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Figure 1: Trellis display is a framework for the visualization of data. One importantapplication is uncovering the relationships of variables in multivariable data sets. In this�gure, which will be described in detail later in the paper, a velocity surface is graphed asa function of longitude and latitude on eight panels, each for a di�erent viewing direction.1



AbstractTrellis display is a framework for the visualization of data. Its most prominent aspectis an overall visual design, reminiscent of a garden trelliswork, in which panels are laidout into rows, columns, and pages. On each panel of the trellis, a subset of the data isgraphed by a display method such as a scatterplot, curve plot, boxplot, 3-D wireframe,normal quantile plot, or dot plot. Each panel shows the relationship of certain variablesconditional on the values of other variables.A number of display methods employed in the visual design of Trellis display enableit to succeed in uncovering the structure of data even when the structure is quite com-plicated. For example, Trellis display provides a powerful mechanism for understandinginteractions in studies of how a response depends on explanatory variables. Three ex-amples demonstrate this; in each case, we make important discoveries not appreciatedin the original analyses.Several control methods are also essential to Trellis display. A control method is atechnique for specifying information so that a display can be drawn. The control meth-ods of Trellis display form a basic conceptual framework that can be used in designingsoftware. We have demonstrated the viability of the control methods by implement-ing them in the S/S-PLUS system for graphics and data analysis, but they can beimplemented in any software system with a basic capability for drawing graphs.1 Introduction1.1 Barley Data: The Detection of A Probable ErrorIn the 1930s an experiment was run in the state of Minnesota in the United States. Atsix sites, ten varieties of barley were grown in each of two years. The data collected forthe experiment are the yields for all combinations of site, variety, and year, so there are6�10�2 = 120 observations. The experiment is of historical interest because it is one of theearly �eld trials that incorporated R. A. Fisher's ideas on randomization and the analysis ofvariance. The agronomists published the data and an analysis of them in a 1934 paper [11].Fisher published the data in his classic book, The Design of Experiments [10], but he didnot present an analysis. Fisher's publication gave the data a large exposure, and manyothers tried their hands at analyzing them to illustrate new statistical methods [1, 2, 6].We will do the same here, using the data to illustrate Trellis display. The visualizationusing Trellis reveals an important happening in the data | there appears to be a majorerror, one that survived undetected for six decades [4].1.2 Trellis Display of the Barley DataFigure 2 is a Trellis display of the barley data. Each panel displays the yields of the tenvarieties for one year at one site.Figure 2 uses an important display method: main-e�ects ordering of category levels.For these barley data, the explanatory variables are categorical. (Since there are only twoyears, the year variable is also treated as categorical.) The unique values of each categoricalvariable will be referred to as levels. For example, the levels for the site variable are Grand2
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Barley Yield (bushels/acre)Figure 2: A dotplot of the barley data showing yield against variety given year and site.3



Rapids, Duluth, and so forth. The level medians are a measure of the main e�ects, andwe have arranged that the levels for each variable are ordered based on level medians. Oneach panel the varieties are ordered from bottom to top by the variety medians; Svansotahas the smallest median and Trebi has the largest. The site panels have been ordered frombottom to top by the site medians; Grand Rapids has the smallest median and Waseca hasthe largest. Finally, the year panels are ordered from left to right by the year medians; 1932has the smaller median and 1931 has the larger. Later, we will discuss why main-e�ectsordering is important.Visually scanning up each column of Figure 2, we can see an anomaly: for each year,the values for Morris appear out of place. Because of the main-e�ects ordering, the sitemedians increase from bottom to top. The ordering is preserved in each year separatelyexcept for Morris. But the visual impression is that if we were to interchange the years atMorris, the site would then �t into the patterns formed by the other sites.This suggests another display. In Figure 3, the data are graphed again, but this time the20 values for each site are graphed on a single panel with the year variable encoded by theplotting symbol. Now we can see clearly that at each site except Morris, the overall yieldfor 1931 is greater than 1932, but the reverse is the case for Morris. However, somethingelse quite critical is also apparent. At Morris, the overall level of the absolute di�erencesbetween the years has a value that is commensurate with the corresponding values at theother sites. (This is actually the same observation from Figure 2, that Morris would �t thepattern were we to interchange its years.) This suggests that there might be an error in thedata at Morris, a reversal of the years. Either there is an error, or nature just happenedto reverse e�ects at Morris in such a way that 1932 exceeds 1931 by an amount similar tothe amounts that 1931 exceeds 1932 at the other sites. We will probe this issue later withother Trellis displays.1.3 Trellis BasicsThe salient visual aspect of Trellis display is a three-way rectangular array of panelswith columns, rows, and pages. In Figure 2 there are 12 panels, 2 columns, 6 rows, and 1page. In Figure 3 there are 6 panels, 1 column, 6 rows, and 1 page. Later, we will showa Trellis display with more than one page. We refer to the rectangular array as the trellisbecause it is reminiscent of a garden trelliswork.Each panel of a trellis display shows a subset of the values of panel variables; these values,are formed by conditioning on the values of conditioning variables. In Figure 2 the panelvariables are variety and yield, and the conditioning variables are site and year. On eachpanel, values of yield and variety are displayed for one combination of year and site. Forexample, the lower left panel displays values of variety and yield for Grand Rapids in 1932.In Figure 3 the panel variables are variety, year, and yield and there is one conditioningvariable, site.In Figure 2 the descriptions of the values of the year and site for a panel are given instrip labels at the top of the panel. The strip labels for each variable have a dark bar thatindicates the value of the variable. This conveys in a graphical way how the values of theconditioning variables are changing over the trellis.4
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Figure 3: A dotplot of the barley data showing yield against site and year given variety.5



