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Figure 1: Trellis display is a framework for the visualization of data
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Abstract

Trellis display is a framework for the visualization of data. Its most prominent aspect
is an overall visual design, reminiscent of a garden trelliswork, in which panels are laid
out into rows, columns, and pages. On each panel of the trellis, a subset of the data is
graphed by a display method such as a scatterplot, curve plot, boxplot, 3-D wireframe,
normal quantile plot, or dot plot. Each panel shows the relationship of certain variables
conditional on the values of other variables.

A number of display methods employed in the visual design of Trellis display enable
it to succeed in uncovering the structure of data even when the structure is quite com-
plicated. For example, Trellis display provides a powerful mechanism for understanding
interactions in studies of how a response depends on explanatory variables. Three ex-
amples demonstrate this; in each case, we make important discoveries not appreciated
in the original analyses.

Several control methods are also essential to Trellis display. A control method is a
technique for specifying information so that a display can be drawn. The control meth-
ods of Trellis display form a basic conceptual framework that can be used in designing
software. We have demonstrated the viability of the control methods by implement-
ing them in the S/S-PLUS system for graphics and data analysis, but they can be
implemented in any software system with a basic capability for drawing graphs.

1 Introduction

1.1 Barley Data: The Detection of A Probable Error

In the 1930s an experiment was run in the state of Minnesota in the United States. At
six sites, ten varieties of barley were grown in each of two years. The data collected for
the experiment are the yields for all combinations of site, variety, and year, so there are
6 x 10 X 2 = 120 observations. The experiment is of historical interest because it is one of the
early field trials that incorporated R. A. Fisher’s ideas on randomization and the analysis of
variance. The agronomists published the data and an analysis of them in a 1934 paper [11].
Fisher published the data in his classic book, The Design of Fxperiments [10], but he did
not present an analysis. Fisher’s publication gave the data a large exposure, and many
others tried their hands at analyzing them to illustrate new statistical methods [1, 2, 6].
We will do the same here, using the data to illustrate Trellis display. The visualization
using Trellis reveals an important happening in the data — there appears to be a major
error, one that survived undetected for six decades [4].

1.2 Trellis Display of the Barley Data

Figure 2 is a Trellis display of the barley data. Each panel displays the yields of the ten
varieties for one year at one site.

Figure 2 uses an important display method: main-effects ordering of category levels.
For these barley data, the explanatory variables are categorical. (Since there are only two
years, the year variable is also treated as categorical.) The unique values of each categorical
variable will be referred to as levels. For example, the levels for the site variable are Grand
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Figure 2: A dotplot of the barley data showing yield against variety given year and site.
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Rapids, Duluth, and so forth. The level medians are a measure of the main effects, and
we have arranged that the levels for each variable are ordered based on level medians. On
each panel the varieties are ordered from bottom to top by the variety medians; Svansota
has the smallest median and Trebi has the largest. The site panels have been ordered from
bottom to top by the site medians; Grand Rapids has the smallest median and Waseca has
the largest. Finally, the year panels are ordered from left to right by the year medians; 1932
has the smaller median and 1931 has the larger. Later, we will discuss why main-effects
ordering is important.

Visually scanning up each column of Figure 2, we can see an anomaly: for each year,
the values for Morris appear out of place. Because of the main-effects ordering, the site
medians increase from bottom to top. The ordering is preserved in each year separately
except for Morris. But the visual impression is that if we were to interchange the years at
Morris, the site would then fit into the patterns formed by the other sites.

This suggests another display. In Figure 3, the data are graphed again, but this time the
20 values for each site are graphed on a single panel with the year variable encoded by the
plotting symbol. Now we can see clearly that at each site except Morris, the overall yield
for 1931 is greater than 1932, but the reverse is the case for Morris. However, something
else quite critical is also apparent. At Morris, the overall level of the absolute differences
between the years has a value that is commensurate with the corresponding values at the
other sites. (This is actually the same observation from Figure 2, that Morris would fit the
pattern were we to interchange its years.) This suggests that there might be an error in the
data at Morris, a reversal of the years. Either there is an error, or nature just happened
to reverse effects at Morris in such a way that 1932 exceeds 1931 by an amount similar to
the amounts that 1931 exceeds 1932 at the other sites. We will probe this issue later with
other Trellis displays.

1.3 Trellis Basics

The salient visual aspect of Trellis display is a three-way rectangular array of panels
with columns, rows, and pages. In Figure 2 there are 12 panels, 2 columns, 6 rows, and 1
page. In Figure 3 there are 6 panels, 1 column, 6 rows, and 1 page. Later, we will show
a Trellis display with more than one page. We refer to the rectangular array as the trellis
because it is reminiscent of a garden trelliswork.

Each panel of a trellis display shows a subset of the values of panel variables; these values,
are formed by conditioning on the values of conditioning variables. In Figure 2 the panel
variables are variety and yield, and the conditioning variables are site and year. On each
panel, values of yield and variety are displayed for one combination of year and site. For
example, the lower left panel displays values of variety and yield for Grand Rapids in 1932.
In Figure 3 the panel variables are variety, year, and yield and there is one conditioning
variable, site.

In Figure 2 the descriptions of the values of the year and site for a panel are given in
strip labels at the top of the panel. The strip labels for each variable have a dark bar that
indicates the value of the variable. This conveys in a graphical way how the values of the
conditioning variables are changing over the trellis.
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Figure 3: A dotplot of the barley data showing yield against site and year given variety.



The panel display method used in Figure 2 is a dot plot. The panel display method used
in Figure 3 is a dot plot with the year encoded by plotting symbol. The information sent to
each panel for rendering by the panel display method is a packet. The packet includes the
values of the panel variables that are graphed on the panel, but only for those observations
that should appear on the panel, as determined by the conditioning variables. In Figure 2
there are 12 packets and in Figure 3 there are 6 packets.

Trellis display can be used for small data sets — displaying the data with a simple
single-panel display. It can be used for large data sets — displaying the data perhaps using
hundreds of panels. But in the interest of journal space, we will need to restrict ourselves
in this account to small data sets such as the barley data.

