to combine the
power and base values of the final
product. Although the six steps need
not be followed in the exact order, there

Number Representations

are certain constraints: Step 1 must be
the first step and Step 4 must be the last
step, but Steps 2a and 2b can either pro-
ceed or follow Steps 3a and 3b. The in-
formation needed for each step can be
either perceived from external represen-
tations or retrieved from internal repre-
sentations. Figure 7 and the following
descriptions show the analyses of the six
steps for the Arabic, Greek, and
Egyptian systems.

Step| Abstract: ajxixb;x Greek: Axd Egyptian: nnnx|l| Arabic: 30x4
1 |separate power & |internal: external: external:
base dimensions |internally separable [externally separable |externally separable
2a |get base values of |internal: external: internal:
aix! & b aj, bj = shapes aj, bj = quantities aj, b; = shapes
B(aixi) = a; B(A) =y B(nnn) = || B(30)=3
B(bpd) = by B(d) =9 B(ID = Il B(4) =4
2b |multiply base internal: internal: internal:
values multiplication table |multiplication table [multiplication table
aixbj = ¢j Y X d=1f 1[Il = | 3x4 =12
3a |get power values [internal: internal: external:
of a;x! & bix] i, j = shapes i, j = shapes i, j = positions
P(ajxi) =i P\ =1 P(nnn) =1 P(30)=1
P(bix) =j P©®)=0 P(|[p =0 P4)=0
3b |add power values |internal: internal: external:
addition table addition table positions
P(ajxibjx) P(Axd) P(nnnx|]||) P(30x4)
=P(aix)+P(bpd)  |=P(M)+P() =P(nnn)+P()||]) = P(30)+P(4)
=i+ = pjj =1+0=1 =1+0=1 =1+0=1
4 |attach power internal: internal: external:
values shapes shapes positions
aixixbpd Axd NNNx||| 30x4
= cjixxPY = (1p)x10! = (n|hx10! = 12x10!
= pK =92nn = 120

Figure 7. The six basic steps of term multiplication for the polynomial method. See text for details.
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Step 1: Separate power and base
dimensions. The power and base di-
mensions are externally separable for
the Arabic system (position and shape)
and the Egyptian system (shape and
quantity) but only internally separable
for the Greek system (a single shape di-
mension for both power and base di-
mensions). Thus, the information
needed for this step is external for the
Arabic and Egyptian systems but inter-
nal for the Greek system.

Step 2a: Get base values of a;xi
and bjy: a; , b;. The base values are rep-
resented internally in the Greek system
(shape) and the Arabic system (shape)
but externally in the Egyptian system
(quantity). Thus the information needed
for this step is internal for the Greek and
Arabic systems but external for the
Egyptian system.

Step 2b: Multiply base values: a;

x bj = ¢jj. The information needed for
this step is internal for all three systems,
which need to be retrieved from an in-
ternal multiplication table2.

Step 3a: Get power values of a;xi
and bjyi: i, j. The power values are rep-
resented externally in the Arabic system
(position) but internally in the Greek
system (shape) and the Egyptian system
(shape). Thus, the information needed
for this step is external for the Arabic
system but internal for the Greek and
Egyptian systems.

Step 3b: Add power values: i + j
= pij- In the Arabic system, since adding
the power values of two terms can be
performed perceptually by shifting posi-
tions, the information needed for this

2 The multiplication table can be externalized.
For example, Napier's Bone is an external
representation of the multiplication table (see
Zhang, 1992).
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step is external. In the Greek and
Egyptian systems, since the sums of
power values have to be retrieved inter-
nally from the mental addition table, the
information needed for this step is in-
ternal.

Step 4: Attach power values to

the product of base values: a;xixbjyi =

cjj x XPi. The sum of power values of the
two terms need to be attached to the
product of the base values of the two
terms to get the final result. The infor-
mation needed for this step is external
for the Arabic system because the sum
of power values can be attached to the
product of base values by shifting posi-
tions. For the Greek and Egyptian sys-
tems, the information needed to this
step is internal because power values in
both systems are represented internally
by shapes.

From the above analysis, we see
that the information needed for the six
basic steps of term multiplication is dis-
tributed across internal and external
representations. Figure 8 shows the dis-
tributed representations of term multi-
plication for the Greek, Egyptian, and
Arabic systems. If we assume that with
all other conditions kept the same, the
more information needs to be retrieved
from internal representations, the harder
the task (e.g., due to working memory
load), then for term multiplication, the
Greek system (six internal steps) is
harder than the Egyptian system (four
internal steps), which in turn is harder
than the Arabic system (two internal
steps)3. We need to note that difficulty

3 A complete multiplication task involves not
just the multiplication of individual terms but
also the addition of partial products. When the
addition of partial products is considered, the
same difficulty order remains: Greek > Egyptian
> Arabic (see Zhang, 1992).
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can be measured along many dimen-
sions, some of which may have trade-off
between each other. The amount of in-
ternal and external information is only
one of the difficulty measures.