The panel display method used in Figure 2 is a dot plot. The panel display method usedin Figure 3 is a dot plot with the year encoded by plotting symbol. The information sent toeach panel for rendering by the panel display method is a packet. The packet includes thevalues of the panel variables that are graphed on the panel, but only for those observationsthat should appear on the panel, as determined by the conditioning variables. In Figure 2there are 12 packets and in Figure 3 there are 6 packets.Trellis display can be used for small data sets | displaying the data with a simplesingle-panel display. It can be used for large data sets | displaying the data perhaps usinghundreds of panels. But in the interest of journal space, we will need to restrict ourselvesin this account to small data sets such as the barley data.1.4 Display Methods and Control MethodsA variety of display methods employed in the visual design of Trellis display enable itto succeed in uncovering the structure of data. Several control methods are also essential.A control method is a technique for specifying information so that a Trellis display can bedrawn. The control methods of Trellis display form a basic conceptual framework that canbe used in designing software. We have demonstrated the viability of the control methodsby implementing them in the S/S-PLUS system for graphics and data analysis [3], but theycan be implemented in any software system with a basic capability for drawing graphs.The display methods and the control methods have been developed in concert. Here isone example. Control methods specify the geometry of the trellis | that is, the layout intocolumns, rows, and pages | and then the assignment of the packets to the panels. Thesecontrol methods are enabled by the use of the strip labels, a display method.In the coming sections, we describe the display methods and the control methods ofTrellis display. Because the precise boundary between display and control is sometimesfuzzy, we do not always delineate the two in the discussion.2 Main-E�ects OrderingMain-e�ects ordering, described in Section 1, often allows us to perceive structure in thedata that cannot be seen easily without it. Figure 2 provides one example. The ordering ofthe site levels from bottom to top by the site medians establishes a visual pattern from whichMorris deviates, and this allows us to discover the anomalous behavior. By ordering thevariety levels from bottom to top on each panel (and by maintaining the same horizontalaxis for all panels) the 12 collections of plotting symbols on the panels form 12 gestaltsthat are alike and thus are more readily compared than if the levels were ordered in someother way. In Figure 4 the data are graphed again with the sites and varieties orderedalphabetically. We can no longer readily perceive the anomalous behavior at Morris, andthe randomness of the patterns of plotting symbols within each of the 12 panels makes themharder to compare.The main-e�ects ordering in Figure 3 lets us detect another property of the data, albeit6
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a somewhat subtle one. Consider the absolute value of the 1931 yield minus the 1932 yieldfor each site and variety. The average value of the 10 di�erences for each site appears toincrease slightly from bottom to top. In other words, there appears to be a year by siteinteraction in which the yearly change is somewhat greater for sites with higher overallyields than for sites with lower yields. This is hardly a surprising interaction in data of thistype. Furthermore, Morris appears to �t right into this interaction pattern. In fact, the sitethat deviates from the pattern is Grand Rapids, not Morris. This provides further evidencethat the cause of the reversal at Morris is an error in the data.Main-e�ects ordering is used extensively by Cleveland [4], who further demonstrates itsusefulness. However, examples suggest that if a categorical variable is naturally orderedand there are more than two levels, then it is typically better to use the natural order ofthe variable instead of main-e�ects ordering.3 Multiple Conditionings and Partial ResidualsLet us take a big step and suppose the barley data for Morris are incorrect, interchangethe years, and continue the analysis. It makes sense to study Figures 2 and 3 again with theinterchanged data, but we omit the new displays here in the interest of space, and continuewith other displays of the interchanged data.3.1 Multiple ConditioningsFigure 2 reveals not only the Morris anomaly, but also the relative performance of thedi�erent varieties. Trebi and Wisconsin No. 38, which have the largest variety medians,are typically among the highest yield varieties for each combination of site and year. Anexception is Grand Rapids, which overall appears to behave quite di�erently from the othersites. At that site, Trebi is an average performer.Figure 2 allows an incisive comparison of varieties for each combination of site and yearbecause the 10 variety measurements are graphed together on the same panel. This graphingalong a common scale allows highly accurate visual decoding of the relative values of the10 yields. Similarly, in Figure 3 we were able to compare the two yearly values for eachcombination of site and variety because the two values are graphed along a common scale.But in neither of these displays can we compare the six values of yield for each combinationof variety and year because the six values are on separate panels.Thus we make another Trellis display in Figures 5 and 6, using the interchanged data.The panel variables are site and yield and the conditioning variables are variety and year.There are 20 panels and the trellis has two columns, �ve rows, and two pages. Now the sixyields for each combination of year and variety are graphed along a common scale. Waseca,the site with the largest median, has close to the highest yield on all twenty panels, so it isconsistently the leader. Grand Rapids has the lowest or nearly the lowest yield in all casesexcept Velvet in 1932 where it has an unusually high value compared to its performanceelsewhere. 8



•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Svansota
1932

20 30 40 50 60

•

•
•

•

•
•

No. 462
1932

•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Manchuria
1932

•

•
•

•

•
•

No. 475
1932

•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Velvet
1932

•

•
•

•

•
•

Peatland
1932

•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Glabron
1932

•

•
•

•

•
•

No. 457
1932

•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Wisconsin No. 38
1932

•

•
•

•

•
•

Trebi
1932

20 30 40 50 60

Barley Yield (bushels/acre)Figure 5: Yield against site given variety and year | page 1.9



•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Svansota
1931

20 30 40 50 60

•

•
•

•

•
•

No. 462
1931

•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Manchuria
1931

•

•
•

•

•
•

No. 475
1931

•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Velvet
1931

•

•
•

•

•
•

Peatland
1931

•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Glabron
1931

•

•
•

•

•
•

No. 457
1931

•

•
•

•

•
•

Grand Rapids
Duluth

University Farm
Morris

Crookston
Waseca

Wisconsin No. 38
1931

•

•
•

•

•
•

Trebi
1931

20 30 40 50 60

Barley Yield (bushels/acre)Figure 6: Yield against site given variety and year | page 2.10