1.4 Display Methods and Control Methods

A variety of display methods employed in the visual design of Trellis display enable it
to succeed in uncovering the structure of data. Several control methods are also essential.
A control method is a technique for specifying information so that a Trellis display can be
drawn. The control methods of Trellis display form a basic conceptual framework that can
be used in designing software. We have demonstrated the viability of the control methods
by implementing them in the S/S-PLUS system for graphics and data analysis [3], but they
can be implemented in any software system with a basic capability for drawing graphs.

The display methods and the control methods have been developed in concert. Here is
one example. Control methods specify the geometry of the trellis — that is, the layout into
columns, rows, and pages — and then the assignment of the packets to the panels. These
control methods are enabled by the use of the strip labels, a display method.

In the coming sections, we describe the display methods and the control methods of
Trellis display. Because the precise boundary between display and control is sometimes
fuzzy, we do not always delineate the two in the discussion.

2 Main-Effects Ordering

Main-effects ordering, described in Section 1, often allows us to perceive structure in the
data that cannot be seen easily without it. Figure 2 provides one example. The ordering of
the site levels from bottom to top by the site medians establishes a visual pattern from which
Morris deviates, and this allows us to discover the anomalous behavior. By ordering the
variety levels from bottom to top on each panel (and by maintaining the same horizontal
axis for all panels) the 12 collections of plotting symbols on the panels form 12 gestalts
that are alike and thus are more readily compared than if the levels were ordered in some
other way. In Figure 4 the data are graphed again with the sites and varieties ordered
alphabetically. We can no longer readily perceive the anomalous behavior at Morris, and
the randomness of the patterns of plotting symbols within each of the 12 panels makes them
harder to compare.

The main-effects ordering in Figure 3 lets us detect another property of the data, albeit
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a somewhat subtle one. Consider the absolute value of the 1931 yield minus the 1932 yield
for each site and variety. The average value of the 10 differences for each site appears to
increase slightly from bottom to top. In other words, there appears to be a year by site
interaction in which the yearly change is somewhat greater for sites with higher overall
yields than for sites with lower yields. This is hardly a surprising interaction in data of this
type. Furthermore, Morris appears to fit right into this interaction pattern. In fact, the site
that deviates from the pattern is Grand Rapids, not Morris. This provides further evidence
that the cause of the reversal at Morris is an error in the data.

Main-effects ordering is used extensively by Cleveland [4], who further demonstrates its
usefulness. However, examples suggest that if a categorical variable is naturally ordered
and there are more than two levels, then it is typically better to use the natural order of
the variable instead of main-effects ordering.

3 Multiple Conditionings and Partial Residuals

Let us take a big step and suppose the barley data for Morris are incorrect, interchange
the years, and continue the analysis. It makes sense to study Figures 2 and 3 again with the
interchanged data, but we omit the new displays here in the interest of space, and continue
with other displays of the interchanged data.

3.1 Multiple Conditionings

Figure 2 reveals not only the Morris anomaly, but also the relative performance of the
different varieties. Trebi and Wisconsin No. 38, which have the largest variety medians,
are typically among the highest yield varieties for each combination of site and year. An
exception is Grand Rapids, which overall appears to behave quite differently from the other
sites. At that site, Trebi is an average performer.

Figure 2 allows an incisive comparison of varieties for each combination of site and year
because the 10 variety measurements are graphed together on the same panel. This graphing
along a common scale allows highly accurate visual decoding of the relative values of the
10 yields. Similarly, in Figure 3 we were able to compare the two yearly values for each
combination of site and variety because the two values are graphed along a common scale.
But in neither of these displays can we compare the six values of yield for each combination
of variety and year because the six values are on separate panels.

Thus we make another Trellis display in Figures 5 and 6, using the interchanged data.
The panel variables are site and yield and the conditioning variables are variety and year.
There are 20 panels and the trellis has two columns, five rows, and two pages. Now the six
yields for each combination of year and variety are graphed along a common scale. Waseca,
the site with the largest median, has close to the highest yield on all twenty panels, so it is
consistently the leader. Grand Rapids has the lowest or nearly the lowest yield in all cases
except Velvet in 1932 where it has an unusually high value compared to its performance
elsewhere.
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This change in what we can readily perceive in the Trellis displays for the barley data
is a general phenomenon: when we seek to determine the dependence of a response on
two or more explanatory variables, we typically see most effectively the dependence on the
explanatory variables selected as panel variables, and we see how this dependence changes as
the values of the conditioning variables change. Typically we do not perceive as effectively
the dependence on the conditioning variables. Thus, in analyzing such multivariable data
we want to make multiple Trellis displays so that each explanatory variable appears at least
once as a panel variable.

3.2 Partial Residuals

Earlier we saw in Figure 3 a suggestion of an interaction between year and site — the
higher the overall yield for a site, the greater the difference between 1932 and 1931. Let
us focus the analysis on the year variable by adjusting for main effects of the other two
explanatory variables. We could do this in the following way: (1) take means across the
two years for each combination of site and variety; (2) subtract each mean from the two
measurements; (3) graph the residuals by Trellis displays with the residuals taken as the
response. Such Trellis displays are partial residual plots [7]. In this particular example,
because there are just two levels of the year variable, each residual is one-half the difference
of a 1931 value and 1932 value, and the 1931 residual for a particular site and variety is the
negative of the 1932 residual for that site and variety. Thus, we can simplify the display by
just graphing the 1931 values minus the 1932 values.

Figure 7 graphs the differences using the interchanged data. We have maintained the
ordering of sites by overall site median. The vertical line on each panel is the 10% trimmed
mean of the yields for the panel, that is, the mean with the smallest and largest differences
removed. Now we see clearly the interaction between site and year that was hinted at in
Figure 3. The overall level of the differences increases with the site median; Morris fits
nicely into the pattern and Grand Rapids now emerges as the unusual site. This makes it
seem even more likely that the original data are in error.

The effectiveness of displaying partial residuals is a common occurrence. By removing
gross main effects, they can allow subtler effects to emerge. Partial residuals have a long
history in statistics. For the most part, their usage, at least by the name of “partial
residuals”, has been in studies where the explanatory variables are numerical [7]. But,
in fact, partial residuals are a special case of a more general principle that emerges with
greatest clarity in the exploratory methods of Tukey where effects are removed — fitted
by models often known not to fully explain the data — to reveal other effects with more
clarity [19, 20].