Multiplication Algorithms for the
Polynomial Method

The polynomial method of multiplica-
tion can be realized by different algo-
rithms. Although different algorithms
have the same set of six basic steps of
term multiplication, they usually have
different orders for the multiplication of
individual terms and different group-
ings for the partial products. Figure 9
compares two algorithms: the Greek al-
gorithm used in ancient times by Greeks
and the Standard algorithm used today
by people in nearly all cultures.

The Standard algorithm starts the
multiplication of individual terms from
the lowest term of the multiplier, while

External Internal External

Number Representations

the Greek algorithm starts from the
highest term of the multiplicand. The
Standard algorithm groups the partial
products that have common powers by
their spatial relations (positions), which
makes the addition of partial products
easier. The Greek algorithm, however,
does not group partial products that
have common powers and does not
make use of spatial relations for the ad-
dition of partial products.

Under the same algorithm, the
Arabic system is more efficient than the
Greek system because the former is
more efficient than the latter for term
multiplication. Under the same nu-
meration system, the Standard algo-
rithm is more efficient than the Greek
algorithm because the spatial grouping
of partial products in the Standard algo-
rithm makes the addition of partial
products easier.

Internal External Internal

Abstract

(A) Greek System

(B) Egyptian System

Abstract

(C) Arabic System

Figure 8. The distributed representation of the information needed for the six basic steps of term

multiplication.
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Procedures Abstract Form Greek system Arabic system
Greek apx! agx? v C 10 7
Algorithm b,x! bx° Y 10 3
a;b;x? a;byx! p A 100 30
agbyx! agbx’ o ko 70 21
(a;b;x?+agb;x!) + (a;box!+agbgx?) | po  va oxa 170 51 221
Standard ayx! agx! LT 1 7
Algorithm byx! bx° Y 1 3
agbyx? K o 2 1
alboxl A 3
aoblxl o 7
a1b1X2 P 1
a;b;x2 + (a;bgx!+agb;x!) +aghx? | 6 ¥« 2 2 1

Figure 9. The Greek and the Standard algorithms of multiplication under the Greek and Arabic systems.

The example is 17X13.

GENERAL DISCUSSION

In this article, we have explored the
cognitive aspects of numeration sys-
tems, focusing on external number rep-
resentations and their interaction with
internal representations. We show that
the information that needs to be pro-
cessed in complex numerical tasks is
distributed across internal and external
representations.

We analyzed numeration systems
at four levels: dimensionality, dimen-
sional representations, bases, and sym-
bol representations. The representa-
tional properties at these levels can af-
fect the processes of numerical tasks in
different ways and are responsible for
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different aspects of the representational
effect in numerical tasks. These levels
provide a cognitive taxonomy that can
classify most numeration systems that
have been invented across the world.
We suggest that the hierarchical struc-
ture can be considered as a theoretical
framework for systematic studies of
number representations. Among the
four levels, the level of dimensional rep-
resentations is most important: whether
the dimensions and their absolute val-
ues are represented externally or inter-
nally and whether the dimensions are
externally or internally separable can
dramatically affect the difficulty of a
numerical task. Thus, when we analyze
the polynomial multiplication method
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for three 1x1 D systems (Arabic,
Egyptian, and Greek) using the amount
of information that has to be retrieved
from internal representations as a mea-
sure of problem difficulty, the Greek
system is found to be the hardest among
the three systems and the Arabic system
the easiest.

A Cognitive Model of Distributed
Numerical Cognition

Any distributed cognitive task
can be analyzed into three aspects:
formal structures, representations, and
processes. Formal structures specify
the information that has to be processed
in a task; representations specify how
the information to be processed is
represented across internal and external

Number Representations

representations; and processes specify
the actual mechanisms of information
processing. These three aspects are
closely interrelated: the same formal
structure can be implemented by
different representations, and different
representations can activate different
processes. Any study of distributed
cognitive tasks has to consider all of
these three aspects. Our present study
of numeration systems and numerical
tasks, however, only focused on their
formal structures and representations.
In this section, we use the term
multiplication of Arabic numerals as a
special case to outline a cognitive model
of distributed numerical cognition with
several assumptions about the process-
ing mechanisms.

Central Control

coordinating perceptual
and memorial processes,
executing arithmetic
procedures, allocating
attentional resources, etc.