This change in what we can readily perceive in the Trellis displays for the barley datais a general phenomenon: when we seek to determine the dependence of a response ontwo or more explanatory variables, we typically see most e�ectively the dependence on theexplanatory variables selected as panel variables, and we see how this dependence changes asthe values of the conditioning variables change. Typically we do not perceive as e�ectivelythe dependence on the conditioning variables. Thus, in analyzing such multivariable datawe want to make multiple Trellis displays so that each explanatory variable appears at leastonce as a panel variable.3.2 Partial ResidualsEarlier we saw in Figure 3 a suggestion of an interaction between year and site | thehigher the overall yield for a site, the greater the di�erence between 1932 and 1931. Letus focus the analysis on the year variable by adjusting for main e�ects of the other twoexplanatory variables. We could do this in the following way: (1) take means across thetwo years for each combination of site and variety; (2) subtract each mean from the twomeasurements; (3) graph the residuals by Trellis displays with the residuals taken as theresponse. Such Trellis displays are partial residual plots [7]. In this particular example,because there are just two levels of the year variable, each residual is one-half the di�erenceof a 1931 value and 1932 value, and the 1931 residual for a particular site and variety is thenegative of the 1932 residual for that site and variety. Thus, we can simplify the display byjust graphing the 1931 values minus the 1932 values.Figure 7 graphs the di�erences using the interchanged data. We have maintained theordering of sites by overall site median. The vertical line on each panel is the 10% trimmedmean of the yields for the panel, that is, the mean with the smallest and largest di�erencesremoved. Now we see clearly the interaction between site and year that was hinted at inFigure 3. The overall level of the di�erences increases with the site median; Morris �tsnicely into the pattern and Grand Rapids now emerges as the unusual site. This makes itseem even more likely that the original data are in error.The e�ectiveness of displaying partial residuals is a common occurrence. By removinggross main e�ects, they can allow subtler e�ects to emerge. Partial residuals have a longhistory in statistics. For the most part, their usage, at least by the name of \partialresiduals", has been in studies where the explanatory variables are numerical [7]. But,in fact, partial residuals are a special case of a more general principle that emerges withgreatest clarity in the exploratory methods of Tukey where e�ects are removed | �ttedby models often known not to fully explain the data | to reveal other e�ects with moreclarity [19, 20].4 TrellisingThe analysis of the barley data in the previous section illustrates a general phenomenonof the use of Trellis display; the structure of the data is revealed by the combined informationof many Trellis displays, not just a few. 11
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To produce any Trellis display we must specify the trellis dimensions and the assignmentof the packets to the panels of the trellis. We refer to this as trellising. For example, thetrellising for Figure 2 is shown in Figure 8. For Trellis display to be useful in practice, we
1932

Grand Rapids
1931

Grand Rapids

1932
Duluth

1931
Duluth

1932
University Farm

1931
University Farm

1932
Morris

1931
Morris

1932
Crookston

1931
Crookston

1932
Waseca

1931
Waseca

Figure 8: Trellising.need a conceptual framework for trellising that is both exible and simple. No matter howpowerful the visual transmission of information of Trellis display, it would not be of muchuse if trellising were complex and di�cult to think through in each case. Fortunately, thereis a exible and simple control mechanism. The ingredients of this mechanism, which weexplain in detail in this section are the following:1. We specify the dimensions of the trellis | columns, rows, and pages.2. We specify an order for the conditioning variables and an order for the levels of eachconditioning variable.3. Based on our speci�cation of these orderings, the packets are ordered by a simple rule(packet order).4. Another simple rule governs the order of the panels (panel order).5. Packets are assigned to panels according to the packet order and the panel order.6. While we typically make the selections of the dimensions and the orderings of theconditioning variables in a coordinated way, Trellis display has been designed notmake a connection. This is a critical feature that makes trellising both simple andexible.7. A mechanism for specifying skipping allows us to assign packets with an irregularstructure to the rectangular trellis in an understandable way.8. A mechanism for adding space between any two adjacent columns or any two adjacentrows allows us to visually organize the panels more e�ectively in certain applications.4.1 Dimensions, Packet Order, Panel Order, and Packet Assignments toPanelsIn making a Trellis display we specify the trellis dimensions, an order for the conditioningvariables, and an order for the levels of each conditioning variable. Consider Figure 2 whose13



trellising is shown in Figure 8. The dimensions are (2, 6, 1) | 2 columns, 6 rows, and 1page. There are two conditioning variables, year and site; the �rst with two levels and thesecond with six. The order of the conditioning variables is (1) year; and (2) site. The orderof the year levels is (1) 1932; and (2) 1931. The order of the site levels is (1) Grand Rapids;(2) Duluth; (3) University Farm; (4) Morris; (5) Crookston; and (6)Waseca. Recall that theorders of the levels of site and year came from using main-e�ects ordering, but, of course,in any application we are free to order levels of the variables in any way that is sensible forthe data at hand.The following rule now orders the packets using the orderings of the conditioning variablesand their levels: The levels of the �rst conditioning variable vary the fastest, the levels ofthe second conditioning variable vary the next fastest, and so forth. For Figure 2, theorder of the packets is (1) 1932 Grand Rapids; (2) 1931 Grand Rapids; (3) 1932 Duluth;(4) 1931 Duluth; (5) 1932 University Farm; (6) 1931 University Farm; (7) 1932 Morris; (8)1931 Morris; (9) 1932 Crookston; (10) 1931 Crookston; (11) 1932 Waseca; and (12) 1931Waseca.The panels of a Trellis display are ordered by the following rule: The bottom left panelof the �rst page is panel one; from there we move fastest through the columns, next fastestthrough the rows, and the slowest through pages. The following shows the panel order forFigure 2, which has two columns, six rows, and one page:11 129 107 85 63 41 2The rule for assigning packets to panels is to match the packet order and the panel order.Packet one goes into panel one, packet two goes into panel two, and so forth.The panel ordering rule is like a graph, not a table. The origin is at the lower left, and aswe move from left to right or from bottom to top, the panel order increases. Holding to agraphical convention is important because we often have numerical values changing as eitherrows or columns change. For example, in Figure 2 the result of the main-e�ects orderingof the site levels and the panel ordering convention is an increase in the site medians in agraphical way | from the bottom row to the top row.4.2 Di�erent TrellisingsLet us consider di�erent trellisings of the barley data to further illustrate how di�erentdimensions and orderings alter the trellis.Figure 2 was made tall and narrow to �t into a graphics region with a portrait shape.Just to review, here is the speci�cation that produced its trellising: Dimensions = (2, 6,1); Variable Order = year, site; Year Level Order = 1932, 1931; Site Level Order = GrandRapids, Duluth, University Farm, Morris, Crookston, Waseca.14