4 Trellising

The analysis of the barley data in the previous section illustrates a general phenomenon
of the use of Trellis display; the structure of the data is revealed by the combined information
of many Trellis displays, not just a few.

11



| |
Waseca —

Trebi

Wisconsin No. 38
No. 457

Glabron
Peatland

Velvet

No. 475
Manchuria

No. 462
Svansota

Crookston

Trebi

Wisconsin No. 38
No. 457

Glabron
Peatland

Velvet

No. 475
Manchuria

No. 462
Svansota

Trebi

Wisconsin No. 38
No. 457

Glabron
Peatland

Velvet

No. 475
Manchuria

No. 462
Svansota

Trebi

Wisconsin No. 38
No. 457

Glabron
Peatland

Velvet

No. 475
Manchuria

No. 462
Svansota

Trebi

Wisconsin No. 38
No. 457

Glabron
Peatland

Velvet

No. 475
Manchuria

No. 462
Svansota

- Grand Ra|

Trebi |- -
Wisconsin No. 38 |-

No. 457

Glabron

Peatland

Velvet

No. 475

Manchuria

No. 462

Svansota

Differences of Barley Yield (bushels/acre)

Figure 7: Differences of barley yield against variety given site.

12



To produce any Trellis display we must specify the trellis dimensions and the assignment
of the packets to the panels of the trellis. We refer to this as trellising. For example, the
trellising for Figure 2 is shown in Figure 8. For Trellis display to be useful in practice, we

Waseca Waseca
1932 1931
Crookston Crookston
1932 1931
Motris Morris
1932 1931
University Farm University Farm
1932 1931
Duluth Duluth
1932 1931
Grand Rapids Grand Rapids
1932 1931

Figure 8: Trellising.

need a conceptual framework for trellising that is both flexible and simple. No matter how
powerful the visual transmission of information of Trellis display, it would not be of much
use if trellising were complex and difficult to think through in each case. Fortunately, there
is a flexible and simple control mechanism. The ingredients of this mechanism, which we
explain in detail in this section are the following:

1. We specify the dimensions of the trellis — columns, rows, and pages.

2. We specify an order for the conditioning variables and an order for the levels of each
conditioning variable.

3. Based on our specification of these orderings, the packets are ordered by a simple rule
(packet order).

4. Another simple rule governs the order of the panels (panel order).
5. Packets are assigned to panels according to the packet order and the panel order.

6. While we typically make the selections of the dimensions and the orderings of the
conditioning variables in a coordinated way, Trellis display has been designed not
make a connection. This is a critical feature that makes trellising both simple and

flexible.

7. A mechanism for specifying skipping allows us to assign packets with an irregular
structure to the rectangular trellis in an understandable way.

8. A mechanism for adding space between any two adjacent columns or any two adjacent
rows allows us to visually organize the panels more effectively in certain applications.

4.1 Dimensions, Packet Order, Panel Order, and Packet Assignments to
Panels

In making a Trellis display we specify the trellis dimensions, an order for the conditioning
variables, and an order for the levels of each conditioning variable. Consider Figure 2 whose
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trellising is shown in Figure 8. The dimensions are (2, 6, 1) — 2 columns, 6 rows, and 1
page. There are two conditioning variables, year and site; the first with two levels and the
second with six. The order of the conditioning variables is (1) year; and (2) site. The order
of the year levels is (1) 1932; and (2) 1931. The order of the site levels is (1) Grand Rapids;
(2) Duluth; (3) University Farm; (4) Morris; (5) Crookston; and (6) Waseca. Recall that the
orders of the levels of site and year came from using main-effects ordering, but, of course,
in any application we are free to order levels of the variables in any way that is sensible for
the data at hand.

The following rule now orders the packets using the orderings of the conditioning variables
and their levels: The levels of the first conditioning variable vary the fastest, the levels of
the second conditioning variable vary the next fastest, and so forth. For Figure 2, the
order of the packets is (1) 1932 Grand Rapids; (2) 1931 Grand Rapids; (3) 1932 Duluth;
(4) 1931 Duluth; (5) 1932 University Farm; (6) 1931 University Farm; (7) 1932 Morris; (8)
1931 Morris; (9) 1932 Crookston; (10) 1931 Crookston; (11) 1932 Waseca; and (12) 1931
Waseca.

The panels of a Trellis display are ordered by the following rule: The bottom left panel
of the first page is panel one; from there we move fastest through the columns, next fastest
through the rows, and the slowest through pages. The following shows the panel order for
Figure 2, which has two columns, six rows, and one page:

11 12
9 10
7 8

5 6
3 4
1 2

The rule for assigning packets to panels is to match the packet order and the panel order.
Packet one goes into panel one, packet two goes into panel two, and so forth.

The panel ordering rule is like a graph, not a table. The origin is at the lower left, and as
we move from left to right or from bottom to top, the panel order increases. Holding to a
graphical convention is important because we often have numerical values changing as either
rows or columns change. For example, in Figure 2 the result of the main-effects ordering
of the site levels and the panel ordering convention is an increase in the site medians in a
graphical way — from the bottom row to the top row.

4.2 Different Trellisings

Let us consider different trellisings of the barley data to further illustrate how different
dimensions and orderings alter the trellis.

Figure 2 was made tall and narrow to fit into a graphics region with a portrait shape.
Just to review, here is the specification that produced its trellising: Dimensions = (2, 6,
1); Variable Order = year, site; Year Level Order = 1932, 1931; Site Level Order = Grand
Rapids, Duluth, University Farm, Morris, Crookston, Waseca.
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Suppose, however, that the graphics region has a landscape shape. Then to use space
effectively we might want to interchange rows and columns, producing the trellising shown
in Figure 9. We get this by the following specification: Dimensions = (6, 2, 1); Variable

1931 1931 1931 1931 1931 1931
Grand Rapids Duluth University Farm Mortris Crookston Waseca

1932 1932 1932 1932 1932 1932
Grand Rapids Duluth University Farm Morris Crookston Waseca

Figure 9: Trellising.

Order = site, year; Site Level Order = same as previous trellising; Year Level Order = same
as previous trellising. Thus we have altered the dimensions and reversed the order of the
conditioning variables.