External Internal
Representation  Representation
\ /
separating dimensions
retrieving base values
retrieving multiplication table
identifying positions
shifting positions
shifting positions
Perceptual Processes Memorial Processes
1
2a
2b
3a
3b
4
Abstract
Task Space

Figure 10. The model of distributed numerical cognition. See text for details.
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The model is shown in Figure 10.
The abstract task space specifies the
formal structure of the task—the six ba-
sic steps of term multiplication, and the
information that has to be processed—
the information needed for the six basic
steps of term multiplication. The infor-
mation needed for the six basic steps is
distributed across internal and external
representations. For Arabic numerals,
the information for Steps 1, 3a, 3b, and 4
is represented externally in the envi-
ronment and the information for Steps
2a and 2b is represented internally in
memory (see also Figures 7 and 8).
External information is picked up from
external representations by perceptual
processes. For Arabic numerals, these
perceptual processes include separating
the base and power dimensions (Step 1),
identifying the positions to get power
values (Step 3a), shifting positions to
add power values (Step 3b), and shifting
positions to combine the base and
power values of the final product (Step
4). Internal information is retrieved
from internal representations by memo-
rial processes. For Arabic numerals,
these memorial processes include re-
trieving the base values from memory
(Step 2a) and retrieving multiplication
facts from the multiplication table in
memory (Step 2b). The central control
coordinates the perceptual and memo-
rial processes, executes arithmetic pro-
cedures, allocates attentional resources,
and performs other processes that are
necessary for the completion of the task.

The first assumption of our
model is for representations: the infor-
mation needed for a numerical task is
distributed across internal and external
representations. It has been shown
(Zhang & Norman, 1994a; Zhang, 1995)
that manipulating the information dis-
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tributed across internal and external
representations can dramatically affect
the difficulty of a task. The second as-
sumption is for processes: external rep-
resentations activate perceptual pro-
cesses and internal representations acti-
vate memorial processes. Since percep-
tual processes can be direct, automatic,
unconscious, and efficient, their in-
volvement can reduce the difficulty of a
task. The third assumption is for the
central control, whose major function is
the coordination of perceptual and
memorial processes. Although there
have been several studies on the inter-
play between perception and memory
in terms of attention switching (e.g.,
Carlson, Wenger, & Sullivan, 1993;
Dark, 1990; Weber, Byrd, & Noll, 1986),
it is still unclear how perceptual and
memorial processes interact with each
other. For instance, the reason we did
not mention working memory in the
central control is because it is not clear
to us how the framework of working
memory (Baddeley, 1986; Baddeley &
Hitch, 1974) can fit here. Can percep-
tion, especially the automatic and direct
kind, bypass working memory to di-
rectly participate in complex distributed
cognitive tasks? In addition to the in-
ternal working memory, is there a sepa-
rate external working memory? If yes,
what are its functions and what is its
relation to the internal working mem-
ory? These questions are central to the
understanding of the nature of dis-
tributed cognitive tasks. They deserve
systematic studies, both empirically and
theoretically.

Is the Arabic System Special?

Very few things in the world are as uni-
versal as the Arabic numeration system.
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It has often been argued that the place-
value notation (position) of the Arabic
system is one of the most ingenious in-
ventions of the human mind and it is
what makes the Arabic system so spe-
cial. Our analysis of the representa-
tional properties of numeration systems
allows us to examine the question of
why the Arabic numeration system is so
special.

Based on our analysis, the place-
value notation is not sufficient to make
the Arabic system so special, since posi-
tions were also used to represent the
power dimensions in many other sys-
tems, including the Babylonian, Chinese
scientific, and Mayan written numera-
tion systems, and the abacus, counting
board, Peruvian knotted string, and
other object numeration systems. Then,
what properties of the Arabic system
make it so special? Let us first consider
the properties of the Arabic system at its
four levels of representations.

At the level of dimensionality, the
Arabic system is a 1x1 D system, which
is more efficient for information encod-
ing than 1 D systems. Although (1x1)x1
D systems (e.g., Babylonian, Mayan,
Roman, etc.) are as efficient as 1x1 D
systems for information encoding, the
extra third dimension only introduces
unnecessary complexity.

At the level of dimensional repre-
sentations, the base and power dimen-
sions of the Arabic system are externally
separable, and the power dimension and
its power values are represented exter-
nally by positions. Positions can handle
large numbers efficiently. However, the
base values and three of the four types
of scale information of the base dimen-
sion are represented internally by
shapes. If we are only concerned with
whether the base and power dimensions
and their values are represented inter-
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nally or externally, the Russian abacus,
whose base dimension (quantity) as well
as power dimension (position) are both
represented externally, are superior. In
tfact, abacuses are always superior to
written numerals for simple calculation
such as addition and subtraction. But if
we consider other factors such as ease of
reading and writing symbols, the Arabic
system is still superior, because after
sufficient learning Arabic symbols can
be easily read and written.