Suppose, however, that the graphics region has a landscape shape. Then to use spacee�ectively we might want to interchange rows and columns, producing the trellising shownin Figure 9. We get this by the following speci�cation: Dimensions = (6, 2, 1); Variable
Grand Rapids
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Morris
1932

Crookston
1932

Waseca
1932

Grand Rapids
1931

Duluth
1931

University Farm
1931

Morris
1931

Crookston
1931

Waseca
1931Figure 9: Trellising.Order = site, year; Site Level Order = same as previous trellising; Year Level Order = sameas previous trellising. Thus we have altered the dimensions and reversed the order of theconditioning variables.The Trellis display shown in Figures 5 and 6 has the two-page trellising shown in Fig-ures 10 and 11. We get this trellis by the following speci�cation: Dimensions = (2, 5, 2);Variable Order = variety, year; Variety Level Order = Svansota, No. 462, Manchuria, No.475, Velvet, Peatland, Glabron, No. 457, Wisconsin No. 38, Trebi; Year Level Order =1932, 1931.

Svansota
1932

No. 462
1932

Manchuria
1932

No. 475
1932

Velvet
1932

Peatland
1932

Glabron
1932

No. 457
1932

Wisconsin No. 38
1932

Trebi
1932Figure 10: Trellising | page 1.
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1931Figure 11: Trellising | page 2.Suppose, however, that the graphics region has a landscape shape. We might try tosqueeze the panels on a single page by the trellising shown in Figure 12. We get this bythe following speci�cation: Dimensions = (5, 4, 1); Variable Order = same as previoustrellising; Variety Level Order = same as previous trellising; Year Level Order = same asprevious trellising. Thus we have changed only the dimensions.15
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1931Figure 12: Trellising.4.3 Flexible TrellisingEarlier we emphasized the importance of the independence of the speci�cation of packetorder and the speci�cation of the trellis dimensions. In particular, the numbers of levels ofthe conditioning variables and the trellis dimensions are independent. This allows exibletrellising. Of course, we often want to coordinate the two to enhance our ability to perceivethe assignment of the levels of the conditioning variables to the trellis. When possible,we would like to have a column, row, or page dimension changing with the values of oneconditioning variable and to have one variable per dimension. For example, in Figure 2,the trellising (shown by itself in Figure 8) was carried out so that the year levels changealong the columns and the site levels change along the rows. But because the area ofdisplay devices is �nite, and because we can �nd ourselves conditioning on more than threevariables, we cannot always have such coordination. In Figures 5 and 6, whose trellisingis shown by itself in Figures 10 and 11, the site variable changes both with the rows andwith the columns. The independence of the packet order and the panel order is in partresponsible for the exibility that allows such a trellising.The exible trellising is also a result of a visual design feature of Trellis display | thestrip labels. The labeling of the levels of conditioning variables that produce a panel is partof the panel. Thus we can arrange panels in any order and not worry about where labelsare placed. The exibility would not have been possible had we attempted labeling in themargins, the method typically used for multipanel displays.4.4 BreakingTwo adjacent columns of a Trellis display meet at a column join, and two adjacent rowsmeet at a row join. Breaking the join | that is, adding white space between two columnsor rows | can enhance our perception of the levels of conditioning variables in cases wheremore than one variable changes along the column dimension or along the row dimension.Consider the trellising in Figure 12 where 1932 packets are in the bottom two rows and1931 packets are in the top two rows. Figure 13 breaks between rows 2 and 3 to enhanceour perception of this division of panels by year.16
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1931Figure 13: Trellising with added white space.4.5 SkippingSuppose we have two conditioning variables, the �rst with 11 levels and the second with19 levels. We might want a trellising with 19 pages, one for each level of the second variable.This means that we need to �ll each page with 11 panels. Since 11 has no divisors except 1and 11 our only choices for the trellis dimensions would be (1, 11, 19) or (11, 1, 19), unlesswe allow panel skipping. By skipping we can do the following: make the trellis dimension(3, 4, 19) and then on each page �ll 11 panels with packets and then skip one. On eachpage the upper right panel would be empty.The Trellis display skipping rule is the following: (1) a sequence whose values are \�ll" or\skip" is speci�ed; (2) if the sequence is smaller than the number of panels (the product ofthe dimensions) then the sequence is repeated. Thus the skipping sequence for the examplein the previous paragraph is 11 values of \�ll" followed by 1 \skip".5 Conditioning on A Numeric Variable with Repeat Mea-surements at Discrete Values5.1 Fuse Data: A Missed E�ectSheesley reports an experiment to study the properties of a thermal fuse in an elec-tronic device [16]. The response is the operating temperature, F , of the fuse. There arethree explanatory variables. The �rst is the ambient temperature, A, of the environmentin which the fuse is located during a run. There are two levels for this variable, 75� and110�. The temperature of the fuse is expected to increase as the temperature of the en-vironment increases. The second is an ordered categorical variable, S, that describes thestart condition of the fuse in a run. The value \cold" means that the fuse begins essentiallyat the temperature of the environment, and the value \hot" means that it was previouslyin operation at the start of the run. Starting \hot" is expected to produce a higher fusetemperature. The third variable is voltage, V . There are three levels | 110, 120, and 126volts. The fuse temperature should increase with increasing voltage.In the experiment, the 12 = 2�2�3 combinations of the explanatory variables were testedwith 10 replications (di�erent fuses) for each combination. Due to cost considerations, oncethe experiment was set up to run a particular combination, all replications were carried outin parallel. While this saves money, it makes the experiment vulnerable to drift in other17