The Trellis display shown in Figures 5 and 6 has the two-page trellising shown in Fig-
ures 10 and 11. We get this trellis by the following specification: Dimensions = (2, 5, 2);
Variable Order = variety, year; Variety Level Order = Svansota, No. 462, Manchuria, No.
475, Velvet, Peatland, Glabron, No. 457, Wisconsin No. 38, Trebi; Year Level Order =
1932, 1931.

1932 1932
Wisconsin No. 38 Trebi
1932 1932
Glabron No. 457
1932 1932
Velvet Peatland
1932 1932
Manchuria No. 475
1932 1932
Svansota No. 462

Figure 10: Trellising — page 1.

1931 1931
Wisconsin No. 38 Trebi
1931 1931
Glabron No. 457
1931 1931
Velvet Peatland
1931 1931
Manchuria No. 475
1931 1931
Svansota No. 462

Figure 11: Trellising — page 2.

Suppose, however, that the graphics region has a landscape shape. We might try to
squeeze the panels on a single page by the trellising shown in Figure 12. We get this by
the following specification: Dimensions = (5, 4, 1); Variable Order = same as previous
trellising; Variety Level Order = same as previous trellising; Year Level Order = same as
previous trellising. Thus we have changed only the dimensions.
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1931 1931 1931 1931 1931
Peatland Glabron No. 457 Wisconsin No.[38 Trebi
1931 1931 1931 1931 1931
Svansota No. 462 Manchuria No. 475 Velvet
1932 1932 1932 1932 1932
Peatland Glabron No. 457 Wisconsin No.[38 Trebi
1932 1932 1932 1932 1932
Svansota No. 462 Manchuria No. 475 Velvet

Figure 12: Trellising.

4.3 Flexible Trellising

Earlier we emphasized the importance of the independence of the specification of packet
order and the specification of the trellis dimensions. In particular, the numbers of levels of
the conditioning variables and the trellis dimensions are independent. This allows flexible
trellising. Of course, we often want to coordinate the two to enhance our ability to perceive
the assignment of the levels of the conditioning variables to the trellis. When possible,
we would like to have a column, row, or page dimension changing with the values of one
conditioning variable and to have one variable per dimension. For example, in Figure 2,
the trellising (shown by itself in Figure 8) was carried out so that the year levels change
along the columns and the site levels change along the rows. But because the area of
display devices is finite, and because we can find ourselves conditioning on more than three
variables, we cannot always have such coordination. In Figures 5 and 6, whose trellising
is shown by itself in Figures 10 and 11, the site variable changes both with the rows and
with the columns. The independence of the packet order and the panel order is in part
responsible for the flexibility that allows such a trellising.

The flexible trellising is also a result of a visual design feature of Trellis display — the
strip labels. The labeling of the levels of conditioning variables that produce a panel is part
of the panel. Thus we can arrange panels in any order and not worry about where labels
are placed. The flexibility would not have been possible had we attempted labeling in the
margins, the method typically used for multipanel displays.

4.4 Breaking

Two adjacent columns of a Trellis display meet at a column join, and two adjacent rows
meet at a row join. Breaking the join — that is, adding white space between two columns
or rows — can enhance our perception of the levels of conditioning variables in cases where
more than one variable changes along the column dimension or along the row dimension.
Consider the trellising in Figure 12 where 1932 packets are in the bottom two rows and
1931 packets are in the top two rows. Figure 13 breaks between rows 2 and 3 to enhance
our perception of this division of panels by year.
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1931 1931 1931 1931 1931
Peatland Glabron No. 457 Wisconsin No.[38 Trebi
1931 1931 1931 1931 1931
Svansota No. 462 Manchuria No. 475 Velvet
1932 1932 1932 1932 1932
Peatland Glabron No. 457 Wisconsin No.[38 Trebi
1932 1932 1932 1932 1932
Svansota No. 462 Manchuria No. 475 Velvet

Figure 13: Trellising with added white space.

4.5 Skipping

Suppose we have two conditioning variables, the first with 11 levels and the second with
19 levels. We might want a trellising with 19 pages, one for each level of the second variable.
This means that we need to fill each page with 11 panels. Since 11 has no divisors except 1
and 11 our only choices for the trellis dimensions would be (1, 11, 19) or (11, 1, 19), unless
we allow panel skipping. By skipping we can do the following: make the trellis dimension
(3, 4, 19) and then on each page fill 11 panels with packets and then skip one. On each
page the upper right panel would be empty.

The Trellis display skipping rule is the following: (1) a sequence whose values are “fill” or
“skip” is specified; (2) if the sequence is smaller than the number of panels (the product of
the dimensions) then the sequence is repeated. Thus the skipping sequence for the example
in the previous paragraph is 11 values of “fill” followed by 1 “skip”.

5 Conditioning on A Numeric Variable with Repeat Mea-
surements at Discrete Values

5.1 Fuse Data: A Missed Effect

Sheesley reports an experiment to study the properties of a thermal fuse in an elec-
tronic device [16]. The response is the operating temperature, F', of the fuse. There are
three explanatory variables. The first is the ambient temperature, A, of the environment
in which the fuse is located during a run. There are two levels for this variable, 75° and
110°. The temperature of the fuse is expected to increase as the temperature of the en-
vironment increases. The second is an ordered categorical variable, 5, that describes the
start condition of the fuse in a run. The value “cold” means that the fuse begins essentially
at the temperature of the environment, and the value “hot” means that it was previously
in operation at the start of the run. Starting “hot” is expected to produce a higher fuse
temperature. The third variable is voltage, V. There are three levels — 110, 120, and 126
volts. The fuse temperature should increase with increasing voltage.

In the experiment, the 12 = 2x2x 3 combinations of the explanatory variables were tested
with 10 replications (different fuses) for each combination. Due to cost considerations, once
the experiment was set up to run a particular combination, all replications were carried out
in parallel. While this saves money, it makes the experiment vulnerable to drift in other
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variables that might affect F’; a special condition for one of these variables during the runs
of one combination would be confounded with the effect of the combination. The use of
Trellis display will show an effect missed in the reported analysis; either there is a genuine
three-factor interaction or some special condition occurred during the testing of one or more
combinations.