At the level of bases, the base 10
of the Arabic system is a manageable
size. There is a trade-off in base size:
larger bases require more symbols to be
learned but are more efficient in han-
dling large numbers. The addition and
multiplication tables that need to be
memorized for the Arabic system is rela-
tively small in comparison with the
Babylonian system (base 60) and the
Mayan system (base 20), which also use
positions to represent their main power
dimensions.

At the level of symbols, the ten
symbols of the Arabic system are easy to
write, which makes calculation with pa-
per and pencil efficient.

Combining the representational
properties at these four levels, the
Arabic system is better than many other
systems in terms of representation.
Though the Arabic system is also better
than many other systems (e.g., Greek,
Egyptian, etc.) in terms of calculation, it
is not always the most efficient one. As
discussed above, the abacus, which was
still widely used in Japan, China, and
Russia before electronic calculators be-
came popular, is more efficient than the
Arabic system for addition and subtrac-
tion.

So what makes the Arabic system
so special? Numerals have two major
functions: representation and calcula-
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tion. In many cultures, these two func-
tions are achieved by two separate sys-
tems. For example, in China, calculation
was carried out by abacuses and sticks,
whereas representation was realized by
written numerals. A more interesting
case is the Roman counting board, in
which counters were used for calcula-
tion and Roman numerals were used for
representation, both in the same physi-
cal device. We propose that what makes
the Arabic system so special and widely
accepted is that it integrates representa-
tion and calculation into a single system,
in addition to its other nice features of
efficient information encoding, com-
pactness, extendibility, spatial represen-
tation, small base, effectiveness of calcu-
lation, and especially important, ease of
writing. Thus, Arabic numerals are a
special type of object-symbols (Hutchins
& Norman, 1988; Norman, 1991)—sym-
bols that serve the functions of both rep-
resentation and manipulation. The inte-
gration of representation and calculation
into a single system, however, would be
useless without appropriate media and
tools such as paper and pencil: a nice
example of technological constraints.
Interestingly, calculation and the Arabic
numerals were so integrated that the
word algorithm is merely a corruption of
Al Kworesmi, the name of the Arabic
mathematician of the ninth century
whose book on Arabic numerals was the
first one reaching Western Europe.
Algebra, in the broad sense in
which the term is used today, deals with
operations upon symbolic forms, includ-
ing numerals, unknowns, and arithmetic
operators. It has been argued (e.g.,
Dantzig, 1939) that the invention of
Arabic numerals was instrumental in
the emergence and development of al-
gebra. Our analysis of Arabic numerals
supports this argument: Arabic numer-
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als are not only an efficient representa-
tion of numbers but also a symbolic
form that can be easily operated upon.
It is also interesting to note that Greeks,
who were highly advanced in geometry,
did not develop an algebra in the mod-
ern sense. This is probably because
Greek alphabetical numerals, though
easy to manipulate, were neither effi-
cient for representation nor for calcula-
tion.

Implications for Other
Representational Systems

Although our present study has focused
on numeration systems, the methodol-
ogy of representational analysis and the
principles of distributed representations
illustrated here and elsewhere (Zhang &
Norman, 1994a; Zhang, 1992, 1995) can
be applied to other domains as well. For
example, relational information dis-
plays, which include graphs, charts,
plots, diagrams, tables, lists, and other
types of visual displays that represent
relational information, are distributed
representations; and the tasks for rela-
tional information displays are dis-
tributed cognitive tasks. Zhang &
Norman (1994b) analyzed relation in-
formation displays in terms of a hierar-
chical structure similar to that of nu-
meration systems and developed a cog-
nitive taxonomy that can classify nearly
all types of relational information dis-
plays and can serve as a theoretical
framework for systematic studies of the
cognitive properties in relational infor-
mation displays. As another example,
several cockpit instrument displays,
such as different types of altimeters and
navigation displays, were also studied
from the same perspective (Zhang,
1992).

In addition to numeration sys-
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tems, numerous representational sys-
tems (usually called notational systems)
have been invented over the last few
thousand years in the development of
mathematics (see the two volume book
by Cajori, 1928, on the history of math-
ematical notations). Of these systems,
only a fraction survived. Although po-
litical, economic, social, and cultural fac-
tors certainly played some roles in the
evolution of representational systems,
cognitive factors might have played the
most important role since the activities
of individuals in mathematics are es-
sentially cognitive activities. How the
forms of representations affect the cog-
nitive activities of scientists and what
roles they played in the evolution of
mathematics in particular and science in
general are interesting issues worth of
the attention of not just historians and
philosophers but also psychologists and
cognitive scientists.
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