variables that might a�ect F ; a special condition for one of these variables during the runsof one combination would be confounded with the e�ect of the combination. The use ofTrellis display will show an e�ect missed in the reported analysis; either there is a genuinethree-factor interaction or some special condition occurred during the testing of one or morecombinations.5.2 Categorical Variables and Numeric Variables Treated as CategoricalFor the barley data, the variety and site variables are categorical. The year variable wastreated as categorical, and not numerical or ordered categorical because there are only twovalues and because we cannot conclude that barley yield would likely increase or would likelydecrease due to the mere march of time. Thus, for the barley data, all three explanatoryvariables are categorical and in making the Trellis displays, we conditioned on the levels ofthe variables, that is, the levels of the categories. For example, when site was a conditioningvariable we made Trellis displays by conditioning on Grand Rapids, Duluth, etc.For the fuse data, S is an ordered categorical variable with two levels, A is numericalwith two levels, and V is numerical with three levels. We expect an increase in F withan increase in any one of these explanatory variables. For either A or V , because we havediscrete values with repeat measurements at each value, we can condition on the distinctvalues in the same way that we condition on the levels of a categorical variable. Of course,as with an ordered categorical variable, we would almost always want to order the numericallevels by their values and not by main-e�ects ordering.If the measurements of V , say, had not been under strict experimental control andvaried over many values with few or no repeat values, we would need a special method forconditioning on V . Such a method will be discussed in Section 6.5.3 Trellis Display of the Fuse DataFigure 14 is a Trellis display of F against S given A and V . The levels of each of theexplanatory variables are in their natural order, and as stated earlier, we expect F toincrease as the level of any of the variables increases. The panel display method is a dotplot that uses open circles to graph the temperatures of the 10 fuses for each combination,and uses a \+" to graph the mean of the 10 values. The vertical line on each panel is atthe mean of the 120 observations. The display shows the expected; S = \hot" results inhigher mean F than S = \cold". But there is a strong interaction between S and A. Forthe lower level of A, the e�ect of S is substantially larger.Figure 15 is a Trellis display of F against A given S and V . The same panel displaymethod is used as in Figure 14. Again, we see the interaction between S and A but adi�erent aspect is clearly portrayed. For S = \cold", F increases as A increases, but for S= \hot", A appears to have no e�ect.Figure 16 is a Trellis display of F against V given S and A. The panel graphical method isa scatterplot of F against V with the means for each value of V connected by line segments.The shapes of the dependence on V in the top two panels are very nearly the same, both18
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concave. The shape in the lower right panel is also concave, but with a smaller di�erencebetween the two slopes than in the top panels. The shape in the lower left panel is markedlyconvex. This is, of course, a three-factor interaction. We will use partial residuals to studyit further. For each of the four combinations of S and A, there are 30 observations. In eachcase we take the mean of the 30 values and subtract it from the values. The new values arethe partial residuals for a model with main e�ects and an interaction for S and A. Figure 17is a Trellis display of the partial residuals against V given S and A using the same paneldisplay method as in Figure 16. Careful study of this display together with our conclusionsfrom the other displays reveals that something quite unusual is happening, probably for oneor more of the runs with S = \cold" and A = 75� F, the lower left panel in Figure 17.Overall, the Trellis displays of the fuse data show a nonincreasing marginal e�ect: asthe level of an explanatory variable increases, F increases, but the marginal e�ect of nowincreasing one of the other explanatory variables is the same or lessened. The unusualbehavior in Figure 17 is a deviation from this pattern. Let us look at this in detail.Figure 14 shows that for A at the greater temperature level there is a lessened e�ect ofincreasing S. Figure 15 shows that for S at \hot", there is a lessened e�ect of A, in fact noe�ect. In Figure 17, consider the e�ect of going from V = 120 volts to V = 126 volts. Thebiggest change is for the lower levels of the other two variables, S = \cold" and A = 75�,the lower left panel of Figure 17. If we move to any other panel of the �gure | whichmeans that we increase the level of either S or A or both, the e�ect of V at the two selectedlevels decreases. If we move from the upper left panel to the upper right, the e�ect of V atthe two levels stays the same. If we move from lower right panel to the upper right panelthe e�ect of the two levels of V decreases. Now consider the e�ect of going from V = 110volts to V = 120 volts. If we move from the lower right panel to the upper right panel, thee�ect decreases slightly. If we move from the upper left panel to the upper right, the e�ectis nearly the same. But now consider the e�ect in the lower left panel. It is the smallestof the four on the display. But given the overall law of nonincreasing marginal e�ect thatobtains everywhere else, we would expect the e�ect in the lower left to be the greatest. Itis possible that some very peculiar law of electricity and thermal conduction takes over forthese two combinations. But it is more likely that some special condition in the operatingenvironment occurred, confounding the condition with the other explanatory variables.The original analysis of these data missed the unusual combination, which is a three-factor interaction. A plausible model for the data suggests unusual behavior is not randomvariation. The model is the following: main e�ects and an interaction for S and A; aquadratic in V ; and a dummy variable that is 1 for the 10 observations of the specialcondition (V = 120, A = 75�, S = \cold") and �1 elsewhere. The dummy variable issigni�cant at the 1.2% level.6 Shingles6.1 Haystack Data: A Solution to a Problem of Ezekiel and FoxBefore the introduction of hay-baling machines in the 1940s, hay was often sold loose inround stacks. Two aspects of a round stack that a farmer could easily measure with a rope20
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were the circumference of the base and the over, the distance from the base on one side,over the top at the center, to the point on the base on the opposite side. The circumferenceand the over were then used to estimate the volume.Ezekiel and Fox report data from an experiment run in the 1920s to determine a methodfor estimating the volume of a round stack from its circumference and over measurements [8].The volumes of 120 stacks were precisely determined, and measurements were made of thecircumferences and the overs. Ezekiel and Fox analyzed the data by �tting log volume, V ,to log circumference, C, and log over, O.Figure 18 is a scatterplot matrix: scatterplots of all combinations of the three log2haystack variables. Notice that O by itself is a very good predictor of V . Also, the measuredvalues of O and C are correlated; their squared correlation coe�cient is 0.40. Consider thebasal diameter and the height of a haystack. C, of course, is a simple function of the di-ameter. But O also depends on the diameter, hence the correlation. O also depends on theheight.As we will see shortly, there is an interaction between C and O in explaining V . Theinteraction is discussed by Ezekiel and Fox:The basal area is a function of the square of the basal circumference; the \over" is afunction of both the basal diameter and the height | but attempts to separate the twohave been unsuccessful. . . . The problem is evidently one where the relation may bestbe expressed by a joint function such asvolume = f(circumference; over)In other words, Ezekiel and Fox saw no way to eliminate the interaction. One might expectthat if there were a way to de�ne the height of a stack from the over and circumferencemeasurements, then there might be no interaction in a model using the diameter and theheight. But as they state, Ezekiel and Fox saw no way to do this. They went on to describethe function using a nonparametric, or smoothing, approach to �t V as a function of Cand O. We will use Trellis display to reveal the structure of the interaction; this leads tomethod for determining a de�nition of haystack height which, in turn, leads to a model forthe data with no interaction.6.2 Conditioning on Intervals and the Equal Count AlgorithmFor the haystack data, we would like to study conditional dependence | the dependenceof V on C given O, and the dependence of V on O given C. But Figure 18 shows thatC and O take on many di�erent values, with insu�cient repetition at each value to allowus to condition on single numerical values as we can for a discrete numerical variable withmany observations at each distinct value. For variables such as C and O we must conditionon each of a collection of intervals of values. For example, we must study the dependenceof V on O given C in an interval, and vice versa.For a categorical variable or for a discrete numerical variable we have referred to thevalues on which we condition | that is, the distinct values | as the levels. For a numerical23
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Figure 18: Scatterplot matrix of log base 2 of the haystack data.variable in which we condition on intervals, the intervals become the levels, which, as in theother cases, are ordered.We could form intervals by simple binning: breaking up the range of a conditioning vari-able into disjoint intervals. Such binning of numerical data to study conditional dependencereaches deeply into the history of statistics. In fact, Ezekiel, in earlier editions of the Ezekieland Fox book cited here [8], used such simple binning in looking at the haystack data.But we will take a di�erent approach, binning in overlapping intervals. Figure 19 is agiven plot; it shows intervals of O that we will use for conditioning. The intervals wereformed from the equal count algorithm which we will describe shortly [4]. The overlapof the intervals increases the resolution with which we can study conditional dependence.Suppose something special happens in the conditional dependence of V on C when O isequal to 5 log2 ft | for example, the maximum curvature occurs. We are likely to bestperceive this dependence if the collection of intervals contains at least one with 5 log2 ftat or near the center. We want successive intervals to slide along rather than jumping bylarge amounts. A good analogy is moving averages for a time series; there, to increaseresolution, the averaging intervals overlap, sliding along to provide the best picture of thelocal behavior at each time point.The intervals for a numerical variable together with the measured values of the variableform a data structure that we call a shingle because the intervals often overlap. In animplementation of Trellis display, it is convenient to store intervals and values together ina shingle data structure. We will discuss that point later in Section 7.24
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Figure 20: Log volume against log circumference given log over.26