5.2 Categorical Variables and Numeric Variables Treated as Categorical

For the barley data, the variety and site variables are categorical. The year variable was
treated as categorical, and not numerical or ordered categorical because there are only two
values and because we cannot conclude that barley yield would likely increase or would likely
decrease due to the mere march of time. Thus, for the barley data, all three explanatory
variables are categorical and in making the Trellis displays, we conditioned on the levels of
the variables, that is, the levels of the categories. For example, when site was a conditioning
variable we made Trellis displays by conditioning on Grand Rapids, Duluth, etc.

For the fuse data, S is an ordered categorical variable with two levels, A is numerical
with two levels, and V is numerical with three levels. We expect an increase in F with
an increase in any one of these explanatory variables. For either A or V', because we have
discrete values with repeat measurements at each value, we can condition on the distinct
values in the same way that we condition on the levels of a categorical variable. Of course,
as with an ordered categorical variable, we would almost always want to order the numerical
levels by their values and not by main-effects ordering.

If the measurements of V., say, had not been under strict experimental control and
varied over many values with few or no repeat values, we would need a special method for
conditioning on V. Such a method will be discussed in Section 6.

5.3 Trellis Display of the Fuse Data

Figure 14 is a Trellis display of F against 5 given A and V. The levels of each of the
explanatory variables are in their natural order, and as stated earlier, we expect F' to
increase as the level of any of the variables increases. The panel display method is a dot
plot that uses open circles to graph the temperatures of the 10 fuses for each combination,
and uses a “47 to graph the mean of the 10 values. The vertical line on each panel is at
the mean of the 120 observations. The display shows the expected; S = “hot” results in
higher mean F' than S = “cold”. But there is a strong interaction between S and A. For
the lower level of A, the effect of 5 is substantially larger.

Figure 15 is a Trellis display of F against A given S and V. The same panel display
method is used as in Figure 14. Again, we see the interaction between S and A but a
different aspect is clearly portrayed. For § = “cold”, F increases as A increases, but for 9
= “hot”, A appears to have no effect.

Figure 16 is a Trellis display of F against V given S and A. The panel graphical method is
a scatterplot of I against V with the means for each value of V' connected by line segments.
The shapes of the dependence on V in the top two panels are very nearly the same, both
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concave. The shape in the lower right panel is also concave, but with a smaller difference
between the two slopes than in the top panels. The shape in the lower left panel is markedly
convex. This is, of course, a three-factor interaction. We will use partial residuals to study
it further. For each of the four combinations of 5 and A, there are 30 observations. In each
case we take the mean of the 30 values and subtract it from the values. The new values are
the partial residuals for a model with main effects and an interaction for S and A. Figure 17
is a Trellis display of the partial residuals against V given S and A using the same panel
display method as in Figure 16. Careful study of this display together with our conclusions
from the other displays reveals that something quite unusual is happening, probably for one
or more of the runs with § = “cold” and A = 75° I, the lower left panel in Figure 17.

Overall, the Trellis displays of the fuse data show a nonincreasing marginal effect: as
the level of an explanatory variable increases, F’ increases, but the marginal effect of now
increasing one of the other explanatory variables is the same or lessened. The unusual
behavior in Figure 17 is a deviation from this pattern. Let us look at this in detail.

Figure 14 shows that for A at the greater temperature level there is a lessened effect of
increasing 5. Figure 15 shows that for 5 at “hot”, there is a lessened effect of A, in fact no
effect. In Figure 17, consider the effect of going from V' = 120 volts to V' = 126 volts. The
biggest change is for the lower levels of the other two variables, S = “cold” and A = 75°,
the lower left panel of Figure 17. If we move to any other panel of the figure — which
means that we increase the level of either § or A or both, the effect of V' at the two selected
levels decreases. If we move from the upper left panel to the upper right, the effect of V' at
the two levels stays the same. If we move from lower right panel to the upper right panel
the effect of the two levels of V' decreases. Now consider the effect of going from V' = 110
volts to V' = 120 volts. If we move from the lower right panel to the upper right panel, the
effect decreases slightly. If we move from the upper left panel to the upper right, the effect
is nearly the same. But now consider the effect in the lower left panel. It is the smallest
of the four on the display. But given the overall law of nonincreasing marginal effect that
obtains everywhere else, we would expect the effect in the lower left to be the greatest. It
is possible that some very peculiar law of electricity and thermal conduction takes over for
these two combinations. But it is more likely that some special condition in the operating
environment occurred, confounding the condition with the other explanatory variables.

The original analysis of these data missed the unusual combination, which is a three-
factor interaction. A plausible model for the data suggests unusual behavior is not random
variation. The model is the following: main effects and an interaction for S and A; a
quadratic in V; and a dummy variable that is 1 for the 10 observations of the special
condition (V' = 120, A = 75°, § = “cold”) and —1 elsewhere. The dummy variable is
significant at the 1.2% level.

6 Shingles

6.1 Haystack Data: A Solution to a Problem of Ezekiel and Fox

Before the introduction of hay-baling machines in the 1940s, hay was often sold loose in
round stacks. Two aspects of a round stack that a farmer could easily measure with a rope
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were the circumference of the base and the over, the distance from the base on one side,
over the top at the center, to the point on the base on the opposite side. The circumference
and the over were then used to estimate the volume.

Ezekiel and Fox report data from an experiment run in the 1920s to determine a method
for estimating the volume of a round stack from its circumference and over measurements [8].
The volumes of 120 stacks were precisely determined, and measurements were made of the
circumferences and the overs. Ezekiel and Fox analyzed the data by fitting log volume, V,
to log circumference, €', and log over, O.

Figure 18 is a scatterplot matriz: scatterplots of all combinations of the three log,
haystack variables. Notice that O by itself is a very good predictor of V. Also, the measured
values of O and (' are correlated; their squared correlation coefficient is 0.40. Consider the
basal diameter and the height of a haystack. C, of course, is a simple function of the di-
ameter. But O also depends on the diameter, hence the correlation. O also depends on the

height.

As we will see shortly, there is an interaction between C' and O in explaining V. The
interaction is discussed by Ezekiel and Fox:

The basal area is a function of the square of the basal circumference; the “over” is a
function of both the basal diameter and the height — but attempts to separate the two
have been unsuccessful. ... The problem is evidently one where the relation may best
be expressed by a joint function such as

volume = f(circumference, over)

In other words, Ezekiel and Fox saw no way to eliminate the interaction. One might expect
that if there were a way to define the height of a stack from the over and circumference
measurements, then there might be no interaction in a model using the diameter and the
height. But as they state, Ezekiel and Fox saw no way to do this. They went on to describe
the function using a nonparametric, or smoothing, approach to fit V' as a function of '
and O. We will use Trellis display to reveal the structure of the interaction; this leads to
method for determining a definition of haystack height which, in turn, leads to a model for
the data with no interaction.

6.2 Conditioning on Intervals and the Equal Count Algorithm

For the haystack data, we would like to study conditional dependence — the dependence
of V on C given O, and the dependence of V on O given ('. But Figure 18 shows that
C and O take on many different values, with insuflicient repetition at each value to allow
us to condition on single numerical values as we can for a discrete numerical variable with
many observations at each distinct value. For variables such as €' and O we must condition
on each of a collection of intervals of values. For example, we must study the dependence
of V on O given C in an interval, and vice versa.

For a categorical variable or for a discrete numerical variable we have referred to the
values on which we condition — that is, the distinct values — as the levels. For a numerical
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Figure 18: Scatterplot matrix of log base 2 of the haystack data.

variable in which we condition on intervals, the intervals become the levels, which, as in the
other cases, are ordered.

We could form intervals by simple binning: breaking up the range of a conditioning vari-
able into disjoint intervals. Such binning of numerical data to study conditional dependence
reaches deeply into the history of statistics. In fact, Ezekiel, in earlier editions of the Ezekiel
and Fox book cited here [8], used such simple binning in looking at the haystack data.

But we will take a different approach, binning in overlapping intervals. Figure 19 is a
given plot; it shows intervals of O that we will use for conditioning. The intervals were
formed from the equal count algorithm which we will describe shortly [4]. The overlap
of the intervals increases the resolution with which we can study conditional dependence.
Suppose something special happens in the conditional dependence of V on ' when O is
equal to Hlog, ft — for example, the maximum curvature occurs. We are likely to best
perceive this dependence if the collection of intervals contains at least one with 5log, ft
at or near the center. We want successive intervals to slide along rather than jumping by
large amounts. A good analogy is moving averages for a time series; there, to increase
resolution, the averaging intervals overlap, sliding along to provide the best picture of the
local behavior at each time point.

The intervals for a numerical variable together with the measured values of the variable
form a data structure that we call a shingle because the intervals often overlap. In an
implementation of Trellis display, it is convenient to store intervals and values together in
a shingle data structure. We will discuss that point later in Section 7.
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Figure 19: Conditioning intervals.

Two parameters are given to the equal count algorithm — the number of intervals and
the approximate fraction of points shared by two successive intervals. In Figure 19, the
parameters are 9 and 0.5. The algorithm then picks interval endpoints that are values of
the data; the left endpoint of the lowest interval is the minimum of the data, and the right
endpoint of the highest interval is the maximum of the data. The endpoints are chosen
to make the counts of points in the intervals as nearly equal as possible, and the fractions
of points shared by successive intervals as close to the selected fraction as possible. For
Figure 19, the interval counts range from 11 to 18, and the numbers of points shared by
successive intervals range from 5 to 13. The large variation in each of the two sets of
numbers in this example arises from the large number of ties in the values of O.

6.3 Trellis Display of the Haystack Data

Figure 20 is a Trellis display of V against ' given O using the equal-count intervals
of Figure 19. The panel variables are V' and ' and the conditioning variable is O. The
levels of O are ordered in the natural way, from the lowest interval to the highest. The
dimensions of Figure 20 are (3, 3, 1). Unlike our previous examples, the packets are not
disjoint because the intervals are not; the same observation may be in two adjacent packets.
Because of the conventions for assigning packets to panels, the intervals go from lowest to
highest as we move from left to right through the bottom row, then left to right through
the middle row, and so forth.

The strip labels in Figure 20 contain a graphical display of the intervals with a scale
going from the left edge of the strip to the right, but with no tick marks. The scale value at
the left edge is equal to the value of the left endpoint of the lowest interval, and the scale
value at the right edge is equal to the value of the right endpoint of the highest interval. The
dark regions inside the strips portray the intervals. Compare their portrayal in Figure 19
with their protrayal on the strips.

Each panel of Figure 20 has a scatterplot of V' against C' for values of O in one of the
intervals. A smooth curve is fitted to the data of each panel using loess with local linear
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fitting, nearest-neighbor bandwidth selection, and a smoothing parameter of 1 [5]. The
curves help us perceive the underlying patterns.

Figure 21 is a Trellis display of V against O given (. The panel variables are V' and
O and the conditioning variable is C'. As with Figure 20, 9 equal-count intervals are used
with a target fraction of overlap of 0.5. The loess curves use local quadratic fitting with a
smoothing parameter of 1.

The underlying patterns in Figure 20 appear to be nearly linear but with slopes that tend
to increase as the conditioning level of O increases, an interaction between O and C'. This
is the interaction referred to by Ezekiel and Fox that appeared to them to be unremovable.
Figure 21 also shows the interaction. For low values of C there is a hint of concavity in
the dependence of V on O for the lower values of (', but as C' increases the dependence
becomes nearly linear.
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Figure 21: Log volume against log over given log circumference.
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6.4 Modeling the Haystack Data

The problem with the haystack data is the interdependence of €' and O. The over
measurement depends on the haystack height and on the diameter, and the circumference
measurement is equivalent to the diameter. This results in a correlation between O and C'
and an interaction in the dependence of V on O and . Next, attacking the problem posed
by Ezekiel and Fox, we will present a method for deriving a height measurement; then we
will model volume by height and basal radius, seeking to eliminate both the correlation in
the explanatory variables and the interaction.

Haystacks are mounds. Suppose the shape of each haystack is a fustrum of a right circular
cone, that is, the region of the cone between the base and a plane parallel to the base and
intersecting the cone. Let b; be the radius of the circular base of the ¢th haystack fustrum,
and let ¢; be the radius of the circular top, so b; > t;. Let h; be the height. Suppose further
that the ratio of the top radius to the bottom is a constant, ¢;/b; = a. Let o; be the over
measurement and let ¢; be the circumference measurement of the base. Then

b = ¢/27
= ab,

= \/(02/2 — ti(a))Q — (bz - ti(a))zv

and the volume is |
fila) = gﬂhz’(a)(b? + biti(a) + 11 (a)).