�tting, nearest-neighbor bandwidth selection, and a smoothing parameter of 1 [5]. Thecurves help us perceive the underlying patterns.Figure 21 is a Trellis display of V against O given C. The panel variables are V andO and the conditioning variable is C. As with Figure 20, 9 equal-count intervals are usedwith a target fraction of overlap of 0.5. The loess curves use local quadratic �tting with asmoothing parameter of 1.The underlying patterns in Figure 20 appear to be nearly linear but with slopes that tendto increase as the conditioning level of O increases, an interaction between O and C. Thisis the interaction referred to by Ezekiel and Fox that appeared to them to be unremovable.Figure 21 also shows the interaction. For low values of C there is a hint of concavity inthe dependence of V on O for the lower values of C, but as C increases the dependencebecomes nearly linear.

11.0

11.5

12.0

12.5

Circumference

5.0 5.2 5.4 5.6

Circumference Circumference

5.0 5.2 5.4 5.6

Circumference Circumference

11.0

11.5

12.0

12.5

Circumference

11.0

11.5

12.0

12.5

Circumference Circumference

5.0 5.2 5.4 5.6

Circumference

Log Base 2 Over

Lo
g 

B
as

e 
2 

V
ol

um
e

Figure 21: Log volume against log over given log circumference.27



6.4 Modeling the Haystack DataThe problem with the haystack data is the interdependence of C and O. The overmeasurement depends on the haystack height and on the diameter, and the circumferencemeasurement is equivalent to the diameter. This results in a correlation between O and Cand an interaction in the dependence of V on O and C. Next, attacking the problem posedby Ezekiel and Fox, we will present a method for deriving a height measurement; then wewill model volume by height and basal radius, seeking to eliminate both the correlation inthe explanatory variables and the interaction.Haystacks are mounds. Suppose the shape of each haystack is a fustrum of a right circularcone, that is, the region of the cone between the base and a plane parallel to the base andintersecting the cone. Let bi be the radius of the circular base of the ith haystack fustrum,and let ti be the radius of the circular top, so bi > ti. Let hi be the height. Suppose furtherthat the ratio of the top radius to the bottom is a constant, ti=bi = �. Let oi be the overmeasurement and let ci be the circumference measurement of the base. Thenbi = ci=2�ti(�) = �bihi(�) = q(oi=2� ti(�))2 � (bi � ti(�))2;and the volume is fi(�) = 13�hi(�)(b2i + biti(�) + t2i (�)):We have indicated the dependence of ti, hi, and fi on � which in the coming model for thedata will be an unknown parameter.We will model the actual log2 volumes, Vi, of the haystacks by the logs of the fustrumvolumes, Fi(�) = log fi(�):The model is Vi = � + Fi(�) + �iwhere the �i are independent with mean zero and variance �2. The unknown parametersare �, �, and �. If the haystack shapes are well approximated by fustrums with a constantratio of top radius to base radius, then the estimated value of � should be close to 0.The model was �tted by nonlinear least squares. The estimates of the parameters andtheir standard errors are �̂ = 0:90�0:030, �̂ = 0:092�0:011 log2 ft3, �̂ = 0:091�0:0058 log2ft3. The sample distribution of the residuals is well approximated by a normal distribution.The standard errors of the estimates were estimated by a simulation with the �i generatedfrom a normal distribution with standard deviation 0.091.The squared correlation coe�cient between log2 bi and log2 hi(�̂) is 0.065. Furthermore,the �tted function can be written as two additive functions of log2 bi and log2 hi(�̂). Thuswe have created two explanatory variables that are nearly uncorrelated and that act withno interaction in explaining the response.The approximation of haystack shape by a fustrum is quite reasonable. The estimate of� is signi�cantly di�erent from zero but its magnitude is small. The residual plots suggest28