We have indicated the dependence of ¢;, h;, and f; on a which in the coming model for the
data will be an unknown parameter.

We will model the actual log, volumes, V;, of the haystacks by the logs of the fustrum
volumes,
Fi(a) = log fi(a).
The model is
Vi=p+ Fla)+e
where the ¢; are independent with mean zero and variance ¢°. The unknown parameters
are a, pt, and o. If the haystack shapes are well approximated by fustrums with a constant

2

ratio of top radius to base radius, then the estimated value of p should be close to 0.

The model was fitted by nonlinear least squares. The estimates of the parameters and
their standard errors are @ = 0.90£0.030, 2 = 0.0924+0.0111og, ft3, & = 0.091 £0.0058 log,
ft3. The sample distribution of the residuals is well approximated by a normal distribution.
The standard errors of the estimates were estimated by a simulation with the €; generated
from a normal distribution with standard deviation 0.091.

The squared correlation coefficient between log, b; and log, h;(&) is 0.065. Furthermore,
the fitted function can be written as two additive functions of log, b; and log, h;(&). Thus
we have created two explanatory variables that are nearly uncorrelated and that act with
no interaction in explaining the response.

The approximation of haystack shape by a fustrum is quite reasonable. The estimate of
p is significantly different from zero but its magnitude is small. The residual plots suggest
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that the fitted model slightly underpredicts the volumes of the largest haystacks, but the
distortion is small.

The fitted log volume model can be written as a function of O and C'. We will graph
this function to compare its properties with the behavior in the Trellis displays of the data
in Figures 20 and 21. And we will use Trellis display to show the function as well.

The Trellis display in Figure 22 graphs two fitted functions. One function is the fit just
discussed, which is based on the fustrum model; this fit is portrayed by the heavy solid
curves on the panels. The second function is a fit that is linear in C' and O; this fit is
portrayed by the lighter lines on the panels. The purpose of the linear fit is simply to
provide a visual reference so we can more readily judge the curvature and interaction of the
fustrum fit.

The fustrum fit is graphed over a cropped rectangular grid. Figure 18 shows that C
and O, which are correlated, vary over a roughly elliptical region. We begin with the full
rectangular grid: 50 equally-spaced values of €' from the minimum measured value of '
to the maximum, and 12 equally-spaced values of O from the minimum to the maximum.
This full grid contains the elliptical region of measured values of ' and O. We crop the
grid back to those points that lie inside the elliptical region. The result then is values of V'
for the cropped grid values of €' and O. Figure 22 graphs V' against €' given O. Since C
is discrete in this case, we condition on the distinct values of O. Figure 23 uses a similar
method to graph V against O given C.

Figures 22 and 23 show that the qualitative properties of the fitted function are quite
similar to the patterns observed in Figures 20 and 21. The interaction between O and
is shown clearly in Figure 22. As the conditioning values of O increase, the overall slopes
of the curves increase. However one property that is not seen in Figure 20 is the concavity
of the conditional dependence; in Figure 20 it appears linear. But the amount of noise
about the underlying patterns in Figure 20 is large enough that it could easily mask the
mild curvature shown in Figure 22. Figure 23 shows the same mild concavity shown in
Figure 21.

7 Discussion

7.1 The Effectiveness of Trellis Display

This account of Trellis display has been organized around applications. We studied
three data sets and in each case made important discoveries not appreciated in the original
analyses. There are two reasons for this organization. First, it is far easier to describe the
details of a visualization method through sets of data. Second, while we can appeal to the
theory and experiment of visual perception to attack very specific issues of visualization,
the only way to establish the validity of a general approach to visualization that contains a
whole collection of graphical methods is to provide examples where the method allows us
to detect important properties of data sets that would be difficult or impossible to see with
other statistical methods.
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Figure 22: Log volume against log circumference given log over.
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7.2 Standard and Nonstandard Trellis Displays

In practice, most Trellis displays can be produced by straightforward specifications of
dimension, variable order, and standard panel display methods such as scatterplots, dot
plots, histograms, and so forth. But when needed, special displays can be produced by
creative use of dimension, variable order, panel display methods, panel skipping and by
adding extra break space between panels. Figure 1 at the beginning of the paper provides
an example that uses some of these techniques.

The raw data on which Figure 1 is based are measurements of the velocity of a galaxy in
the Southern Hemisphere [5]. When looked at from the earth, the galaxy fills a very small
area on the celestial sphere. Measurements of the radial velocity (in a direction toward or
away from Earth) were made at 323 locations over this area. The velocities are not constant
because the galaxy appears to be spinning and has other complicated motions. The data are
noisy, so a loess surface was fitted to the velocities as a function of longitude and latitude
on the celestial sphere [4]. The fit was then evaluated over a 26 x 31 grid of longitudes and
latitudes.

On each panel of Figure 1, the gridded loess fit is displayed by a 3-D wireframe plot from
some viewing direction. The base plane of the box is longitude and latitude, and the axis
perpendicular to the base plane is velocity. There are 8 viewing directions, all at 45° to
the base plane. The directions make a complete circle around the surface in equal angular
steps. As we move from the lower left panel counterclockwise, the equally spaced viewing
directions go from 22.5° to 337.5° in steps of 45°.

The packet for each panel is the identical set of (z,y, z) coordinates. There are eight such
packets of triples, one for each viewing direction. The trellising is achieved in the following
manner. A new variable, viewing direction, is defined. For each triple (z,y, z), the value of
the new variable is the circular angle of the viewing direction described above, so it takes
one of the eight values from 22.5° to 337.5°. This new variable becomes the conditioning
variable; it is numeric and has 8 unique values for conditioning. But the eight levels are
not ordered by their numerical values. Instead they are ordered 22.5°, 67.5°, 112.5°, 337.5°,
157.5°, 292.5°, 247.5°, 202.5°. Furthermore, there is a skipping vector defined by (4 fills, 1
skip, 4 fills). The result of the ordering and the skipping is wireframe displays whose viewing
directions progress around a circle as we proceed circularly around the panels of the Trellis
display. The panel display method performs the perspective transformation based on the
data and the viewing direction.