that the �tted model slightly underpredicts the volumes of the largest haystacks, but thedistortion is small.The �tted log volume model can be written as a function of O and C. We will graphthis function to compare its properties with the behavior in the Trellis displays of the datain Figures 20 and 21. And we will use Trellis display to show the function as well.The Trellis display in Figure 22 graphs two �tted functions. One function is the �t justdiscussed, which is based on the fustrum model; this �t is portrayed by the heavy solidcurves on the panels. The second function is a �t that is linear in C and O; this �t isportrayed by the lighter lines on the panels. The purpose of the linear �t is simply toprovide a visual reference so we can more readily judge the curvature and interaction of thefustrum �t.The fustrum �t is graphed over a cropped rectangular grid. Figure 18 shows that Cand O, which are correlated, vary over a roughly elliptical region. We begin with the fullrectangular grid: 50 equally-spaced values of C from the minimum measured value of Cto the maximum, and 12 equally-spaced values of O from the minimum to the maximum.This full grid contains the elliptical region of measured values of C and O. We crop thegrid back to those points that lie inside the elliptical region. The result then is values of Vfor the cropped grid values of C and O. Figure 22 graphs V against C given O. Since Cis discrete in this case, we condition on the distinct values of O. Figure 23 uses a similarmethod to graph V against O given C.Figures 22 and 23 show that the qualitative properties of the �tted function are quitesimilar to the patterns observed in Figures 20 and 21. The interaction between O and Cis shown clearly in Figure 22. As the conditioning values of O increase, the overall slopesof the curves increase. However one property that is not seen in Figure 20 is the concavityof the conditional dependence; in Figure 20 it appears linear. But the amount of noiseabout the underlying patterns in Figure 20 is large enough that it could easily mask themild curvature shown in Figure 22. Figure 23 shows the same mild concavity shown inFigure 21.7 Discussion7.1 The E�ectiveness of Trellis DisplayThis account of Trellis display has been organized around applications. We studiedthree data sets and in each case made important discoveries not appreciated in the originalanalyses. There are two reasons for this organization. First, it is far easier to describe thedetails of a visualization method through sets of data. Second, while we can appeal to thetheory and experiment of visual perception to attack very speci�c issues of visualization,the only way to establish the validity of a general approach to visualization that contains awhole collection of graphical methods is to provide examples where the method allows usto detect important properties of data sets that would be di�cult or impossible to see withother statistical methods. 29
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Figure 22: Log volume against log circumference given log over.30
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Figure 23: Log volume against log over given log circumference.31



7.2 Standard and Nonstandard Trellis DisplaysIn practice, most Trellis displays can be produced by straightforward speci�cations ofdimension, variable order, and standard panel display methods such as scatterplots, dotplots, histograms, and so forth. But when needed, special displays can be produced bycreative use of dimension, variable order, panel display methods, panel skipping and byadding extra break space between panels. Figure 1 at the beginning of the paper providesan example that uses some of these techniques.The raw data on which Figure 1 is based are measurements of the velocity of a galaxy inthe Southern Hemisphere [5]. When looked at from the earth, the galaxy �lls a very smallarea on the celestial sphere. Measurements of the radial velocity (in a direction toward oraway from Earth) were made at 323 locations over this area. The velocities are not constantbecause the galaxy appears to be spinning and has other complicated motions. The data arenoisy, so a loess surface was �tted to the velocities as a function of longitude and latitudeon the celestial sphere [4]. The �t was then evaluated over a 26� 31 grid of longitudes andlatitudes.On each panel of Figure 1, the gridded loess �t is displayed by a 3-D wireframe plot fromsome viewing direction. The base plane of the box is longitude and latitude, and the axisperpendicular to the base plane is velocity. There are 8 viewing directions, all at 45� tothe base plane. The directions make a complete circle around the surface in equal angularsteps. As we move from the lower left panel counterclockwise, the equally spaced viewingdirections go from 22.5� to 337.5� in steps of 45�.The packet for each panel is the identical set of (x; y; z) coordinates. There are eight suchpackets of triples, one for each viewing direction. The trellising is achieved in the followingmanner. A new variable, viewing direction, is de�ned. For each triple (x; y; z), the value ofthe new variable is the circular angle of the viewing direction described above, so it takesone of the eight values from 22.5� to 337.5�. This new variable becomes the conditioningvariable; it is numeric and has 8 unique values for conditioning. But the eight levels arenot ordered by their numerical values. Instead they are ordered 22.5�, 67.5�, 112.5�, 337.5�,157.5�, 292.5�, 247.5�, 202.5�. Furthermore, there is a skipping vector de�ned by (4 �lls, 1skip, 4 �lls). The result of the ordering and the skipping is wireframe displays whose viewingdirections progress around a circle as we proceed circularly around the panels of the Trellisdisplay. The panel display method performs the perspective transformation based on thedata and the viewing direction.7.3 Graphical Perception: Orientation Estimation and Visual AssemblyThe theory and experiment of graphical perception have played an important role in thevisual design and the control design of Trellis display. Here we discuss two issues, aspectratio, and color.In many graphical displays we judge the orientations of line segments to decode infor-mation about the rate of change of one variable with respect to another. For example, inFigures 22 and 23 we judge the orientations of the short line segments that make up thecurves to decode information about the relative steepness of the curves and the amount of32