7.3 Graphical Perception: Orientation Estimation and Visual Assembly

The theory and experiment of graphical perception have played an important role in the
visual design and the control design of Trellis display. Here we discuss two issues, aspect
ratio, and color.

In many graphical displays we judge the orientations of line segments to decode infor-
mation about the rate of change of one variable with respect to another. For example, in
Figures 22 and 23 we judge the orientations of the short line segments that make up the
curves to decode information about the relative steepness of the curves and the amount of
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curvature.

This decoding is greatly affected by the aspect ratio of the graph. The data rectangle of a
graph is a rectangle that just encloses all of the data. The aspect ratio is the physical height
of the data rectangle (measured in cm, for example) divided by the width. The aspect ratio
is a vital parameter for judging rate of change from orientations because the orientations
change as the aspect ratio changes. The aspect ratio in Figure 24 is much smaller than
that of Figure 22; although both graph the same data, we cannot as accurately decode
information about the relative overall slopes and the curvature from Figure 24. Both the
theory and experiment of graphical perception have led to the 45° principle: orientations of
line segments are most accurately judged when the absolute slopes are centered on 45° [4].
This banking to 45° was used in Figures 22 and 23. Because of its importance, control of
aspect ratio has been built into Trellis display at a fundamental level.
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Figure 24: Log volume against log circumference given log over.

Visual assembly, the simultaneous perceiving of a collection of graphical objects as a
gestalt or visual whole, is another important visual operation of graphical perception. For
example, on Trellis displays we want to perceive the strip labels for a particular conditioning
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variable as a visual whole, filtering out other aspects of the display. Color encoding is a
powerful method for producing effective assembly. In Trellis display, default color encod-
ings have been developed that are reasonably robust to the output device being used. The
guiding principle is to choose colors that are simple combinations of cyan, magenta, and
yellow, three of the four standard printing colors. The reason is that these simple combina-
tions work well on color printers but also work well on screens; encodings that work well on
screens do not necessarily move well to printers. Simple combination is defined as follows:
(1) We can add white to any of these three primaries to alter their lightness or saturation;
for example, 80% cyan is 80% cyan and 20% white. (2) We mix no more than two of these
altered primaries. For example, in Trellis display the first four colors for color encoding
plotting symbols or curves are the following: (1) 100% cyan; (2) 100% magenta; (3) 50%
yellow + 50% cyan (green); (4) 75% magenta + 25% yellow (orange).

7.4 A High-Level Design for Software for Trellis Display

By “high-level” design for software we mean the design of the mechanism that a user
employs to specify what is produced. We have developed a high-level design for Trellis
display and have implemented the design in the S/S-PLUS system for graphics and data
analysis [3].

We have already provided information that has been used in the high-level design:

1. The trellising mechanism of Section 4 serves not only as the conceptual framework for
trellising; it is also the control mechanism for users.

2. Conditioning variables in Trellis display use a data structure that consist of the values
of the variable and the ordered levels to be used for conditioning. For categorical
variables, the data structure is a category and the levels are a set of unique values.
For numerical variables the data structure is a shingle and the levels are intervals. In
both cases the data structure simply carries along the levels as an attached attribute;
routines that want the values but that do not know about the levels can still access
the data structure as if the levels were not there.

There are many other aspects of the high-level design, too numerous to discuss here, but
there is one more that warrants discussion because it plays a central role. The highest-level
routines for Trellis display implement specific graphical methods such as dot plots, quantile
plots, boxplots, and wireframes, together with a few rather general routines that, say, graph
y against x. The job of each of these routines is to control the trellising, scaling, and aspect
ratio; to create the packets; and to draw the trellis framework which is everything on the
display except the data regions of the panels. The drawing in the data regions is carried out
by a panel function that is called by the high-level routine. The panel function is a single
prescription that takes the packet for a particular panel as input and then draws something
in that panel. There is just one prescription that applies to all panels. Each high-level
routine comes with a default panel function. Users can program a panel function, which
is relatively simple in most cases because it is a prescription for a single-panel display. In
contrast, users are not expected to program the routines which deal with the very complex
task of establishing the trellis framework. This two-part division works quite well, providing
flexibility without undue complexity.
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7.5 Trellis Display and Other Work in Multipanel Data Display

Arranging panels in a nested way to see the relationships of certain variables conditional
on others has arisen in many forms in many different scientific disciplines. Among the
displays that Tufte refers to as small multiples are examples of such conditioning displays [17,
18]. The casement window displays of Tukey and Tukey [21] show four numerical variables
using a rectangular array of scatterplots of two of the variables, conditional on disjoint
intervals of the other two variables, and with the scales of two conditioning variables in
the margins to show the conditioning intervals. Mihalisin, Timlin, and Schwegler present
a systematic approach to both the design and control of nested displays with certain types
of display methods on the individual panels [13, 14]. The system, which has evolved into
TempleMVV, has also been designed so that it is able to display very large databases [15].
In work based on these ideas, LeBlanc, Ward, and Wittels use nested multipanel displays in
their dimensional stacking for displaying functions of several variables [12]. In the “worlds
within worlds” of Feiner and Beshers [9], nesting is generalized to three dimensions; 3-D
displays become the panels and they are arranged in a 3-D array with perspective. Finally,
in their recent paper about TempleMVV, Mihalisin et al. give an excellent discussion of
general criteria and goals for multipanel display [15].

Trellis display brings substantial generality to multipanel display. Indeed, it serves as an
overall framework within which all data display can be carried out. Any graphical method
— whether it is a univariate, bivariate, or higher dimensional display technique — can be
displayed in a trellis, and there can be many panels or just a single panel. For example, each
panel of a Trellis display can be a scatterplot matrix. In this account we used dot plots,
scatterplots, curve plots, and wireframes. The major features that allow the generality are
the following;:

1. The independence of the specification of packets and the specification of the trellis
geometry.

2. The simple rules for forming the packet order, for the panel order, and for matching
the two orders.

3. The use of strip labels to make panels self-contained.

4. A division of responsibility into (1) high-level routines that implement broad graphical
methods, controlling features specific to the method, scaling, aspect ratio, labeling,
and the trellising; and (2) programmable panel functions that carry out the rendering
in the data regions of the panels.
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