curvature.This decoding is greatly a�ected by the aspect ratio of the graph. The data rectangle of agraph is a rectangle that just encloses all of the data. The aspect ratio is the physical heightof the data rectangle (measured in cm, for example) divided by the width. The aspect ratiois a vital parameter for judging rate of change from orientations because the orientationschange as the aspect ratio changes. The aspect ratio in Figure 24 is much smaller thanthat of Figure 22; although both graph the same data, we cannot as accurately decodeinformation about the relative overall slopes and the curvature from Figure 24. Both thetheory and experiment of graphical perception have led to the 45� principle: orientations ofline segments are most accurately judged when the absolute slopes are centered on 45� [4].This banking to 45� was used in Figures 22 and 23. Because of its importance, control ofaspect ratio has been built into Trellis display at a fundamental level.
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Figure 24: Log volume against log circumference given log over.Visual assembly, the simultaneous perceiving of a collection of graphical objects as agestalt or visual whole, is another important visual operation of graphical perception. Forexample, on Trellis displays we want to perceive the strip labels for a particular conditioning33



variable as a visual whole, �ltering out other aspects of the display. Color encoding is apowerful method for producing e�ective assembly. In Trellis display, default color encod-ings have been developed that are reasonably robust to the output device being used. Theguiding principle is to choose colors that are simple combinations of cyan, magenta, andyellow, three of the four standard printing colors. The reason is that these simple combina-tions work well on color printers but also work well on screens; encodings that work well onscreens do not necessarily move well to printers. Simple combination is de�ned as follows:(1) We can add white to any of these three primaries to alter their lightness or saturation;for example, 80% cyan is 80% cyan and 20% white. (2) We mix no more than two of thesealtered primaries. For example, in Trellis display the �rst four colors for color encodingplotting symbols or curves are the following: (1) 100% cyan; (2) 100% magenta; (3) 50%yellow + 50% cyan (green); (4) 75% magenta + 25% yellow (orange).7.4 A High-Level Design for Software for Trellis DisplayBy \high-level" design for software we mean the design of the mechanism that a useremploys to specify what is produced. We have developed a high-level design for Trellisdisplay and have implemented the design in the S/S-PLUS system for graphics and dataanalysis [3].We have already provided information that has been used in the high-level design:1. The trellising mechanism of Section 4 serves not only as the conceptual framework fortrellising; it is also the control mechanism for users.2. Conditioning variables in Trellis display use a data structure that consist of the valuesof the variable and the ordered levels to be used for conditioning. For categoricalvariables, the data structure is a category and the levels are a set of unique values.For numerical variables the data structure is a shingle and the levels are intervals. Inboth cases the data structure simply carries along the levels as an attached attribute;routines that want the values but that do not know about the levels can still accessthe data structure as if the levels were not there.There are many other aspects of the high-level design, too numerous to discuss here, butthere is one more that warrants discussion because it plays a central role. The highest-levelroutines for Trellis display implement speci�c graphical methods such as dot plots, quantileplots, boxplots, and wireframes, together with a few rather general routines that, say, graphy against x. The job of each of these routines is to control the trellising, scaling, and aspectratio; to create the packets; and to draw the trellis framework which is everything on thedisplay except the data regions of the panels. The drawing in the data regions is carried outby a panel function that is called by the high-level routine. The panel function is a singleprescription that takes the packet for a particular panel as input and then draws somethingin that panel. There is just one prescription that applies to all panels. Each high-levelroutine comes with a default panel function. Users can program a panel function, whichis relatively simple in most cases because it is a prescription for a single-panel display. Incontrast, users are not expected to program the routines which deal with the very complextask of establishing the trellis framework. This two-part division works quite well, providingexibility without undue complexity. 34



7.5 Trellis Display and Other Work in Multipanel Data DisplayArranging panels in a nested way to see the relationships of certain variables conditionalon others has arisen in many forms in many di�erent scienti�c disciplines. Among thedisplays that Tufte refers to as small multiples are examples of such conditioning displays [17,18]. The casement window displays of Tukey and Tukey [21] show four numerical variablesusing a rectangular array of scatterplots of two of the variables, conditional on disjointintervals of the other two variables, and with the scales of two conditioning variables inthe margins to show the conditioning intervals. Mihalisin, Timlin, and Schwegler presenta systematic approach to both the design and control of nested displays with certain typesof display methods on the individual panels [13, 14]. The system, which has evolved intoTempleMVV, has also been designed so that it is able to display very large databases [15].In work based on these ideas, LeBlanc, Ward, and Wittels use nested multipanel displays intheir dimensional stacking for displaying functions of several variables [12]. In the \worldswithin worlds" of Feiner and Beshers [9], nesting is generalized to three dimensions; 3-Ddisplays become the panels and they are arranged in a 3-D array with perspective. Finally,in their recent paper about TempleMVV, Mihalisin et al. give an excellent discussion ofgeneral criteria and goals for multipanel display [15].Trellis display brings substantial generality to multipanel display. Indeed, it serves as anoverall framework within which all data display can be carried out. Any graphical method| whether it is a univariate, bivariate, or higher dimensional display technique | can bedisplayed in a trellis, and there can be many panels or just a single panel. For example, eachpanel of a Trellis display can be a scatterplot matrix. In this account we used dot plots,scatterplots, curve plots, and wireframes. The major features that allow the generality arethe following:1. The independence of the speci�cation of packets and the speci�cation of the trellisgeometry.2. The simple rules for forming the packet order, for the panel order, and for matchingthe two orders.3. The use of strip labels to make panels self-contained.4. A division of responsibility into (1) high-level routines that implement broad graphicalmethods, controlling features speci�c to the method, scaling, aspect ratio, labeling,and the trellising; and (2) programmable panel functions that carry out the renderingin the data regions of the panels.Acknowledgements and More InformationMontse Fuentes played a vital role in applying Trellis display to the data sets discussedhere. We are grateful for her incisive insights and suggestions for improving Trellis Display.More information about trellis display is available athttp://netlib.att.com/netlib/att/stat/info/trellis.html35
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